1
|
Timalsina B, Choi HJ, Moon IS. N-Acetylglucosamine Kinase-Small Nuclear Ribonucleoprotein Polypeptide N Interaction Promotes Axodendritic Branching in Neurons via Dynein-Mediated Microtubule Transport. Int J Mol Sci 2023; 24:11672. [PMID: 37511433 PMCID: PMC10380243 DOI: 10.3390/ijms241411672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
N-acetylglucosamine kinase (NAGK) has been identified as an anchor protein that facilitates neurodevelopment with its non-canonical structural role. Similarly, small nuclear ribonucleoprotein polypeptide N (SNRPN) regulates neurodevelopment and cognitive ability. In our previous study, we revealed the interaction between NAGK and SNRPN in the neuron. However, the precise role in neurodevelopment is elusive. In this study, we investigate the role of NAGK and SNRPN in the axodendritic development of neurons. NAGK and SNRPN interaction is significantly increased in neurons at the crucial stages of neurodevelopment. Furthermore, overexpression of the NAGK and SNRPN proteins increases axodendritic branching and neuronal complexity, whereas the knockdown inhibits neurodevelopment. We also observe the interaction of NAGK and SNRPN with the dynein light-chain roadblock type 1 (DYNLRB1) protein variably during neurodevelopment, revealing the microtubule-associated delivery of the complex. Interestingly, NAGK and SNRPN proteins rescued impaired axodendritic development in an SNRPN depletion model of Prader-Willi syndrome (PWS) patient-derived induced pluripotent stem cell neurons. Taken together, these findings are crucial in developing therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
2
|
Hagenhaus V, Gorenflos López JL, Rosenstengel R, Neu C, Hackenberger CPR, Celik A, Weinert K, Nguyen MB, Bork K, Horstkorte R, Gesper A. Glycation Interferes with the Activity of the Bi-Functional UDP- N-Acetylglucosamine 2-Epimerase/ N-Acetyl-mannosamine Kinase (GNE). Biomolecules 2023; 13:biom13030422. [PMID: 36979358 PMCID: PMC10046061 DOI: 10.3390/biom13030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Mutations in the gene coding for the bi-functional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of the sialic acid biosynthesis, are responsible for autosomal-recessive GNE myopathy (GNEM). GNEM is an adult-onset disease with a yet unknown exact pathophysiology. Since the protein appears to work adequately for a certain period of time even though the mutation is already present, other effects appear to influence the onset and progression of the disease. In this study, we want to investigate whether the late onset of GNEM is based on an age-related effect, e.g., the accumulation of post-translational modifications (PTMs). Furthermore, we also want to investigate what effect on the enzyme activity such an accumulation would have. We will particularly focus on glycation, which is a PTM through non-enzymatic reactions between the carbonyl groups (e.g., of methylglyoxal (MGO) or glyoxal (GO)) with amino groups of proteins or other biomolecules. It is already known that the levels of both MGO and GO increase with age. For our investigations, we express each domain of the GNE separately, treat them with one of the glycation agents, and determine their activity. We demonstrate that the enzymatic activity of the N-acetylmannosamine kinase (GNE-kinase domain) decreases dramatically after glycation with MGO or GO-with a remaining activity of 13% ± 5% (5 mM MGO) and 22% ± 4% (5 mM GO). Whereas the activity of the UDP-N-acetylglucosamine 2-epimerase (GNE-epimerase domain) is only slightly reduced after glycation-with a remaining activity of 60% ± 8% (5 mM MGO) and 63% ± 5% (5 mM GO).
Collapse
Affiliation(s)
- Vanessa Hagenhaus
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Jacob L Gorenflos López
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Rebecca Rosenstengel
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Carolin Neu
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Arif Celik
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Klara Weinert
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Mai-Binh Nguyen
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Kaya Bork
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Astrid Gesper
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| |
Collapse
|
3
|
Functional Characterization of the GlcNAc Catabolic Pathway in Cryptococcus deneoformans. Appl Environ Microbiol 2022; 88:e0043722. [PMID: 35736228 PMCID: PMC9275227 DOI: 10.1128/aem.00437-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The amino sugar N-acetyl-d-glucosamine (GlcNAc) is the key constituent of cell wall components and plays an important role in pathogenesis in a wide range of fungi. However, catabolism of GlcNAc has not been studied in basidiomycete fungi. In this study, we identified and characterized a gene cluster essential for GlcNAc utilization in Cryptococcus deneoformans, an environmental human fungal pathogen. The C. deneoformans genome contains a GlcNAc transporter (Ngt1), a GlcNAc kinase (Hxk3), a GlcNAc-6-phosphate deacetylase (Dac1), and a glucosamine-6-phosphate deaminase (Nag1). Their expression levels were highly induced in cultures containing GlcNAc as the sole carbon source, and the corresponding mutants showed severe growth defects in the presence of GlcNAc. Functional and biochemical analyses revealed that HXK3 encodes a novel GlcNAc kinase. Site-directed mutations of conserved residues of Hxk3 indicated that ATP binding and GlcNAc binding are essential for GlcNAc kinase activities. Taken together, the results from this study provide crucial insights into basidiomycete GlcNAc catabolism. IMPORTANCEN-Acetylglucosamine (GlcNAc) is recognized as not only the building block of chitin but also an important signaling molecule in fungi. The catabolic pathway of GlcNAc also plays an important role in vital biological processes in fungi. However, the utilization pathway of GlcNAc in the phylum Basidiomycota, which contains more than 41,000 species, remains unknown. Cryptococcus deneoformans is a representative basidiomycetous pathogen that causes life-threatening meningitis. In this study, we characterized a gene cluster essential for GlcNAc utilization in C. deneoformans and identified a novel GlcNAc kinase. The results of this study provide important insights into basidiomycete GlcNAc catabolism and offer a starting point for revealing its role in pathogenesis.
Collapse
|
4
|
Flores CL, Ariño J, Gancedo C. The N-Acetylglucosamine Kinase from Yarrowia lipolytica Is a Moonlighting Protein. Int J Mol Sci 2021; 22:13109. [PMID: 34884915 PMCID: PMC8658026 DOI: 10.3390/ijms222313109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
In Yarrowia lipolytica, expression of the genes encoding the enzymes of the N-acetylglucosamine (NAGA) utilization pathway (NAG genes) becomes independent of the presence of NAGA in a Ylnag5 mutant lacking NAGA kinase. We addressed the question of whether the altered transcription was due to a lack of kinase activity or to a moonlighting role of this protein. Glucosamine-6-phosphate deaminase (Nag1) activity was measured as a reporter of NAG genes expression. The NGT1 gene encoding the NAGA transporter was deleted, creating a Ylnag5 ngt1 strain. In glucose cultures of this strain, Nag1 activity was similar to that of the Ylnag5 strain, ruling out the possibility that NAGA derived from cell wall turnover could trigger the derepression. Heterologous NAGA kinases were expressed in a Ylnag5 strain. Among them, the protein from Arabidopsis thaliana did not restore kinase activity but lowered Nag1 activity 4-fold with respect to a control. Expression in the Ylnag5 strain of YlNag5 variants F320S or D214V with low kinase activity caused a repression similar to that of the wild-type protein. Together, these results indicate that YlNag5 behaves as a moonlighting protein. An RNA-seq analysis revealed that the Ylnag5 mutation had a limited transcriptomic effect besides derepression of the NAG genes.
Collapse
Affiliation(s)
- Carmen-Lisset Flores
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, 28029 Madrid, Spain;
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Carlos Gancedo
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, 28029 Madrid, Spain;
| |
Collapse
|
5
|
Dash R, Mitra S, Munni YA, Choi HJ, Ali MC, Barua L, Jang TJ, Moon IS. Computational Insights into the Deleterious Impacts of Missense Variants on N-Acetyl-d-glucosamine Kinase Structure and Function. Int J Mol Sci 2021; 22:8048. [PMID: 34360815 PMCID: PMC8347710 DOI: 10.3390/ijms22158048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
An enzyme of the mammalian amino-sugar metabolism pathway, N-acetylglucosamine kinase (NAGK), that synthesizes N-acetylglucosamine (GlcNAc)-6-phosphate, is reported to promote dynein functions during mitosis, axonal and dendritic growth, cell migration, and selective autophagy, which all are unrelated to its enzyme activity. As non-enzymatic structural functions can be altered by genetic variation, we made an effort in this study aimed at deciphering the pathological effect of nonsynonymous single-nucleotide polymorphisms (nsSNPs) in NAGK gene. An integrated computational approach, including molecular dynamics (MD) simulation and protein-protein docking simulation, was used to identify the damaging nsSNPs and their detailed structural and functional consequences. The analysis revealed the four most damaging variants (G11R, G32R, G120E, and A156D), which are highly conserved and functional, positioned in both small (G11R and G32R) and large (G120E and A156D) domains of NAGK. G11R is located in the ATP binding region, while variants present in the large domain (G120E and A156D) were found to induce substantial alterations in the structural organizations of both domains, including the ATP and substrate binding sites. Furthermore, all variants were found to reduce binding energy between NAGK and dynein subunit DYNLRB1, as revealed by protein-protein docking and MM-GBSA binding energy calculation supporting their deleteriousness on non-canonical function. We hope these findings will direct future studies to gain more insight into the role of these variants in the loss of NAGK function and their role in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Md. Chayan Ali
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh;
| | - Largess Barua
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Tae Jung Jang
- Department of Pathology, Dongguk University College of Medicine, Gyeongju 38066, Korea;
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| |
Collapse
|
6
|
Islam MA, Choi HJ, Dash R, Sharif SR, Oktaviani DF, Seog DH, Moon IS. N-Acetyl- D-Glucosamine Kinase Interacts with NudC and Lis1 in Dynein Motor Complex and Promotes Cell Migration. Int J Mol Sci 2020; 22:ijms22010129. [PMID: 33374456 PMCID: PMC7795690 DOI: 10.3390/ijms22010129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, we showed that N-acetylglucosamine kinase (NAGK), an enzyme of amino sugar metabolism, interacts with dynein light chain roadblock type 1 (DYNLRB1) and promotes the functions of dynein motor. Here, we report that NAGK interacts with nuclear distribution protein C (NudC) and lissencephaly 1 (Lis1) in the dynein complex. Yeast two-hybrid assays, pull-down assays, immunocytochemistry, and proximity ligation assays revealed NAGK-NudC-Lis1-dynein complexes around nuclei, at the leading poles of migrating HEK293T cells, and at the tips of migratory processes of cultured rat neuroblast cells. The exogenous expression of red fluorescent protein (RFP)-tagged NAGK accelerated HEK293T cell migration during in vitro wound-healing assays and of neurons during in vitro neurosphere migration and in utero electroporation assays, whereas NAGK knockdown by short hairpin RNA (shRNA) delayed migration. Finally, a small NAGK peptide derived from the NudC interacting domain in in silico molecular docking analysis retarded the migrations of HEK293T and SH-SY5Y cells. These data indicate a functional interaction between NAGK and dynein-NudC-Lis1 complex at the nuclear envelope is required for the regulation of cell migration.
Collapse
Affiliation(s)
- Md. Ariful Islam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.I.); (H.J.C.); (R.D.); (S.R.S.); (D.F.O.)
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.I.); (H.J.C.); (R.D.); (S.R.S.); (D.F.O.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.I.); (H.J.C.); (R.D.); (S.R.S.); (D.F.O.)
| | - Syeda Ridita Sharif
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.I.); (H.J.C.); (R.D.); (S.R.S.); (D.F.O.)
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.I.); (H.J.C.); (R.D.); (S.R.S.); (D.F.O.)
| | - Dae-Hyun Seog
- Department of Biochemistry, Dementia and Neurodegenerative Disease Research Center, Inje University College of Medicine, Busan 47392, Korea;
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.I.); (H.J.C.); (R.D.); (S.R.S.); (D.F.O.)
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Correspondence: ; Tel.: +82-54-770-2414; Fax: +82-54-770-2447
| |
Collapse
|
7
|
Ripon MKH, Lee H, Dash R, Choi HJ, Oktaviani DF, Moon IS, Haque MN. N-acetyl-D-glucosamine kinase binds dynein light chain roadblock 1 and promotes protein aggregate clearance. Cell Death Dis 2020; 11:619. [PMID: 32796833 PMCID: PMC7427805 DOI: 10.1038/s41419-020-02862-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
Abstract
Emerging evidence indicates that neurodegenerative diseases (NDs) result from a failure to clear toxic protein aggregates rather than from their generation. We previously showed N-acetylglucosamine kinase (NAGK) promotes dynein functionality and suggested this might promote aggregate removal and effectively address proteinopathies. Here, we report NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and efficiently suppresses mutant huntingtin (mHtt) (Q74) and α-synuclein (α-syn) A53T aggregation in mouse brain cells. A kinase-inactive NAGKD107A also efficiently cleared Q74 aggregates. Yeast two-hybrid selection and in silico protein-protein docking analysis showed the small domain of NAGK (NAGK-DS) binds to the C-terminal of DYNLRB1. Furthermore, a small peptide derived from NAGK-DS interfered with Q74 clearance. We propose binding of NAGK-DS to DYNLRB1 'pushes up' the tail of dynein light chain and confers momentum for inactive phi- to active open-dynein transition.
Collapse
Affiliation(s)
- Md Kamal Hossain Ripon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - HyunSook Lee
- Section of Neuroscience, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
- Section of Neuroscience, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| | - Md Nazmul Haque
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| |
Collapse
|
8
|
Sharif SR, Islam A, Moon IS. N-Acetyl-D-Glucosamine Kinase Interacts with Dynein-Lis1-NudE1 Complex and Regulates Cell Division. Mol Cells 2016; 39:669-79. [PMID: 27646688 PMCID: PMC5050531 DOI: 10.14348/molcells.2016.0119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 01/30/2023] Open
Abstract
N-acetyl-D-glucosamine kinase (GlcNAc kinase or NAGK) primarily catalyzes phosphoryl transfer to GlcNAc during amino sugar metabolism. Recently, it was shown NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and upregulates axo-dendritic growth, which is an enzyme activity-independent, non-canonical structural role. The authors examined the distributions of NAGK and NAGK-dynein complexes during the cell cycle in HEK293T cells. NAGK was expressed throughout different stages of cell division and immunocytochemistry (ICC) showed NAGK was localized at nuclear envelope, spindle microtubules (MTs), and kinetochores (KTs). A proximity ligation assay (PLA) for NAGK and DYNLRB1 revealed NAGK-dynein complex on nuclear envelopes in prophase cells and on chromosomes in metaphase cells. NAGK-DYNLRB1 PLA followed by Lis1/NudE1 immunostaining showed NAGK-dynein complexes were colocalized with Lis1 and NudE1 signals, and PLA for NAGK-Lis1 showed similar signal patterns, suggesting a functional link between NAGK and dynein-Lis1 complex. Subsequently, NAGK-dynein complexes were found in KTs and on nuclear membranes where KTs were marked with CENP-B ICC and nuclear membrane with lamin ICC. Furthermore, knockdown of NAGK by small hairpin (sh) RNA was found to delay cell division. These results indicate that the NAGK-dynein interaction with the involvements of Lis1 and NudE1 plays an important role in prophase nuclear envelope breakdown (NEB) and metaphase MT-KT attachment during eukaryotic cell division.
Collapse
Affiliation(s)
- Syeda Ridita Sharif
- Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
| | - Ariful Islam
- Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
- Section of Neuroscience, Dongguk Medical Institute, Dongguk University Graduate School of Medicine, Gyeongju 38066,
Korea
| |
Collapse
|
9
|
Islam MA, Sharif SR, Lee H, Moon IS. N-Acetyl-D-Glucosamine Kinase Promotes the Axonal Growth of Developing Neurons. Mol Cells 2015; 38:876-85. [PMID: 26467288 PMCID: PMC4625069 DOI: 10.14348/molcells.2015.0120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023] Open
Abstract
N-acetyl-D-glucosamine kinase (NAGK) plays an enzyme activity-independent, non-canonical role in the dendritogenesis of hippocampal neurons in culture. In this study, we investigated its role in axonal development. We found NAGK was distributed throughout neurons until developmental stage 3 (axonal outgrowth), and that its axonal expression remarkably decreased during stage 4 (dendritic outgrowth) and became negligible in stage 5 (mature). Immunocytochemistry (ICC) showed colocalization of NAGK with tubulin in hippocampal neurons and with Golgi in somata, dendrites, and nascent axons. A proximity ligation assay (PLA) for NAGK and Golgi marker protein followed by ICC for tubulin or dynein light chain roadblock type 1 (DYNLRB1) in stage 3 neurons showed NAGK-Golgi complex colocalized with DYNLRB1 at the tips of microtubule (MT) fibers in axonal growth cones and in somatodendritic areas. PLAs for NAGK-dynein combined with tubulin or Golgi ICC showed similar signal patterns, indicating a three way interaction between NAGK, dynein, and Golgi in growing axons. In addition, overexpression of the NAGK gene and of kinase mutant NAGK genes increased axonal lengths, and knockdown of NAGK by small hairpin (sh) RNA reduced axonal lengths; suggesting a structural role for NAGK in axonal growth. Finally, transfection of 'DYNLRB1 (74-96)', a small peptide derived from DYNLRB1's C-terminal, which binds with NAGK, resulted in neurons with shorter axons in culture. The authors suggest a NAGK-dynein-Golgi tripartite interaction in growing axons is instrumental during early axonal development.
Collapse
Affiliation(s)
- Md. Ariful Islam
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - Syeda Ridita Sharif
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - HyunSook Lee
- Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| | - Il Soo Moon
- Department of Anatomy, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
- Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju 780-714,
Korea
| |
Collapse
|
10
|
Islam MA, Sharif SR, Lee H, Seog DH, Moon IS. N-acetyl-D-glucosamine kinase interacts with dynein light-chain roadblock type 1 at Golgi outposts in neuronal dendritic branch points. Exp Mol Med 2015; 47:e177. [PMID: 26272270 PMCID: PMC4558486 DOI: 10.1038/emm.2015.48] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/23/2015] [Accepted: 04/10/2015] [Indexed: 11/09/2022] Open
Abstract
N-acetylglucosamine kinase (GlcNAc kinase or NAGK) is a ubiquitously expressed enzyme in mammalian cells. Recent studies have shown that NAGK has an essential structural, non-enzymatic role in the upregulation of dendritogenesis. In this study, we conducted yeast two-hybrid screening to search for NAGK-binding proteins and found a specific interaction between NAGK and dynein light-chain roadblock type 1 (DYNLRB1). Immunocytochemistry (ICC) on hippocampal neurons using antibodies against NAGK and DYNLRB1 or dynein heavy chain showed some colocalization, which was increased by treating the live cells with a crosslinker. A proximity ligation assay (PLA) of NAGK-dynein followed by tubulin ICC showed the localization of PLA signals on microtubule fibers at dendritic branch points. NAGK-dynein PLA combined with Golgi ICC showed the colocalization of PLA signals with somal Golgi facing the apical dendrite and with Golgi outposts in dendritic branch points and distensions. NAGK-Golgi PLA followed by tubulin or DYNLRB1 ICC showed that PLA signals colocalize with DYNLRB1 at dendritic branch points and at somal Golgi, indicating a tripartite interaction between NAGK, dynein and Golgi. Finally, the ectopic introduction of a small peptide derived from the C-terminal amino acids 74–96 of DYNLRB1 resulted in the stunting of hippocampal neuron dendrites in culture. Our data indicate that the NAGK-dynein-Golgi tripartite interaction at dendritic branch points functions to regulate dendritic growth and/or branching.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Anatomy, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea
| | - Syeda Ridita Sharif
- Department of Anatomy, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea
| | - HyunSook Lee
- Neuroscience Section, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea
| | - Dae-Hyun Seog
- Departments of Biochemistry, College of Medicine Inje University, Busan, Republic of Korea
| | - Il Soo Moon
- 1] Department of Anatomy, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea [2] Neuroscience Section, Dongguk Medical Institute, College of Medicine Dongguk University, Gyeongju, Republic of Korea
| |
Collapse
|
11
|
Sharif SR, Lee H, Islam MA, Seog DH, Moon IS. N-acetyl-D-glucosamine kinase is a component of nuclear speckles and paraspeckles. Mol Cells 2015; 38:402-8. [PMID: 25921606 PMCID: PMC4443281 DOI: 10.14348/molcells.2015.2242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/27/2022] Open
Abstract
Protein O-GlcNAcylation, dictated by cellular UDP-N-acetylglucosamine (UDP-GlcNAc) levels, plays a crucial role in posttranslational modifications. The enzyme GlcNAc kinase (NAGK, E.C. 2.7.1.59) catalyzes the formation of GlcNAc-6-phosphate, which is a major substrate for the biosynthesis of UDP-GlcNAc. Recent studies have revealed the expression of NAGK in different types of cells especially in neuronal dendrites. Here, by immunocytochemistry (ICC) and immunonucleochemistry (INC) of cultured rat hippocampal neurons, HEK293T and GT1-7 cells, we have showed that NAGK immuno-reactive punctae being present in the nucleoplasm colocalized with small nuclear ribonucleoprotein-associated protein N (snRNPN) and p54NRB, which are speckle and paraspeckle markers, respectively. Furthermore, NAGK IR cluster was also found to be colocalized with GTF2H5 (general transcription factor IIH, polypeptide 5) immuno reactive punctae. In addition, relative localization to the ring of nuclear lamin matrix and to GlcNAc, which is highly enriched in nuclear pore complexes, showed that NAGK surrounds the nucleus at the cytoplasmic face of the nuclear outer membrane. By in situ proximity ligation assay (PLA) we confirmed the colocalization of NAGK with snRNPN in the nucleus and in dendrites, while we also verified the interactions of NAGK with p54NRB, and with GTF2H5 in the nucleus. These associations between NAGK with speckle, paraspeckle and general transcription factor suggest its regulatory roles in gene expression.
Collapse
Affiliation(s)
- Syeda Ridita Sharif
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - HyunSook Lee
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - Md. Ariful Islam
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan 614-735,
Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| |
Collapse
|
12
|
Flores CL, Gancedo C. The gene YALI0E20207g from Yarrowia lipolytica encodes an N-acetylglucosamine kinase implicated in the regulated expression of the genes from the N-acetylglucosamine assimilatory pathway. PLoS One 2015; 10:e0122135. [PMID: 25816199 PMCID: PMC4376941 DOI: 10.1371/journal.pone.0122135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/16/2015] [Indexed: 12/31/2022] Open
Abstract
The non-conventional yeast Yarrowia lipolytica possesses an ORF, YALI0E20207g, which encodes a protein with an amino acid sequence similar to hexokinases from different organisms. We have cloned that gene and determined several enzymatic properties of its encoded protein showing that it is an N-acetylglucosamine (NAGA) kinase. This conclusion was supported by the lack of growth in NAGA of a strain carrying a YALI0E20207g deletion. We named this gene YlNAG5. Expression of YlNAG5 as well as that of the genes encoding the enzymes of the NAGA catabolic pathway-identified by a BLAST search-was induced by this sugar. Deletion of YlNAG5 rendered that expression independent of the presence of NAGA in the medium and reintroduction of the gene restored the inducibility, indicating that YlNag5 participates in the transcriptional regulation of the NAGA assimilatory pathway genes. Expression of YlNAG5 was increased during sporulation and homozygous Ylnag5/Ylnag5 diploid strains sporulated very poorly as compared with a wild type isogenic control strain pointing to a participation of the protein in the process. Overexpression of YlNAG5 allowed growth in glucose of an Ylhxk1glk1 double mutant and produced, in a wild type background, aberrant morphologies in different media. Expression of the gene in a Saccharomyces cerevisiae hxk1 hxk2 glk1 triple mutant restored ability to grow in glucose.
Collapse
Affiliation(s)
- Carmen-Lisset Flores
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, Madrid, Spain
- * E-mail:
| | - Carlos Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, Madrid, Spain
| |
Collapse
|