1
|
Mohammad SI, Vasudevan A, Nadhim Mohammed S, Uthirapathy S, M M R, Kundlas M, Siva Prasad GV, Kumari M, Mustafa YF, Ali Hussein Z. Anti-metastatic potential of flavonoids for the treatment of cancers: focus on epithelial-mesenchymal transition (EMT) process. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04235-3. [PMID: 40434422 DOI: 10.1007/s00210-025-04235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025]
Abstract
The leading factor contributing to patient mortality is the local invasion and metastasis of tumors, which are influenced by the malignant progression of tumor cells. The epithelial-mesenchymal transition (EMT) is key to understanding malignancy development. EMT is a critical regulatory mechanism for differentiating cell populations initially observed during the neural crest and embryonic gastrulation formation. This process is closely associated with tumor metastasis in cancer and is also related to the maintenance of cancer stem cells. Flavonoids, known for their antioxidant properties, have been widely studied for their anticancer potential to protect plants from harmful environmental conditions. They have attracted considerable attention and have been the focus of numerous experimental and epidemiological studies to evaluate their potential in cancer treatment. In vitro and in vivo research has demonstrated that flavonoids can significantly impact cancer-related EMT. They may inhibit the EMT process by reducing the levels of Twist1, N-cadherin, ZEB1, integrins, SNAI1/2, CD44, MMPs, and vimentin while increasing E-cadherin levels and targeting the PI3K/AKT, NF-κB p65, and JAK2/STAT3 signaling pathways. In order to suppress the transcription of the E-cadherin promoter, several Zn-finger transcription factors, such as SNAI2, ZEB1, and ZEB2, and basic helix-loop-helix (bHLH) factors, such as Twist, may directly bind to its E-boxes. Overall, clinical cancer research should integrate the anticancer properties of flavonoids, which address all phases of carcinogenesis, including EMT, to improve the prospects for targeted cancer therapies in patients suffering from aggressive forms of tumors.
Collapse
Affiliation(s)
- Suleiman Ibrahim Mohammad
- Electronic Marketing and Social Media, Economic and Administrative Sciences Zarqa University, Zarqa, Jordan
- INTI International University, 71800, Negeri Sembilan, Malaysia
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
- Shinawatra University, 99 Moo 10, Bangtoey, Samkhok, Pathum Thani, 12160, Thailand
| | - Sumaya Nadhim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Zainab Ali Hussein
- Radiological Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
2
|
Ye J, Qiao D, Zhang Y, Piao Y, Jin J. Baicalein blocked gastric cancer cell proliferation and invasion through modulated platelet type 12-lipoxygenase. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1574-1582. [PMID: 39539438 PMCID: PMC11556770 DOI: 10.22038/ijbms.2024.80479.17422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 11/16/2024]
Abstract
Objectives Baicalein (BAI) is one of the main ingredients of Scutellaria baicalensis georgi. Its pharmacological effects have been widely reported in various cancers. However, the specific molecular mechanism of BAI in gastric cancer (GC) has not been defined. This study investigates BAI's inhibitory effect on gastric cancer and its potential mechanisms. Materials and Methods Gastric normal (GES-1 cells) and cancer cells (MKN-74 and MGC-803 cells) were treated with different concentrations of BAI. Cell proliferation and migration were assessed by MTT, colony formation, wound healing, and transwell assays. Flow cytometry and Hoechst 33342 staining were used to detect the cell apoptosis. IF and WB tests were employed to detect EMT-related protein. Finally, the anti-tumor effects of BAI were verified in in vivo xenograft models. Results Our results show that the cell viability of MKN-74 and MGC-803 cells was significantly decreased in a time- and dose-dependent manner after BAI treatment by MTT assay. The expression levels of p12-LOX genes, which were determined by quantitative RT-PCR and WB, in MKN-74 cells were higher than those in GES-1 cells. As shown by the wound healing assay and Transwell assay, the treatment with BAI also significantly suppressed GC cell migration and invasion. Besides, BAI inhibited the phosphorylation of ERK1/2 and MEK1/2 in GC cells, as revealed by WB. Furthermore, BAI significantly inhibited tumor growth capacities in a xenograft model. Conclusion BAI shows a significant anti-tumor effect and inhibition on tumor cell migration and invasion, which is probably through regulation of p12-LOX modulated epithelial-mesenchymal transformation.
Collapse
Affiliation(s)
- Jing Ye
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji 133002, China
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, 264000, China
- These authors contributed equally to this work
| | - Dan Qiao
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- These authors contributed equally to this work
| | - Yingying Zhang
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji 133002, China
- Chifeng Municipal Hospital, Chifeng, 024000, Inner Mongolia, China
| | - Yingshi Piao
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji 133002, China
| | - Jingchun Jin
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji 133002, China
- Department of Internal Medicine, Yanbian University Hospital, Yanji 133000, China
| |
Collapse
|
3
|
Bauerschmitz G, Hüchel S, Gallwas J, Gründker C. Inhibition of Increased Invasiveness of Breast Cancer Cells With Acquired Tamoxifen Resistance by Suppression of CYR61. Cancer Genomics Proteomics 2023; 20:531-538. [PMID: 37889058 PMCID: PMC10614060 DOI: 10.21873/cgp.20403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND/AIM Hormone sensitivity-targeted therapy with selective estrogen receptor modulators (SERMs), such as 4-hydroxytamoxifen (4-OHT), is the mainstay of treatment for breast cancers (BCs) that express estrogen receptor α (ERα). However, development of resistance limits this therapy approach. The question arises whether changes associated with 4-OHT resistance could be exploited therapeutically. MATERIALS AND METHODS First, 4-OHT-resistant sublines of ERα-positive breast carcinoma cell lines MCF-7 and T47D were generated. Viability was assessed by the Alamar Blue assay. Cell invasion was quantified in modified Boyden chambers with Matrigel. Changes in expression of CYR61, S100A4, and ERα were examined by RT-qPCR. Expression of CYR61 was suppressed by transient gene silencing using siRNA. Successful suppression was verified by western blot. Efficacy of 4-OHT treatment was analyzed by quantification of viability using Alamar Blue assay. Correlation of CYR61 levels in patients with luminal A BC to distant metastases-free survival was determined by Kaplan-Meier analysis. RESULTS ERα-positive MCF-7 and T47D BC cells exhibit an extremely weak invasion rate. Acquired tamoxifen resistance significantly increased the invasive behavior of both tamoxifen-resistant MCF-7-TR and T47D-TR sublines. In addition, expression of CYR61 and S100A4 showed significantly increased levels, whereas expression of ERα was decreased. Suppression of CYR61 expression resulted in a significant decreased invasion rate. In addition, expression of S100A4 was reduced, whereas expression of ERα was increased. Furthermore, suppression of CYR61 resulted in re-sensitization to 4-OHT. High CYR61 levels in patients with luminal A BC resulted in reduced distant metastases-free survival. CONCLUSION The prometastatic factor CYR61 appears to play an important role in the increased invasiveness of tamoxifen-resistant ERα-positive BC cells. Its suppression leads to a lower invasion rate. Given the few therapeutic options available for tamoxifen-resistant BC, therapy that reduces CYR61 may improve its treatability in future.
Collapse
Affiliation(s)
- Gerd Bauerschmitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Hüchel
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Gallwas
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Rasool S, Ismaeel QAL, Arif SH. CYR61 promotes colorectal carcinoma progression via activating epithelial-mesenchymal transition. Am J Cancer Res 2023; 13:4872-4887. [PMID: 37970355 PMCID: PMC10636662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023] Open
Abstract
Colorectal carcinoma is the third most common type of cancer. Although the role of matricellular proteins and their association with tumor progression is well documented, limited data are available concerning their involvement in colorectal cancer. The current study investigated the expression pattern of matricellular proteins SPARC and CYR61 with epithelial-mesenchymal transition proteins in human CRC tissues and unleashed their association with colorectal cancer progression. The expression of these proteins was associated with advancement in tumor staging, nodal metastasis, and vascular invasion. Elevated CYR61 protein levels were also consistent with higher mesenchymal markers ZEB1 and Vimentin in collected biopsies and CRC cells. Moreover, expression of CYR61 promoted CRC cell migration, invasion, proliferation, and apoptosis. Our findings conclusively revealed the significant involvement of CYR61 in CRC progression through activating epithelial-mesenchymal transition. This discovery holds great promise for advancing therapeutic approaches in the treatment of CRC.
Collapse
Affiliation(s)
- Shelan Rasool
- Department of Anatomy, Biology and Histology, College of Medicine, University of DuhokDuhok 42001, Kurdistan Region of Iraq
| | - Qais AL Ismaeel
- Department of Anatomy, Biology and Histology, College of Medicine, University of DuhokDuhok 42001, Kurdistan Region of Iraq
| | - Sardar H Arif
- Department of Surgery, College of Medicine, University of DuhokDuhok 42001, Kurdistan Region of Iraq
| |
Collapse
|
5
|
Liu S, Li L, Ren D. Anti-Cancer Potential of Phytochemicals: The Regulation of the Epithelial-Mesenchymal Transition. Molecules 2023; 28:5069. [PMID: 37446730 DOI: 10.3390/molecules28135069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A biological process called epithelial-mesenchymal transition (EMT) allows epithelial cells to change into mesenchymal cells and acquire some cancer stem cell properties. EMT contributes significantly to the metastasis, invasion, and development of treatment resistance in cancer cells. Current research has demonstrated that phytochemicals are emerging as a potential source of safe and efficient anti-cancer medications. Phytochemicals could disrupt signaling pathways related to malignant cell metastasis and drug resistance by suppressing or reversing the EMT process. In this review, we briefly describe the pathophysiological properties and the molecular mechanisms of EMT in the progression of cancers, then summarize phytochemicals with diverse structures that could block the EMT process in different types of cancer. Hopefully, these will provide some guidance for future research on phytochemicals targeting EMT.
Collapse
Affiliation(s)
- Shuangyu Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Lingyu Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
6
|
Ye M, Song Y, Pan S, Chu M, Wang ZW, Zhu X. Evolving roles of lysyl oxidase family in tumorigenesis and cancer therapy. Pharmacol Ther 2020; 215:107633. [PMID: 32693113 DOI: 10.1016/j.pharmthera.2020.107633] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
The lysyl oxidase (LOX) family is comprised of LOX and four LOX-like proteins (LOXL1, LOXL2, LOXL3, and LOXL4), and mainly functions in the remodeling of extracellular matrix (ECM) and the cross-linking of collagen and elastic fibers. Recently, a growing body of research has demonstrated that LOX family is critically involved in the regulation of cancer cell proliferation, migration, invasion and metastasis. In this review, we discuss the roles of LOX family members in the development and progression of different types of human cancers. Furthermore, we also describe the potential inhibitors of LOX family proteins and highlight that LOX family might be an important therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Miaomiao Ye
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yizuo Song
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shuya Pan
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China..
| | - Xueqiong Zhu
- Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
7
|
Li Y, Yu P, Zou Y, Cai W, Sun W, Han N. KRas-ERK signalling promotes the onset and maintenance of uveal melanoma through regulating JMJD6-mediated H2A.X phosphorylation at tyrosine 39. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4257-4265. [PMID: 31736361 DOI: 10.1080/21691401.2019.1673764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Since DNA damage is a first incident occurred during a tumour attack, it is rational that histone H2A.X phosphorylation on tyrosine 39 (H2A.XY39ph) may act as a tumour-relevant factor. This study was aimed to test the authenticity of the hypothesis. Uveal melanoma MP65 cells were transfected for expression of KRas mutated. H2A.X phosphorylation and ERK1/2 was measured, and transwell experiment was performed to examine the consequents of H2A.XY39ph on MP65 cells developing and migration. Regulatory relationship between H2A.XY39ph and ERK1/2 downstream genes were measured. Moreover, whether JMJD6 and MDM2 are involved in H2A.X phosphorylation was studied. Mutation of Ras activated ERK1/2 signalling and inhibited H2A.X phosphorylation at Y39. Silence of H2A.XY39ph contributed to the regulation of MP65 cells growth, migration and transcription of ERK1/2 downstream genes, including CYR61, IGFBP3, WNT16B, NT5E, GDF15 and CARD16. The repressed H2A.X phosphorylation through Ras-ERK1/2 signalling might be through MDM2-mediated JMJD6 degradation. Our study suggested that Ras-ERK1/2 signalling inhibited H2A.X phosphorylation at Y39, which led to the uncontrolled developing and migration of uveal melanoma cells. In addition, H2A.X phosphorylation was mediated possibly through JMJD6 which could be degraded by MDM2.
Collapse
Affiliation(s)
- Yaping Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, PR China
| | - Peng Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, PR China
| | - Ying Zou
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, PR China
| | - Wenrui Cai
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, PR China
| | - Weixuan Sun
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China
| | - Ning Han
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, PR China
| |
Collapse
|
8
|
Zhang X, Xie J, Xu Z, Tao Z, Zhang Q. The interaction between cucurbit[8]uril and baicalein and the effect on baicalein properties. Beilstein J Org Chem 2020; 16:71-77. [PMID: 31976018 PMCID: PMC6964663 DOI: 10.3762/bjoc.16.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/31/2019] [Indexed: 01/04/2023] Open
Abstract
The host-guest interactions between baicalein (BALE) and cucurbit[8]uril (Q[8]) and the corresponding properties of the inclusion complex were studied using 1H NMR, IR and UV-vis spectroscopy and DTA. The results showed that BALE forms an inclusion compound (1:1) with Q[8], and the properties of baicalein are changed by cucurbit[8]uril.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jun Xie
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhiling Xu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qianjun Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Lu L, Zhang M, Wang X, Zhang Y, Chai Z, Ying M, Guan J, Gong W, Zhao Z, Liu L, Hu Y, Lu W, Dong J. Baicalein enhances the antitumor efficacy of docetaxel on nonsmall cell lung cancer in a β-catenin-dependent manner. Phytother Res 2019; 34:104-117. [PMID: 31515889 DOI: 10.1002/ptr.6501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/08/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
Abstract
The side effects of docetaxel have limited its antitumor performances in the treatment of nonsmall cell lung cancer (NSCLC). To address the problem, baicalein, a bioactive flavone that exhibits antitumor activity, was combined with docetaxel so as to achieve better efficacy and lower toxicity. The combination treatment enhanced the stabilization of microtubules and halted the cell-cycle progression, thus synergistically inhibiting the proliferation and inducing the apoptosis of A549 cells and Lewis lung carcinoma cells. The decreased expression of Cyclin-dependent kinase 6 and Cyclin B1 confirmed its regulation in cell cycle, with β-catenin being an important upstream effector, as evidenced by the decreased expression in the cytoplasm and nucleus as well as the attenuated aggregation in the nucleus. Furthermore, baicalein plus docetaxel evinced better antitumor efficacy by the suppressed tumor growth, increased apoptosis, and decreased tumor angiogenesis in vivo, with no increased toxicity discovered in both tumor-bearing and non-tumor-bearing mice, and an improvement in therapeutic index. This study has demonstrated that baicalein plus docetaxel is an appropriate combination simultaneously with augmented antitumor efficacy and acceptable safety, which might be a promising strategy for patients with advanced NSCLC.
Collapse
Affiliation(s)
- Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingfei Zhang
- Department of Pharmaceutics, School of Pharmacy and Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Fudan University, Shanghai, China
| | - Xiaoyi Wang
- Department of Pharmaceutics, School of Pharmacy and Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Fudan University, Shanghai, China
| | - Yanyu Zhang
- Department of Pharmaceutics, School of Pharmacy and Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Fudan University, Shanghai, China
| | - Zhilan Chai
- Department of Pharmaceutics, School of Pharmacy and Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Fudan University, Shanghai, China
| | - Man Ying
- Department of Pharmaceutics, School of Pharmacy and Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Fudan University, Shanghai, China
| | - Juan Guan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Weiyi Gong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhengxiao Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lumei Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yang Hu
- Department of Pharmaceutics, School of Pharmacy and Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Fudan University, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy and Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Abstract
We investigated the effect of 21 flavonoids in a three-dimensional in vitro system for their ability to inhibit gap formation by MCF-7 breast cancer spheroids in monolayers of lymphendothelial cells. Different representatives of the classes of flavones, flavonols, and flavanones were tested in the circular chemorepellent-induced defects (CCID)-assay. Bay11-7082, a known inhibitor of CCID formation served as the positive control. This study provides the first comparison of the potential of flavonoids to suppress features influencing the intravasation of MCF-7 breast cancer cells aggregates through the lymph endothelial barrier. The most significant effects were seen after incubation with the flavones luteolin, chrysin, and apigenin. Additional hydroxylation or methoxylation in positions 6 or 8, as expected, resulted in decreased activity. The tested flavanones remained without or low efficacy.
Collapse
|
11
|
Wang WD, Shang Y, Li Y, Chen SZ. Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation. Acta Pharmacol Sin 2019; 40:1219-1227. [PMID: 31235819 PMCID: PMC6786377 DOI: 10.1038/s41401-019-0240-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
Honokiol (HNK), an active compound isolated from traditional Chinese medicine Magnolia officinalis, has shown potent anticancer activities. In the present study, we investigated the effects of HNK on breast cancer metastasis in vitro and in vivo, as well as the underlying molecular mechanisms. We showed that HNK (10-70 μmol/L) dose-dependently inhibited the viability of human mammary epithelial tumor cell lines MCF7, MDA-MB-231, and mouse mammary tumor cell line 4T1. In the transwell and scratch migration assays, HNK (10, 20, 30 μmol/L) dose-dependently suppressed the invasion and migration of the breast cancer cells. We demonstrated that HNK (10-50 μmol/L) dose-dependently upregulated the epithelial marker E-cadherin and downregulated the mesenchymal markers such as Snail, Slug, and vimentin at the protein level in breast cancer cells. Using a puromycin incorporation assay, we showed that HNK decreased the Snail translation efficiency in the breast cancer cells. In a mouse model of tumor metastasis, administration of HNK (50 mg/kg every day, intraperitoneal (i.p.), 6 times per week for 30 days) significantly decreased the number of metastatic 4T1 cell-derived nodules and ameliorated the histological alterations in the lungs. In addition, HNK-treated mice showed decreased Snail expression and increased E-cadherin expression in metastatic nodules. In conclusion, HNK inhibits EMT in the breast cancer cells by downregulating Snail and Slug protein expression at the mRNA translation level. HNK has potential as an integrative medicine for combating breast cancer by targeting EMT.
Collapse
Affiliation(s)
- Wen-Die Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue Shang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shu-Zhen Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
12
|
Kapinova A, Kubatka P, Liskova A, Baranenko D, Kruzliak P, Matta M, Büsselberg D, Malicherova B, Zulli A, Kwon TK, Jezkova E, Blahutova D, Zubor P, Danko J. Controlling metastatic cancer: the role of phytochemicals in cell signaling. J Cancer Res Clin Oncol 2019; 145:1087-1109. [PMID: 30903319 DOI: 10.1007/s00432-019-02892-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Cancer is a serious health issue and a leading cause of death worldwide. Most of the cancer patients (approximately 90%) do not die from the consequences of the primary tumor development, but due to a heavily treatable metastatic invasion. During the lengthy multistep process of carcinogenesis, there are a lot of opportunities available to reverse or slow down the tissue invasion or the process of tumor metastasis formation. RESULTS Current research has brought many promising results from anti-metastatic experimental studies, and has shown that chemoprevention by natural or semisynthetic phytochemicals with plethora of biological activities could be one of the potentially effective options in the fight against this problem. However, there is a lack of clinical trials to confirm these findings. In this review, we focused on summarization and discussion of the general features of metastatic cancer, and recent preclinical and clinical studies dealing with anti-metastatic potential of various plant-derived compounds. CONCLUSIONS Based on our findings, we can conclude and confirm our hypothesis that phytochemicals with pleiotropic anticancer effects can be very useful in retarding and/or reversing the metastasis process, and can also be used to prevent tissue invasion and metastases. But, further studies in this area are certainly necessary and desirable.
Collapse
Affiliation(s)
- Andrea Kapinova
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Denis Baranenko
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg, Russian Federation
| | - Peter Kruzliak
- Department of Internal Medicine, Brothers of Mercy Hospital, Polní 3, 639 00, Brno, Czech Republic.
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- St. Anne's University Hospital, Brno, Czech Republic.
| | - Milan Matta
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Safarik University and University Hospital, Kosice, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell College of Medicine, Education City, Qatar Foundation, Doha, Qatar
| | - Bibiana Malicherova
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Anthony Zulli
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Eva Jezkova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dana Blahutova
- Department of Biology and Ecology, Faculty of Education, Catholic University in Ruzomberok, Ruzomberok, Slovakia
| | - Pavol Zubor
- Biomedical Center Martin, Division of Oncology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Danko
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
13
|
Meng J, Ai X, Lei Y, Zhong W, Qian B, Qiao K, Wang X, Zhou B, Wang H, Huai L, Zhang X, Han J, Xue Y, Liang Y, Zhou H, Chen S, Sun T, Yang C. USP5 promotes epithelial-mesenchymal transition by stabilizing SLUG in hepatocellular carcinoma. Theranostics 2019; 9:573-587. [PMID: 30809294 PMCID: PMC6376178 DOI: 10.7150/thno.27654] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/03/2018] [Indexed: 12/29/2022] Open
Abstract
Rationale: The role of SLUG in epithelial-mesenchymal transition during tumor progression has been thoroughly studied, but its precise regulation remains poorly explored. Methods: The affinity purification, mass spectrometry and CO-IP were performed to identify the interaction between SLUG and ubiquitin-specific protease 5 (USP5). Cycloheximide chase assays and deubiquitination assays confirmed that the effect of USP5 on the deubiquitin of SLUG. The dual-luciferase reporter and chromatin immunoprecipitation assays were employed to observe the direct transcriptional regulation of E-cadherin by SLUG effected by USP5. EMT related markers was detected by western blotting and immunofluorescence. Molecular docking, SPR sensor (biacore) and co-location were detected to prove Formononetin targets USP5. Bioinformatics analysis was used to study the relation of USP5 and SLUG to malignancy degree of HCC. Cell migration, invasion in HCC cells and xenografts model in nude mouse were conducted to detect the promotion of USP5 and the inhibition of Formononetin on EMT. Results: USP5 interacts with and stabilizes SLUG to regulate its abundance through USP5 deubiquitination activities in epithelial-mesenchymal transition (EMT) of hepatocellular carcinoma (HCC). USP5 is highly expressed and positively correlated with SLUG expression in HCC with high malignancy. Knockdown of USP5 inhibits SLUG deubiquitination and inhibits HCC cells proliferation, metastasis, and invasion, while overexpression of USP5 promotes SLUG stability and EMT in vitro and in vivo. Through virtual screening, we found that Formononetin exhibits excellent binding to USP5. Moreover, Formononetin inhibits deubiquitinating activities of USP5 to SLUG and consequently impedes the EMT and malignant progression of HCC. Conclusion: Our findings reveal that USP5 serve as a potential target for tumor intervention and provide a preliminary antitumor therapy for inhibit EMT by targeting USP5 or its interaction with SLUG in HCC.
Collapse
Affiliation(s)
- Jing Meng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaoyu Ai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yueyang Lei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Weilong Zhong
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Baoxin Qian
- Department of Gastroenterology and Hepatology, Tianjin Key Laboratory of Artificial Cells, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Kailiang Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaorui Wang
- College of Life Science, Nankai University, Tianjin, China
| | - Bijiao Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Hongzhi Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Longcong Huai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaoyun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jingxia Han
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yinyin Xue
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yuan Liang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
14
|
Su G, Chen H, Sun X. Baicalein suppresses non small cell lung cancer cell proliferation, invasion and Notch signaling pathway. Cancer Biomark 2018; 22:13-18. [PMID: 29614624 DOI: 10.3233/cbm-170673] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Baicalein is an important Chinese herbal medicine and has multiple pharmacological activities. However, the biological mechanisms of the anti-tumor effects of Baicalein on non small cell lung cancer (NSCLC) still need to be understood. METHODS Human NSCLC A549 and H1299 cells were pretreated with Baicalein or DMSO. Cells viability and transwell cell invasion assays were performed to assess cell proliferation and invasion. QRT-PCR assay was used to analyze mRNA expression levels of Twist1, E-cadhertin, Vimentin, Notch1 and hes-1. Western blot analysis was also performed to determine protein expression. RESULTS In the study, we found that Baicalein had a significantly inhibited effect on proliferation ability of A549 and H1299 cells. Cells treated with Baicalein showed a down-regulated expression of CyclinD1 and CDK1 in A549 and H1299 cells. Furthermore, we found that Baicalein significantly inhibited cell invasion and Epithelial-Mesenchymal Transition (EMT) by up-regulating the mRNA and protein expression of E-cadherin and down-regulated the Twist1 and Vimentin expression, Moreover, Treatment of Baicalein down-regulated Notch1 and hes-1 expression in A549 and H1299 cells, which indicated that Baicalein could suppress the Notch signaling pathway. CONCLUSION Our studies suggest that Baicalein may be a potential phytochemical flavonoid for therapeutics of NSCLC and serve as a molecular target for NSCLC.
Collapse
Affiliation(s)
- Guangfeng Su
- Department of Thoracic Surgery, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China.,Department of Thoracic Surgery, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Hao Chen
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China.,Department of Thoracic Surgery, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Xinhua Sun
- Department of Surgery, Boshan District Hospital of Traditional Chinese Medicine, Zibo 255200, Shandong, China
| |
Collapse
|
15
|
Wang H, Shao X, He Q, Wang C, Xia L, Yue D, Qin G, Jia C, Chen R. Quantitative Proteomics Implicates Rictor/mTORC2 in Cell Adhesion. J Proteome Res 2018; 17:3360-3369. [PMID: 30156101 DOI: 10.1021/acs.jproteome.8b00218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mammalian target of rapamycin complex 2 (mTORC2) plays critical roles in various biological processes. To better understand the functions of mTORC2 and the underlying molecular mechanisms, we established a stable cell line with reduced Rictor, a specific component in mTORC2, and investigated the quantitative changes of the cellular proteome. As a result, we observed that 101 proteins were down-regulated and 50 proteins were up-regulated in Rictor knockdown cells. A protein-protein interaction network regulated by Rictor/mTORC2 was established, showing that Rictor/mTORC2 was involved in various cellular processes. Intriguingly, gene ontology analysis indicated that the proteome regulated by Rictor/mTORC2 was significantly involved with cell adhesion. Rictor knockdown affected the expressions of multiple cell adhesion associated molecules, e.g. integrin α-5 (ITGA5), transforming growth factor beta-1-induced transcript 1 protein (TGFB1I1), lysyl oxidase homologue 2 (LOXL2), etc. Further study suggested that Rictor/mTORC2 may regulate cell adhesion and invasion by modulating the expressions of these cell adhesion molecules through AKT. Taken together, this study maps the proteome regulated by Rictor/mTORC2 and reveals its role in promoting renal cancer cell invasion through modulating cell adhesion and migration.
Collapse
Affiliation(s)
- Hao Wang
- Department of Genetics, School of Basic Medical Sciences , Tianjin Medical University , Tianjin 300070 , P.R. China
| | - Xianfeng Shao
- Tianjin Medical University Eye Hospital , Eye Institute & School of Optometry and Ophthalmology , Tianjin , 300384 , P.R. China
| | - Qian He
- Tianjin Medical University General Hospital , Tianjin 300052 , P.R. China
| | - Chunqing Wang
- Department of Genetics, School of Basic Medical Sciences , Tianjin Medical University , Tianjin 300070 , P.R. China
| | - Linhuan Xia
- Department of Genetics, School of Basic Medical Sciences , Tianjin Medical University , Tianjin 300070 , P.R. China
| | - Dan Yue
- School of Medical Laboratory , Tianjin Medical University , Tianjin 300070 , China
| | - Guoxuan Qin
- School of Microelectronics , Tianjin University , Tianjin 300072 , P.R. China
| | - Chenxi Jia
- National Center for Protein Sciences-Beijing , State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206 , P.R. China
| | - Ruibing Chen
- Department of Genetics, School of Basic Medical Sciences , Tianjin Medical University , Tianjin 300070 , P.R. China
| |
Collapse
|
16
|
Niu CC, Wan YF, Yang C, Li T, Liao P. Polymorphisms of the CYR61 gene in patients with acute myeloid leukemia in a Han Chinese population. Medicine (Baltimore) 2018; 97:e11963. [PMID: 30142822 PMCID: PMC6112968 DOI: 10.1097/md.0000000000011963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It was demonstrated in previous studies that cysteine-rich angiogenic inducer 61 (Cyr61) plays vital roles in hematological disorders, and we have already reported that the Cyr61 protein is a tumor promoter in acute myeloid leukemia (AML). Here, we investigated the association between CYR61 gene polymorphisms and susceptibility to AML.We genotyped 2 single-nucleotide polymorphisms (rs2297141 and rs6576776) in the region of the CYR61 gene by improved multiplex ligase detection reaction genotyping assays in a total of 275 samples, including samples from 137 AML patients and 138 healthy controls. Chi-squared tests and logistic regression analysis were performed to compare the different distributions of the genotypes and alleles between patients and healthy controls.The rs2297141 A allele was associated with lower risk of AML compared with the G allele (odds ratio [OR] = 0.704, 95% confidence interval [CI] = 0.503-0.985, P = .04) in both the dominant (OR = 0.447, 95% CI = 0.22-0.909, P = .025, AA vs GG) and recessive inheritance models (OR = 0.419, 95% CI = 0.23-0.763, P = .004, AA vs GA + GG). Although the distribution of the rs6576776 alleles was not different between patients with AML and normal controls, the CC genotype significantly increased the risk of AML in the dominant inheritance model (OR = 6.064, 95% CI = 1.303-28.216, P = .01, CC vs GG) and the recessive inheritance model (OR = 5.937, 95% CI = 1.291-27.306, P = .01, CC vs GC + GG). Additionally, it was shown that the rs2297141 and rs6576776 genotypes were associated with AML-M5 and AML-M2, respectively.Our findings indicated that genetic polymorphisms in the CYR61 gene may be considered potential AML risk factors in the Han Chinese population.
Collapse
Affiliation(s)
- Chang-Chun Niu
- Department of Laboratory Medicine, Chongqing General Hospital
| | - Ya-Fang Wan
- Department of Laboratory Medicine, Chongqing General Hospital
| | - Cheng Yang
- Department of Hematology Medicine, Xinqiao Hospital, Chongqing, China
| | - Tian Li
- Department of Laboratory Medicine, Chongqing General Hospital
| | - Pu Liao
- Department of Laboratory Medicine, Chongqing General Hospital
| |
Collapse
|
17
|
Shi R, Zhu D, Wei Z, Fu N, Wang C, Liu L, Zhang H, Liang Y, Xing J, Wang X, Wang Y. Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition. Life Sci 2018; 207:442-450. [PMID: 29969608 DOI: 10.1016/j.lfs.2018.06.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022]
Abstract
AIMS Endothelial-to-mesenchymal transition (EndoMT) was shown to lead to endothelial cell (EC) dysfunction in pulmonary arterial hypertension (PAH). Baicalein was reported to inhibit epithelial-to-mesenchymal transition (EMT), a biological process that has many regulatory pathways in common with EndoMT. Whether it can attenuate PAH by inhibiting EndoMT remains obscure. MAIN METHODS PAH was induced by a single subcutaneous injection of MCT (60 mg/kg) in male Sprague Dawley rats. Two weeks after MCT administration, the rats in the treatment groups received baicalein orally (50 or 100 mg/kg/day) for an additional 2 weeks. Hemodynamic changes and right ventricular hypertrophy (RVH) were evaluated on day 28. Cardiopulmonary interstitial fibrosis was detected using Masson's trichrome, Picrosirius-red, and immunohistochemical staining. The reactivity of pulmonary arteries (PAs) was examined ex vivo. The protein expresson of EndoMT molecules, bone morphogenetic protein receptor 2 (BMPR2), and nuclear factor-κB (NF-κB) was examined to explore the mechanism of protective action of baicalein. KEY FINDINGS Baicalein (50 and 100 mg/kg) significantly alleviated MCT-induced PAH and cardiopulmonary interstitial fibrosis. Furthermore, baicalein treatment enhanced PA responsiveness to acetylcholine (ACh) in PAH rats. The upregulation of EndoMT molecules (N-cadherin, vimentin, Snail, and Slug) strongly suggest that EndoMT participates in MCT-induced PAH, which was reversed by baicalein (50 and 100 mg/kg) treatment. Moreover, baicalein partially reversed MCT-induced reductions in BMPR2 and NF-κB activation in the PAs. SIGNIFICANCE Baicalein attenuated MCT-induced PAH in rats by inhibiting EndoMT partially via the NF-κB-BMPR2 pathway. Thus, baicalein might be considered as a promising treatment option for PAH.
Collapse
Affiliation(s)
- Ruizan Shi
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China.
| | - Diying Zhu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Zehui Wei
- Department of Pharmacology, Peace Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| | - Naijie Fu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Chang Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Linhong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Huifeng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| | - Yueqin Liang
- Medical Functional Experimental Center, Shanxi Medical University, Taiyuan 030001, China
| | - Jianfeng Xing
- Medical Functional Experimental Center, Shanxi Medical University, Taiyuan 030001, China
| | - Xuening Wang
- Department of Cardiovascular Surgery, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan 030032, China
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
18
|
Yu X, Cao Y, Tang L, Yang Y, Chen F, Xia J. Baicalein inhibits breast cancer growth via activating a novel isoform of the long noncoding RNA PAX8-AS1-N. J Cell Biochem 2018; 119:6842-6856. [PMID: 29693272 DOI: 10.1002/jcb.26881] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022]
Abstract
Baicalein, a natural flavonoid, has fascinating anti-cancer properties in breast cancer. Long noncoding RNAs (lncRNAs), a class of transcripts with no protein-coding potential, also exhibit critical roles in breast cancer. However, the molecular mechanisms mediating the anti-cancer properties of baicalein and whether lncRNAs are involved in the anti-cancer effects are still unclear. In this study, we identified a novel isoform of lncRNA PAX8-AS1 (PAX8-AS1-N), which is activated by baicalein in a dose- and time-dependent manner. Functional assays showed that PAX8-AS1-N reduced cell viability, inhibited cell-cycle progression, and induced apoptosis of breast cancer cells in vitro. Depletion of PAX8-AS1-N promoted breast xenograft tumor growth in vivo. Furthermore, depletion of PAX8-AS1-N attenuated the suppressive roles of baicalein on cell viability, the apoptosis induced by baicalein, and also the suppressive roles of baicalein on tumor growth in vivo. Mechanistically, PAX8-AS1-N bound to miR-17-5p, and up-regulated miR-17-5p targets, such as PTEN, CDKN1A, and ZBTB4. In addition, PAX8-AS1-N was down-regulated in breast cancer and reduced expression of PAX8-AS1-N indicated poor survival of breast cancer patients. In conclusion, our results demonstrated that PAX8-AS1-N activation mediated the anti-cancer effects of baicalein via regulating miR-17-5p, and suggested that baicalein and enhancing PAX8-AS1-N would be potential therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- Xiaolan Yu
- Department of Obstetrics and Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Cao
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Tang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingcheng Yang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jiyi Xia
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
19
|
Salvador F, Martin A, López-Menéndez C, Moreno-Bueno G, Santos V, Vázquez-Naharro A, Santamaria PG, Morales S, Dubus PR, Muinelo-Romay L, López-López R, Tung JC, Weaver VM, Portillo F, Cano A. Lysyl Oxidase-like Protein LOXL2 Promotes Lung Metastasis of Breast Cancer. Cancer Res 2017; 77:5846-5859. [PMID: 28720577 PMCID: PMC5656180 DOI: 10.1158/0008-5472.can-16-3152] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/22/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022]
Abstract
The lysyl oxidase-like protein LOXL2 has been suggested to contribute to tumor progression and metastasis, but in vivo evidence has been lacking. Here we provide functional evidence that LOXL2 is a key driver of breast cancer metastasis in two conditional transgenic mouse models of PyMT-induced breast cancer. LOXL2 ablation in mammary tumor cells dramatically decreased lung metastasis, whereas LOXL2 overexpression promoted metastatic tumor growth. LOXL2 depletion or overexpression in tumor cells does not affect extracellular matrix stiffness or organization in primary and metastatic tumors, implying a function for LOXL2 independent of its conventional role in extracellular matrix remodeling. In support of this likelihood, cellular and molecular analyses revealed an association of LOXL2 action with elevated levels of the EMT regulatory transcription factor Snail1 and expression of several cytokines that promote premetastatic niche formation. Taken together, our findings established a pathophysiologic role and new function for LOXL2 in breast cancer metastasis. Cancer Res; 77(21); 5846-59. ©2017 AACR.
Collapse
Affiliation(s)
- Fernando Salvador
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Alberto Martin
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Menéndez
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.,Fundación MD Anderson International Madrid, Arturo Soria, Madrid, Spain
| | - Vanesa Santos
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Vázquez-Naharro
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Patricia G Santamaria
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Saleta Morales
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Pierre R Dubus
- Université de Bordeaux, INSERM UMR1053, Bordeaux, France.,CHU de Bordeaux, Talence, France
| | - Laura Muinelo-Romay
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.,Translational Medical Oncology, Health Research Institute of Santiago (IDIS), SERGAS, Santiago de Compostela, Spain
| | - Rafael López-López
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.,Translational Medical Oncology, Health Research Institute of Santiago (IDIS), SERGAS, Santiago de Compostela, Spain
| | - Jason C Tung
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, California
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, California
| | - Francisco Portillo
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Williams IS, Chib S, Nuthakki VK, Gatchie L, Joshi P, Narkhede NA, Vishwakarma RA, Bharate SB, Saran S, Chaudhuri B. Biotransformation of Chrysin to Baicalein: Selective C6-Hydroxylation of 5,7-Dihydroxyflavone Using Whole Yeast Cells Stably Expressing Human CYP1A1 Enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7440-7446. [PMID: 28782952 DOI: 10.1021/acs.jafc.7b02690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Naturally occurring polyphenolic compounds are of medicinal importance because of their unique antioxidant, anticancer, and chemopreventive properties. Baicalein, a naturally occurring polyhydroxy flavonoid possessing a diverse range of pharmacological activities, has been used in traditional medicines for treatment of various ailments. Apart from its isolation from natural sources, its synthesis has been reported via multistep chemical approaches. Here, we report a preparative-scale biotransformation, using whole yeast cells stably expressing human cytochrome P450 1A1 (CYP1A1) enzyme that allows regioselective C6-hydroxylation of 5,7-dihydroxyflavone (chrysin) to form 5,6,7-trihydroxyflavone (baicalein). Molecular modeling reveals why chrysin undergoes such specific hydroxylation mediated by CYP1A1. More than 92% reaction completion was obtained using a shake-flask based process that mimics fed-batch fermentation. Such highly efficient selective hydroxylation, using recombinant yeast cells, has not been reported earlier. Similar CYP-expressing yeast cell based systems are likely to have wider applications in the syntheses of medicinally important polyphenolic compounds.
Collapse
Affiliation(s)
- Ibidapo S Williams
- Leicester School of Pharmacy, De Montfort University , Leicester, LE1 9BH, United Kingdom
- CYP Design Limited, Innovation Centre , 49 Oxford Street, Leicester, LE1 5XY, United Kingdom
| | - Shifali Chib
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Vijay K Nuthakki
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Linda Gatchie
- Leicester School of Pharmacy, De Montfort University , Leicester, LE1 9BH, United Kingdom
- CYP Design Limited, Innovation Centre , 49 Oxford Street, Leicester, LE1 5XY, United Kingdom
| | - Prashant Joshi
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Niteen A Narkhede
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Saurabh Saran
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu-180001, India
| | - Bhabatosh Chaudhuri
- Leicester School of Pharmacy, De Montfort University , Leicester, LE1 9BH, United Kingdom
- CYP Design Limited, Innovation Centre , 49 Oxford Street, Leicester, LE1 5XY, United Kingdom
| |
Collapse
|
21
|
Subramani R, Lakshmanaswamy R. Complementary and Alternative Medicine and Breast Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:231-274. [DOI: 10.1016/bs.pmbts.2017.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|