1
|
PKCα/ERK/C7ORF41 axis regulates epidermal keratinocyte differentiation through the IKKα nuclear translocation. Biochem J 2021; 478:839-854. [PMID: 33528492 DOI: 10.1042/bcj20200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
Aberrant differentiation of keratinocytes disrupts the skin barrier and causes a series of skin diseases. However, the molecular basis of keratinocyte differentiation is still poorly understood. In the present study, we examined the expression of C7ORF41 using tissue microarrays by immunohistochemistry and found that C7ORF41 is specifically expressed in the basal layers of skin epithelium and its expression is gradually decreased during keratinocytes differentiation. Importantly, we corroborated the pivotal role of C7ORF41 during keratinocyte differentiation by C7ORF41 knockdown or overexpression in TPA-induced Hacat keratinocytes. Mechanismly, we first demonstrated that C7ORF41 inhibited keratinocyte differentiation mainly through formatting a complex with IKKα in the cytoplasm, which thus blocked the nuclear translocation of IKKα. Furthermore, we also demonstrated that inhibiting the PKCα/ERK signaling pathway reversed the reduction in C7ORF41 in TPA-induced keratinocytes, indicating that C7ORF41 expression could be regulated by upstream PKCα/ERK signaling pathway during keratinocyte differentiation. Collectively, our study uncovers a novel regulatory network PKCα/ERK/C7ORF41/IKKα during keratinocyte differentiation, which provides potential therapeutic targets for skin diseases.
Collapse
|
2
|
Latil M, Nassar D, Beck B, Boumahdi S, Wang L, Brisebarre A, Dubois C, Nkusi E, Lenglez S, Checinska A, Vercauteren Drubbel A, Devos M, Declercq W, Yi R, Blanpain C. Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition. Cell Stem Cell 2016; 20:191-204.e5. [PMID: 27889319 DOI: 10.1016/j.stem.2016.10.018] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/29/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022]
Abstract
Epithelial to mesenchymal transition (EMT) in cancer cells has been associated with metastasis, stemness, and resistance to therapy. Some tumors undergo EMT while others do not, which may reflect intrinsic properties of their cell of origin. However, this possibility is largely unexplored. By targeting the same oncogenic mutations to discrete skin compartments, we show that cell-type-specific chromatin and transcriptional states differentially prime tumors to EMT. Squamous cell carcinomas (SCCs) derived from interfollicular epidermis (IFE) are generally well differentiated, while hair follicle (HF) stem cell-derived SCCs frequently exhibit EMT, efficiently form secondary tumors, and possess increased metastatic potential. Transcriptional and epigenomic profiling revealed that IFE and HF tumor-initiating cells possess distinct chromatin landscapes and gene regulatory networks associated with tumorigenesis and EMT that correlate with accessibility of key epithelial and EMT transcription factor binding sites. These findings highlight the importance of chromatin states and transcriptional priming in dictating tumor phenotypes and EMT.
Collapse
Affiliation(s)
- Mathilde Latil
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Dany Nassar
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Benjamin Beck
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Soufiane Boumahdi
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Li Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Audrey Brisebarre
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Christine Dubois
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Erwin Nkusi
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Sandrine Lenglez
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Agnieszka Checinska
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Alizée Vercauteren Drubbel
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Michael Devos
- VIB Inflammation Research Center, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Wim Declercq
- VIB Inflammation Research Center, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Rui Yi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Cédric Blanpain
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium; WELBIO, Université Libre de Bruxelles (ULB), 1070 Bruxelles, Belgium.
| |
Collapse
|
3
|
The role of barrier genes in epidermal malignancy. Oncogene 2016; 35:5705-5712. [PMID: 27041586 DOI: 10.1038/onc.2016.84] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/24/2022]
Abstract
The outermost layer of the mammalian skin, the epidermis, forms a protective barrier against pathogenic microbes and tissue dehydration. This barrier is formed and maintained by complex genetic networks that connect cellular differentiation processes, enzymatic activities and cellular junctions. Disruption in these networks affects the balance between keratinocyte proliferation and differentiation resulting in barrier function impairment, epidermal hyperproliferation and in some cases, squamous cell carcinoma (SCC). Recent studies in wound-induced inflammation-mediated cancers in mice have identified dysregulation of core barrier components as tumor drivers. We therefore propose a hypothesis in which loss of key barrier genes, induce barrier dysfunction, and promote inflammation-driven epidermal hyperplasia and carcinogenesis over time. This emerging vision suggests that under specific genetic circumstances, localized barrier impairment could be considered as a hallmark of initiating lesions in epidermal SCC.
Collapse
|
4
|
Xia X, Liu S, Xiao Z, Zhu F, Song NY, Zhou M, Liu B, Shen J, Nagashima K, Veenstra TD, Burkett S, Datla M, Willette-Brown J, Shen H, Hu Y. An IKKα-nucleophosmin axis utilizes inflammatory signaling to promote genome integrity. Cell Rep 2013; 5:1243-55. [PMID: 24290756 PMCID: PMC4159076 DOI: 10.1016/j.celrep.2013.10.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/19/2013] [Accepted: 10/29/2013] [Indexed: 01/04/2023] Open
Abstract
The inflammatory microenvironment promotes skin tumorigenesis. However, the mechanisms by which cells protect themselves from inflammatory signals are unknown. Downregulation of IKKα promotes skin tumor progression from papillomas to squamous cell carcinomas, which is frequently accompanied by genomic instability, including aneuploid chromosomes and extra centrosomes. In this study, we found that IKKα promoted oligomerization of nucleophosmin (NPM), a negative centrosome duplication regulator, which further enhanced NPM and centrosome association, inhibited centrosome amplification, and maintained genome integrity. Levels of NPM hexamers and IKKα were conversely associated with skin tumor progression. Importantly, proinflammatory cytokine-induced IKKα activation promoted the formation of NPM oligomers and reduced centrosome numbers in mouse and human cells, whereas kinase-dead IKKα blocked this connection. Therefore, our findings suggest a mechanism in which an IKKα-NPM axis may use inflammatory signals to suppress centrosome amplification, promote genomic integrity, and prevent tumor progression.
Collapse
Affiliation(s)
- Xiaojun Xia
- Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Shuang Liu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Zuoxiang Xiao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Feng Zhu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Na-Young Song
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Bigang Liu
- Department of Molecular Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Unit 389, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Molecular Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Unit 389, Smithville, TX 78957, USA
| | - Kunio Nagashima
- Advanced Technology Program, Electron Microscopy Laboratory, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Timothy D Veenstra
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Mahesh Datla
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Jami Willette-Brown
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA.
| |
Collapse
|
5
|
Chen H, Li J, Li H, Hu Y, Tevebaugh W, Yamamoto M, Que J, Chen X. Transcript profiling identifies dynamic gene expression patterns and an important role for Nrf2/Keap1 pathway in the developing mouse esophagus. PLoS One 2012; 7:e36504. [PMID: 22567161 PMCID: PMC3342176 DOI: 10.1371/journal.pone.0036504] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/02/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND AIMS Morphological changes during human and mouse esophageal development have been well characterized. However, changes at the molecular level in the course of esophageal morphogenesis remain unclear. This study aims to globally profile critical genes and signaling pathways during the development of mouse esophagus. By using microarray analysis this study also aims to determine how the Nrf2/Keap1 pathway regulates the morphogenesis of the esophageal epithelium. METHODS Gene expression microarrays were used to survey gene expression in the esophagus at three critical phases: specification, metaplasia and maturation. The esophagi were isolated from wild-type, Nrf2(-/-), Keap1(-/-), or Nrf2(-/-)Keap1(-/-) embryos or young adult mice. Array data were statistically analyzed for differentially expressed genes and pathways. Histochemical and immunohistochemical staining were used to verify potential involvement of the Wnt pathway, Pparβ/δ and the PI3K/Akt pathway in the development of esophageal epithelium. RESULTS Dynamic gene expression patterns accompanied the morphological changes of the developing esophagus at critical phases. Particularly, the Nrf2/Keap1 pathway had a baseline activity in the metaplasia phase and was further activated in the maturation phase. The Wnt pathway was active early and became inactive later in the metaplasia phase. In addition, Keap1(-/-) mice showed increased expression of Nrf2 downstream targets and genes involved in keratinization. Microarray and immunostaining data also suggested that esophageal hyperkeratosis in the Keap1(-/-) mice was due to activation of Pparβ/δ and the PI3K/Akt pathway. CONCLUSIONS Morphological changes of the esophageal epithelium are associated with dynamic changes in gene expression. Nrf2/Keap1 pathway activity is required for maturation of mouse esophageal epithelium.
Collapse
Affiliation(s)
- Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, United States of America
| | - Jianying Li
- Frontier Bioinformatics Solution, LLC, Cary, North Carolina, United States of America
| | - Haiyan Li
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
| | - Yuhui Hu
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, United States of America
| | - Whitney Tevebaugh
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, United States of America
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jianwen Que
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States of America
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina, United States of America
- Division of Gastroenterology and Hepatology, Center of Esophageal Disease and Swallowing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
6
|
Wang F, Hu S, Liu W, Qiao Z, Gao Y, Bu Z. Deep-sequencing analysis of the mouse transcriptome response to infection with Brucella melitensis strains of differing virulence. PLoS One 2011; 6:e28485. [PMID: 22216095 PMCID: PMC3247208 DOI: 10.1371/journal.pone.0028485] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 11/09/2011] [Indexed: 01/18/2023] Open
Abstract
Brucella melitensis is an important zoonotic pathogen that causes brucellosis, a disease that affects sheep, cattle and occasionally humans. B. melitensis strain M5-90, a live attenuated vaccine cultured from B. melitensis strain M28, has been used as an effective tool in the control of brucellosis in goats and sheep in China. However, the molecular changes leading to attenuated virulence and pathogenicity in B. melitensis remain poorly understood. In this study we employed the Illumina Genome Analyzer platform to perform genome-wide digital gene expression (DGE) analysis of mouse peritoneal macrophage responses to B. melitensis infection. Many parallel changes in gene expression profiles were observed in M28- and M5-90-infected macrophages, suggesting that they employ similar survival strategies, notably the induction of anti-inflammatory and antiapoptotic factors. Moreover, 1019 differentially expressed macrophage transcripts were identified 4 h after infection with the different B. melitensis strains, and these differential transcripts notably identified genes involved in the lysosome and mitogen-activated protein kinase (MAPK) pathways. Further analysis employed gene ontology (GO) analysis: high-enrichment GOs identified endocytosis, inflammatory, apoptosis, and transport pathways. Path-Net and Signal-Net analysis highlighted the MAPK pathway as the key regulatory pathway. Moreover, the key differentially expressed genes of the significant pathways were apoptosis-related. These findings demonstrate previously unrecognized changes in gene transcription that are associated with B. melitensis infection of macrophages, and the central signaling pathways identified here merit further investigation. Our data provide new insights into the molecular attenuation mechanism of strain M5-90 and will facilitate the generation of new attenuated vaccine strains with enhanced efficacy.
Collapse
Affiliation(s)
- Fangkun Wang
- State Key Laboratory of Veterinary Biotechnology and Zoonosis Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai An, Shandong, People's Republic of China
| | - Sen Hu
- State Key Laboratory of Veterinary Biotechnology and Zoonosis Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Wenxing Liu
- State Key Laboratory of Veterinary Biotechnology and Zoonosis Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Zujian Qiao
- State Key Laboratory of Veterinary Biotechnology and Zoonosis Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Yuzhe Gao
- State Key Laboratory of Veterinary Biotechnology and Zoonosis Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology and Zoonosis Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
- * E-mail:
| |
Collapse
|
7
|
Dong W, Li Y, Gao M, Hu M, Li X, Mai S, Guo N, Yuan S, Song L. IKKα contributes to UVB-induced VEGF expression by regulating AP-1 transactivation. Nucleic Acids Res 2011; 40:2940-55. [PMID: 22169952 PMCID: PMC3326327 DOI: 10.1093/nar/gkr1216] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exposure to ultraviolet B (UVB) irradiation from sunlight induces the upregulation of VEGF, a potent angiogenic factor that is critical for mediating angiogenesis-associated photodamage. However, the molecular mechanisms related to UVB-induced VEGF expression have not been fully defined. Here, we demonstrate that one of the catalytic subunits of the IκB kinase complex (IKK), IKKα, plays a critical role in mediating UVB-induced VEGF expression in mouse embryonic fibroblasts (MEFs), which requires IKKα kinase activity but is independent of IKKβ, IKKγ and the transactivation of NF-κB. We further show that the transcriptional factor AP-1 functions as the downstream target of IKKα that is responsible for VEGF induction under UVB exposure. Both the accumulation of AP-1 component, c-Fos and the transactivation of AP-1 by UVB require the activated IKKα located within the nucleus. Moreover, nuclear IKKα can associate with c-Fos and recruit to the vegf promoter regions containing AP-1-responsive element and then trigger phosphorylation of the promoter-bound histone H3. Thus, our results have revealed a novel independent role for IKKα in controlling VEGF expression during the cellular UVB response by regulating the induction of the AP-1 component and phosphorylating histone H3 to facilitate AP-1 transactivation. Targeting IKKα shows promise for the prevention of UVB-induced angiogenesis and the associated photodamage.
Collapse
Affiliation(s)
- Wen Dong
- Department of Pathophysiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
NF-kappaB protects human papillomavirus type 38 E6/E7-immortalized human keratinocytes against tumor necrosis factor alpha and UV-mediated apoptosis. J Virol 2011; 85:9013-22. [PMID: 21715489 DOI: 10.1128/jvi.00002-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Constitutive activation of NF-κB signaling is a key event in virus- and non-virus-induced carcinogenesis. We have previously reported that cutaneous human papillomavirus type 38 (HPV38) displays transforming properties in in vitro and in vivo experimental models. However, the involvement of NF-κB signaling in HPV38-induced cell growth transformation remains to be determined. In this study, we showed that HPV38 E6 and E7 activate NF-κB and that inhibition of the pathway with the IκBα superrepressor sensitizes HPV38E6E7-immortalized human keratinocytes to tumor necrosis factor alpha (TNF-α)- and UVB radiation-mediated apoptosis. Accordingly, inhibition of NF-κB signaling resulted in the downregulation of NF-κB-regulated antiapoptotic genes, including cIAP1, cIAP2, and xIAP genes. These findings demonstrate a critical role of NF-κB activity in the survival of HPV38E6E7-immortalized human keratinocytes exposed to cytokine or UV radiation. Our data provide additional evidence for cooperation between beta HPV infection and UV irradiation in skin carcinogenesis.
Collapse
|
9
|
Liu B, Willette-Brown J, Liu S, Chen X, Fischer SM, Hu Y. IKKα represses a network of inflammation and proliferation pathways and elevates c-Myc antagonists and differentiation in a dose-dependent manner in the skin. Cell Death Differ 2011; 18:1854-64. [PMID: 21566664 DOI: 10.1038/cdd.2011.56] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inhibitor of nuclear factor κB kinase-α (IKKα) is required for maintaining skin homeostasis and preventing skin tumorigenesis. However, its signaling has not been extensively investigated. In the present study, we generated two mouse lines that expressed different levels of transgenic IKKα in the basal epidermis under the control of keratin-5 promoter and further evaluated their effects on the major pathways of inflammation, proliferation, and differentiation in the skin. Regardless of the transgenic IKKα levels, the mice develop normally. Because IKKα deletion in keratinocytes blocks terminal differentiation and induces epidermal hyperplasia and skin inflammation, we depleted the endogenous IKKα in these transgenic mice and found that the transgenic IKKα represses epidermal thickness and induces terminal differentiation in a dose-dependent manner. Also, transgenic IKKα was found to elevate expression of Max dimer protein 1 (Mad1) and ovo-like 1, c-Myc antagonists, but repress activities of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), Jun-amino-terminal kinases, c-Jun, signal transducer and activator of transcription 3 (Stat3), and growth factor levels in a dose-dependent fashion in the skin. Moreover, EGFR reduction represses IKKα deletion-induced excessive ERK, Stat3 and c-Jun activities, and skin inflammation. These new findings indicate that elevated IKKα expression not only represses epidermal thickness and induces terminal differentiation, but also suppresses skin inflammation by an integrated loop. Thus, IKKα maintains skin homeostasis through a broad range of signaling pathways.
Collapse
Affiliation(s)
- B Liu
- Department of Carcinogenesis, The University of Texas, MD Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
10
|
Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB. NF-κB addiction and its role in cancer: 'one size does not fit all'. Oncogene 2011; 30:1615-30. [PMID: 21170083 PMCID: PMC3141287 DOI: 10.1038/onc.2010.566] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/21/2010] [Accepted: 09/25/2010] [Indexed: 12/12/2022]
Abstract
Activation of nuclear factor (NF)-κB, one of the most investigated transcription factors, has been found to control multiple cellular processes in cancer including inflammation, transformation, proliferation, angiogenesis, invasion, metastasis, chemoresistance and radioresistance. NF-κB is constitutively active in most tumor cells, and its suppression inhibits the growth of tumor cells, leading to the concept of 'NF-κB addiction' in cancer cells. Why NF-κB is constitutively and persistently active in cancer cells is not fully understood, but multiple mechanisms have been delineated including agents that activate NF-κB (such as viruses, viral proteins, bacteria and cytokines), signaling intermediates (such as mutant receptors, overexpression of kinases, mutant oncoproteins, degradation of IκBα, histone deacetylase, overexpression of transglutaminase and iNOS) and cross talk between NF-κB and other transcription factors (such as STAT3, HIF-1α, AP1, SP, p53, PPARγ, β-catenin, AR, GR and ER). As NF-κB is 'pre-active' in cancer cells through unrelated mechanisms, classic inhibitors of NF-κB (for example, bortezomib) are unlikely to mediate their anticancer effects through suppression of NF-κB. This review discusses multiple mechanisms of NF-κB activation and their regulation by multitargeted agents in contrast to monotargeted agents, thus 'one size does not fit all' cancers.
Collapse
Affiliation(s)
- MM Chaturvedi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Laboratory for Chromatin Biology, Department of Zoology, University of Delhi, Delhi, India
| | - B Sung
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - VR Yadav
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Kannappan
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - BB Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Abstract
Squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are two major types of skin cancer derived from keratinocytes. SCC is a more aggressive type of cancer than BCC in humans. One significant difference between SCC and BCC is that SCC development is generally associated with cell dedifferentiation and morphological changes. When SCC is converted to spindle cell carcinoma, the latest stage of cancer, the tumor cells change to a fibroblastic cell morphology (epithelial-to-mesenchymal transition) and lose their differentiation markers. Recently, several laboratories have reported altered IκB kinase α (IKKα) protein localization, downregulated IKKα, and IKKα gene deletions and mutations in human SCCs of the skin, lung, esophagus, and neck and head. In addition, IKKα reduction promotes chemical carcinogen- and ultraviolet B-induced skin carcinogenesis, and IKKα deletion in keratinocytes causes spontaneous skin SCCs, but not BCCs, in mice. Thus, IKKα emerges as a bona fide skin tumor suppressor. In this article, we will discuss the role of IKKα in skin SCC development.
Collapse
Affiliation(s)
- Eunmi Park
- Department of Radiation Oncology. Dana-Farber Cancer Institute. Harvard Medical School. Boston. MA 02115. USA
| | - Bigang Liu
- Department of Carcinogenesis. The University of Texas MD Anderson Cancer Center. Smithville. TX 78957. USA
| | - Xiaojun Xia
- Center for Cell &. Gene Therapy, Baylor College of Medicine, 1 Baylor Plaza. Houston, TX 77030, USA
| | - Feng Zhu
- Department of Carcinogenesis. The University of Texas MD Anderson Cancer Center. Smithville. TX 78957. USA
| | - Willette-Brown Jami
- Cancer &. Inflammation Program. Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21701, USA
| | - Yinling Hu
- Cancer &. Inflammation Program. Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21701, USA
| |
Collapse
|
12
|
Acharya A, Das I, Chandhok D, Saha T. Redox regulation in cancer: a double-edged sword with therapeutic potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:23-34. [PMID: 20716925 PMCID: PMC2835886 DOI: 10.4161/oxim.3.1.10095] [Citation(s) in RCA: 355] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress, implicated in the etiology of cancer, results from an imbalance in the production of reactive oxygen species (ROS) and cell’s own antioxidant defenses. ROS deregulate the redox homeostasis and promote tumor formation by initiating an aberrant induction of signaling networks that cause tumorigenesis. Ultraviolet (UV) exposures, γ-radiation and other environmental carcinogens generate ROS in the cells, which can exert apoptosis in the tumors, thereby killing the malignant cells or induce the progression of the cancer growth by blocking cellular defense system. Cancer stem cells take the advantage of the aberrant redox system and spontaneously proliferate. Oxidative stress and gene-environment interactions play a significant role in the development of breast, prostate, pancreatic and colon cancer. Prolonged lifetime exposure to estrogen is associated with several kinds of DNA damage. Oxidative stress and estrogen receptor-associated proliferative changes are suggested to play important roles in estrogen-induced breast carcinogenesis. BRCA1, a tumor suppressor against hormone responsive cancers such as breast and prostate cancer, plays a significant role in inhibiting ROS and estrogen mediated DNA damage; thereby regulate the redox homeostasis of the cells. Several transcription factors and tumor suppressors are involved during stress response such as Nrf2, NFκB and BRCA1. A promising strategy for targeting redox status of the cells is to use readily available natural substances from vegetables, fruits, herbs and spices. Many of the phytochemicals have already been identified to have chemopreventive potential, capable of intervening in carcinogenesis.
Collapse
Affiliation(s)
- Asha Acharya
- Lombardi Comprehensive Cancer Center, Pre Clinical Science, Washington DC, USA.
| | | | | | | |
Collapse
|
13
|
Song L, Dong W, Gao M, Li J, Hu M, Guo N, Huang C. A novel role of IKKalpha in the mediation of UVB-induced G0/G1 cell cycle arrest response by suppressing Cyclin D1 expression. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:323-32. [PMID: 20080131 PMCID: PMC2850076 DOI: 10.1016/j.bbamcr.2010.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 01/06/2010] [Accepted: 01/06/2010] [Indexed: 11/30/2022]
Abstract
Exposure to ultraviolet B (UVB) irradiation (290-320nm wavelength) from sunlight induces a variety of medical problems, including sunburn, immunosuppression and skin cancers. However, the molecular mechanisms related to UVB-induced cell damage and/or mutagenic effects have not been fully defined. Here, we demonstrate that one of the catalytic subunits of the IkappaB kinase complex (IKK), IKKalpha, plays a critical role in mediation of the UVB-induced G0/G1 cell cycle arrest response by suppressing Cyclin D1 expression. Notably, IKKa-dependent Cyclin D1 regulation is unrelated to IKKbeta/NF-kappaB activity. We further show that IKKalpha-dependent downregulation of Cyclin D1 expression in the UVB response results from the reduction of ERK1/2-dependent Cyclin D1 transcription coupled with an increase of p38 kinase-dependent Cyclin D1 proteolysis. Thus, our results have identified the novel role of IKKalpha in regulating cell cycle progression during the cellular UVB response. Targeting IKKalpha might be promising for the prevention of UVB-induced cell damage and tumorigenic effects.
Collapse
Affiliation(s)
- Lun Song
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Wen Dong
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Ming Gao
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Meiru Hu
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Ning Guo
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| |
Collapse
|
14
|
Liu B, Zhu F, Xia X, Park E, Hu Y. A tale of terminal differentiation: IKKalpha, the master keratinocyte regulator. Cell Cycle 2009; 8:527-31. [PMID: 19197157 PMCID: PMC7243803 DOI: 10.4161/cc.8.4.7598] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Keratinocyte differentiation is the process of cellular maturation from a mitotic state to a terminally differentiated state during which skin builds up a tough yet soft skin barrier to protect the body. Its irreversibility also allows the shedding of excessive keratinocytes, thereby maintaining skin homeostasis and preventing skin diseases. Although the entire journey of keratinocyte differentiation is intricate and not well understood, it is known that Ras is able to block keratinocyte terminal differentiation and instead induce keratinocyte proliferation and transformation. It appears that uncontrolled proliferation actually interrupts differentiation. However, it has been unclear whether there are any innate surveillants that would be able to induce terminal differentiation by antagonizing excessive mitotic activities. Inhibitor of nuclear factor kappaB kinase-alpha (IKKalpha, previously known as Chuk) emerges as a master regulator in the coordinative control of keratinocyte differentiation and proliferation and as a major tumor suppressor in human and mouse skin squamous cell carcinomas. IKKalpha does so largely by integrating into the epidermal growth factor receptor (EGFR)/Ras/extracellular signal-regulated kinase (Erk)/EGFR ligand pathways during mitosis and differentiation. We discuss these findings herein to extend our understanding of how IKKalpha-mediated terminal differentiation serves as an innate surveillant in skin.
Collapse
Affiliation(s)
- Bigang Liu
- Science Park Research Division; The University of Texas MD Anderson Cancer Center; Smithville, Texas USA
| | - Feng Zhu
- Science Park Research Division; The University of Texas MD Anderson Cancer Center; Smithville, Texas USA
| | - Xiaojun Xia
- Center for Cell and Gene Therapy; Baylor College of Medicine; Houston, Texas USA
| | - Eumni Park
- Department of Radiation Oncology; Dana-Farber Cancer Institute; Harvard Medical School; Boston, Massachusetts USA
| | - Yinling Hu
- Cancer and Inflammation Program; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Frederick, Maryland USA
| |
Collapse
|