1
|
Wang Z, Ma T, Bai G, Fang Q, Ou B, Chen M, Xu P, Tian M, Xu A, Ma Y. Adipose Tissue-Derived Extracellular Vesicles Loaded with miR-141-3p Regulate Obesity-Induced Insulin Resistance by Targeting Glycogen Synthesis and Gluconeogenesis. Int J Nanomedicine 2025; 20:5709-5726. [PMID: 40343195 PMCID: PMC12059219 DOI: 10.2147/ijn.s511842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Purpose Insulin resistance, a hallmark feature of type 2 diabetes and cardiovascular diseases, is critically influenced by liver-adipose tissue crosstalk, offering a novel therapeutic strategy for its management. Emerging evidence indicates that extracellular vesicles (EVs) secreted from adipose tissue serve as essential carriers of miRNA-mediated interorgan communication. This study aimed to investigate the regulatory effects of adipose tissue-derived EVs on obesity-induced hepatic insulin resistance and to elucidate the underlying molecular mechanisms by which EV-mediated signaling contributes to metabolic dysfunction. Methods EVs with miR-141-3p knockout or overexpression were constructed and administered to both in vitro cell models and in vivo mouse models to investigate the regulatory role and underlying mechanisms of miR-141-3p-mediated adipose tissue-derived EVs in obesity-induced hepatic insulin resistance. Results miR-141-3p is significantly upregulated in adipose tissue-derived EVs from high-fat diet (HFD)-fed mice, as well as in other obesity-related conditions. Furthermore, the knockdown of miR-141-3p in EVs from chow diet (CD-EVs) counteracted the effect in improving obesity-induced hepatic insulin resistance, whereas the overexpression of miR-141-3p in HFD-EVs improved hepatic insulin resistance. Mechanistically, EVs-derived miR-141-3p directly targets PTEN to promote PI3K/AKT signaling, thereby mediating hepatic glucose homeostasis through the regulation of hepatic gluconeogenesis and glycogen synthesis. Conclusion In summary, our results highlight the emerging role of miR-141-3p in mediating adipose tissue-derived EVs to alleviate obesity-induced hepatic insulin resistance, providing potential therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Zixian Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People’s Republic of China
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Tianyu Ma
- School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Ge Bai
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Qianchen Fang
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Biqian Ou
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Meng Chen
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Pei Xu
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Meng Tian
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Anding Xu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People’s Republic of China
| | - Yi Ma
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People’s Republic of China
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| |
Collapse
|
2
|
Wu J, Chen X, Li R, Lu Q, Ba Y, Fang J, Liu Y, Li R, Liu Y, Wang Y, Chen J, Li Y, Huang Y. Identifying genetic determinants of sarcopenia-related traits: a Mendelian randomization study of druggable genes. Metabolism 2024; 160:155994. [PMID: 39117060 DOI: 10.1016/j.metabol.2024.155994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Sarcopenia, characterized by progressive muscle mass and function loss, particularly affects the elderly, and leads to severe consequences such as falls and mortality. Despite its prevalence, targeted pharmacotherapies for sarcopenia are lacking. Utilizing large-sample genome-wide association studies (GWAS) data is crucial for cost-effective drug discovery. METHODS Herein, we conducted four studies to understand the putative causal effects of genetic components on muscle mass and function. Study 1 employed a two-sample Mendelian randomization (MR) on 15,944 potential druggable genes, investigating their potential causality with muscle quantity and quality in a European population (N up to 461,089). Study 2 validated MR results through sensitivity analyses and colocalization analyses. Study 3 extended validation across other European cohorts, and study 4 conducted quantitative in vivo verification. RESULTS MR analysis revealed significant causality between four genes (BLOC-1 related complex subunit 7, BORCS7; peptidase m20 domain containing 1, PM20D1; nuclear casein kinase and cyclin dependent kinase substrate 1, NUCKS1 and ubiquinol-cytochrome c reductase complex assembly factor 1, UQCC1) and muscle mass and function (p-values range 5.98 × 10-6 to 9.26 × 10-55). To be specific, BORCS7 and UQCC1 negatively regulated muscle quantity and quality, whereas enhancing PM20D1 and NUCKS1 expression showed promise in promoting muscle mass and function. Causal relationships remained robust across sensitivity analyses, with UQCC1 exhibiting notable colocalization effects (PP·H4 93.4 % to 95.8 %). Further validation and in vivo replication verified the potential causality between these genes and muscle mass as well as function. CONCLUSIONS Our druggable genome-wide MR analysis identifies BORCS7, PM20D1, NUCKS1, and UQCC1 as causally associated with muscle mass and function. These findings offer insights into the genetic basis of sarcopenia, paving the way for these genes to become promising drug targets in mitigating this debilitating condition.
Collapse
Affiliation(s)
- Jihao Wu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ruijun Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiying Lu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China; Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Yucheng Ba
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiayun Fang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yilin Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruijie Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yixuan Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yiling Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jinsi Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yinong Huang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Rodriguez-Muñoz A, Motahari-Rad H, Martin-Chaves L, Benitez-Porres J, Rodriguez-Capitan J, Gonzalez-Jimenez A, Insenser M, Tinahones FJ, Murri M. A Systematic Review of Proteomics in Obesity: Unpacking the Molecular Puzzle. Curr Obes Rep 2024; 13:403-438. [PMID: 38703299 PMCID: PMC11306592 DOI: 10.1007/s13679-024-00561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE OF REVIEW The present study aims to review the existing literature to identify pathophysiological proteins in obesity by conducting a systematic review of proteomics studies. Proteomics may reveal the mechanisms of obesity development and clarify the links between obesity and related diseases, improving our comprehension of obesity and its clinical implications. RECENT FINDINGS Most of the molecular events implicated in obesity development remain incomplete. Proteomics stands as a powerful tool for elucidating the intricate interactions among proteins in the context of obesity. This methodology has the potential to identify proteins involved in pathological processes and to evaluate changes in protein abundance during obesity development, contributing to the identification of early disease predisposition, monitoring the effectiveness of interventions and improving disease management overall. Despite many non-targeted proteomic studies exploring obesity, a comprehensive and up-to-date systematic review of the molecular events implicated in obesity development is lacking. The lack of such a review presents a significant challenge for researchers trying to interpret the existing literature. This systematic review was conducted following the PRISMA guidelines and included sixteen human proteomic studies, each of which delineated proteins exhibiting significant alterations in obesity. A total of 41 proteins were reported to be altered in obesity by at least two or more studies. These proteins were involved in metabolic pathways, oxidative stress responses, inflammatory processes, protein folding, coagulation, as well as structure/cytoskeleton. Many of the identified proteomic biomarkers of obesity have also been reported to be dysregulated in obesity-related disease. Among them, seven proteins, which belong to metabolic pathways (aldehyde dehydrogenase and apolipoprotein A1), the chaperone family (albumin, heat shock protein beta 1, protein disulfide-isomerase A3) and oxidative stress and inflammation proteins (catalase and complement C3), could potentially serve as biomarkers for the progression of obesity and the development of comorbidities, contributing to personalized medicine in the field of obesity. Our systematic review in proteomics represents a substantial step forward in unravelling the complexities of protein alterations associated with obesity. It provides valuable insights into the pathophysiological mechanisms underlying obesity, thereby opening avenues for the discovery of potential biomarkers and the development of personalized medicine in obesity.
Collapse
Affiliation(s)
- Alba Rodriguez-Muñoz
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| | - Hanieh Motahari-Rad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Laura Martin-Chaves
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Javier Benitez-Porres
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Jorge Rodriguez-Capitan
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | | | - Maria Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Francisco J Tinahones
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Mora Murri
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Kim JB, Kim SJ, So M, Kim DK, Noh HR, Kim BJ, Choi YR, Kim D, Koo H, Kim T, Woo HG, Park SM. Artificial intelligence-driven drug repositioning uncovers efavirenz as a modulator of α-synuclein propagation: Implications in Parkinson's disease. Biomed Pharmacother 2024; 174:116442. [PMID: 38513596 DOI: 10.1016/j.biopha.2024.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder with an unclear etiology. Despite significant research efforts, developing disease-modifying treatments for PD remains a major unmet medical need. Notably, drug repositioning is becoming an increasingly attractive direction in drug discovery, and computational approaches offer a relatively quick and resource-saving method for identifying testable hypotheses that promote drug repositioning. We used an artificial intelligence (AI)-based drug repositioning strategy to screen an extensive compound library and identify potential therapeutic agents for PD. Our AI-driven analysis revealed that efavirenz and nevirapine, approved for treating human immunodeficiency virus infection, had distinct profiles, suggesting their potential effects on PD pathophysiology. Among these, efavirenz attenuated α-synuclein (α-syn) propagation and associated neuroinflammation in the brain of preformed α-syn fibrils-injected A53T α-syn Tg mice and α-syn propagation and associated behavioral changes in the C. elegans BiFC model. Through in-depth molecular investigations, we found that efavirenz can modulate cholesterol metabolism and mitigate α-syn propagation, a key pathological feature implicated in PD progression by regulating CYP46A1. This study opens new avenues for further investigation into the mechanisms underlying PD pathology and the exploration of additional drug candidates using advanced computational methodologies.
Collapse
Affiliation(s)
- Jae-Bong Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Soo-Jeong Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
| | | | - Dong-Kyu Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
| | - Hye Rin Noh
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Beom Jin Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Yu Ree Choi
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
| | - Doyoon Kim
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Department of Physiology, Ajou University School of Medicine, Suwon, Korea
| | | | | | - Hyun Goo Woo
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Department of Physiology, Ajou University School of Medicine, Suwon, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea; Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
5
|
Wang W, Ma C, Zhang Q, Jiang Y. TMT-labeled quantitative malonylome analysis on the longissimus dorsi muscle of Laiwu pigs reveals the role of ACOT7 in fat deposition. J Proteomics 2024; 298:105129. [PMID: 38395145 DOI: 10.1016/j.jprot.2024.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
The Laiwu pig is an indigenous fatty pig breed distributed in North China, characterized by an extremely high level of intramuscular fat (IMF) content (9% ∼ 12%), but the regulatory mechanism underlying intramuscular fat deposition in skeletal muscle is still unknown. In this study, the TMT-labeled quantitative malonylome of the longissimus dorsi muscle in Laiwu pigs at the fastest IMF deposition stage (240 d vs 120 d) was compared to analyze the molecular mechanism of IMF variation in pigs. In Laiwu pigs aged 240 days/120 days, we identified 291 malonylated lysine sites across 188 proteins in the longissimus dorsi muscle. Among these, 38 sites across 31 proteins exhibited differential malonylation. Annotation analysis and enrichment analysis were performed for differentially malonylated proteins (DMPs). These DMPs were mainly clustered into 12 GO functional categories accounting for 5 biological processes, 4 cellular components and 3 molecular functions, and 2 signaling pathways by KEGG enrichment analysis. The function of differentially malonylated protein ACOT7 in the process of fat deposition was further investigated during the differentiation of 3 T3-L1 cells. The results showed that the protein level of ACOT7 in 3 T3-L1 cells decreased but the malonylated level of ACOT7 increased significantly. The malonyl-CoA that is synthesized by ACSF3 affected the malonylation level of ACOT7 in 3 T3-L1 cells. SIGNIFICANCE: The intramuscular fat (IMF) content, by affecting sensory quality traits of meat, such as tenderness, flavor and juiciness, plays an important role in meat quality. Using TMT-based quantitative malonylated proteome analysis, we identified malonylated proteins in LD muscle samples in two stages (120 d and 240 d) of development and further identified differentially malonylated proteins, such as SLC25A4, ANXA5, TPM3 and ACOT7, that are associated with intramuscular fat deposition and fat metabolism in pigs. These differentially malonylated proteins could serve as candidates for elucidating the molecular mechanism of IMF deposition in pigs. In addition, we found that the malonyl-CoA in 3 T3-L1 cells is mainly synthesized by ACSF3, affecting the malonylated level of ACOT7. The study provides some data concerning the role of protein malonylation in regulating the variation in porcine IMF content.
Collapse
Affiliation(s)
- Wenlei Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Cai Ma
- Department of Medical Genetics and Cell Biology, Binzhou Medical University, No. 346 Guanhai Road, Yantai 264003, PR China.
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| |
Collapse
|
6
|
Nayan SI, Rahman MH, Hasan MM, Raj SMRH, Almoyad MAA, Liò P, Moni MA. Network based approach to identify interactions between Type 2 diabetes and cancer comorbidities. Life Sci 2023; 335:122244. [PMID: 37949208 DOI: 10.1016/j.lfs.2023.122244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
High blood sugar and insulin insensitivity causes the lifelong chronic metabolic disease called Type 2 diabetes (T2D) which has a higher chance of developing different malignancies. T2D with comorbidities like Cancers can make normal medications for those disorders more difficult. There may be a significant correlation between comorbidities and have an impact on one another's health. These associations may be due to a number of direct and indirect mechanisms. Such molecular mechanisms that underpin T2D and cancer are yet unknown. However, the large volumes of data available on these diseases allowed us to use analytical tools for uncovering their interrelated pathways. Here, we tried to present a system for investigating potential comorbidity relationships between T2D and Cancer disease by looking at the molecular processes involved, analyzing a huge number of freely accessible transcriptomic datasets of various disorders using bioinformatics. Using semantic similarity and gene set enrichment analysis, we created an informatics pipeline that evaluates and integrates Gene Ontology (GO), expression of genes, and biological process data. We discovered genes that are common in T2D and Cancer along with molecular pathways and GOs. We compared the top 200 Differentially Expressed Genes (DEGs) from each selected T2D and cancer dataset and found the most significant common genes. Among all the common genes 13 genes were found most frequent. We also found 4 common GO terms: GO:0000003, GO:0000122, GO:0000165, and GO:0000278 among all the common GO terms between T2d and different cancers. Using these genes and GO term semantic similarity, we calculated the distance between these two diseases. The semantic similarity results of our study showed a higher association of Liver Cancer (LiC), Breast Cancer (BreC), Colorectal Cancer (CC), and Bladder Cancer (BlaC) with T2D. Furthermore we found KIF4A, NUSAP1, CENPF, CCNB1, TOP2A, CCNB2, RRM2, HMMR, NDC80, NCAPG, and IGFBP5 common hub proteins among different cancers correlated to T2D. AGE-RAGE signaling pathway in diabetic complications, Osteoclast differentiation, TNF signaling pathway, IL-17 signaling pathway, p53 signaling pathway, MAPK signaling pathway, Human T-cell leukemia virus 1 infection, and Non-alcoholic fatty liver disease are the 8 most significant pathways found among 18 common pathways between T2D and selected cancers. As a result of our technique, we now know more about disease pathways that are critical between T2D and cancer.
Collapse
Affiliation(s)
- Saidul Islam Nayan
- Dept. of Computer Science & Engineering, University of Global Village, Barisal 8200, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia 7003, Bangladesh; Center for Advanced Bioinformatics and Artificial Intelligence Research, Islamic University, Kushtia 7003, Bangladesh
| | - Md Mehedi Hasan
- Dept. of Computer Science & Engineering, University of Global Village, Barisal 8200, Bangladesh
| | | | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, 47 Abha, Mushait, PO Box. 4536, 61412, Saudi Arabia
| | - Pietro Liò
- Computer Laboratory, The University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
| | - Mohammad Ali Moni
- Artificial Intelligence and Cyber Futures Institute, Charles Stuart University, Bathurst, NSW, 2795, Australia.
| |
Collapse
|
7
|
Ning S, Zhang S, Guo Z. MicroRNA-494 regulates high glucose-induced cardiomyocyte apoptosis and autophagy by PI3K/AKT/mTOR signalling pathway. ESC Heart Fail 2023; 10:1401-1411. [PMID: 36772911 PMCID: PMC10053280 DOI: 10.1002/ehf2.14311] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/08/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
AIMS Diabetic cardiomyopathy (DCM) is one of the major cardiovascular complications of diabetes. However, the mechanism of DCM is not fully understood. Studies have confirmed that certain microRNAs (miRNAs/miRs) are key regulators of DCM. The aim of this study was to investigate the role and mechanism of microRNA (miR)-494 in cardiomyocyte apoptosis and autophagy induced by high glucose (HG). METHODS AND RESULTS By establishing a rat DCM model and an HG-treated H9c2 cells injury model, cardiac function was detected by echocardiography, myocardial tissue was stained by immunohistochemistry, and Cell Counting Kit-8 assay and lactate dehydrogenase assay were used to detect the cardiomyocyte injury. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labelling staining, and western blotting was used to detect death and autophagy. The results showed that the expression level of miR-494 was higher in the myocardial tissue of DCM rats and the myocardial cells of H9c2 treated with HG. Compared with the corresponding negative control groups, miR-494 mimics enhanced HG-induced apoptosis and autophagy, whereas miR-494 inhibitors showed the opposite effect, corresponding PI3K, AKT, and mTOR phosphorylation level has changed. CONCLUSIONS These findings identify that miR-494 could regulate cell apoptosis and autophagy through PI3K/AKT/mTOR signalling pathway, participating in the regulation of cardiomyocyte cell damage after HG. These findings provide new insights for the further study of the molecular mechanism and treatment of DCM.
Collapse
Affiliation(s)
- Shuwei Ning
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, No. 17 Jingnan 5th Road, Zhengzhou, Henan, 450016, China
| | - Siqi Zhang
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, No. 17 Jingnan 5th Road, Zhengzhou, Henan, 450016, China
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou No. 7 People's Hospital, No. 17 Jingnan 5th Road, Zhengzhou, Henan, 450016, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
8
|
Mondal T, Loffredo CA, Simhadri J, Nunlee-Bland G, Korba B, Johnson J, Cotin S, Moses G, Quartey R, Howell CD, Noreen Z, Arif M, Ghosh S. Insights on the pathogenesis of type 2 diabetes as revealed by signature genomic classifiers in an African American population in the Washington, DC area. Diabetes Metab Res Rev 2023; 39:e3589. [PMID: 36331813 DOI: 10.1002/dmrr.3589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
AIMS African Americans (AA) in the United States have a high risk of type 2 diabetes mellitus (T2DM) and suffer from disparities in the prevalence, mortality, and comorbidities of the disease compared to other Americans. The present study aimed to shed light on the molecular mechanisms of disease pathogenesis of T2DM among AA in the Washington, DC region. METHODS We performed TaqMan Low Density Arrays (TLDA) on 24 genes of interest that belong to three categories: metabolic disease and disorders, cancer-related genes, and neurobehavioural disorders genes. The 18 genes, viz. ARNT, CYP2D6, IL6, INSR, RRAD, SLC2A2 (metabolic disease and disorders), APC, BCL2, CSNK1D, MYC, SOD2, TP53 (Cancer-related), APBA1, APBB2, APOC1, APOE, GSK3B, and NAE1 (neurobehavioural disorders), were differentially expressed in T2DM participants compared to controls. RESULTS Our results suggest that factors including gender, smoking habits, and the severity or lack of control of T2DM (as indicated by HbA1c levels) were significantly associated with differential gene expression. APBA1 was significantly (p-value <0.05) downregulated in all diabetes participants. Upregulation of APOE and CYP2D6 genes and downregulation of the INSR gene were observed in the majority of diabetes patients. CONCLUSIONS Tobacco smoking and gender were significantly associated with case-control differences in expression of the APBA1 and APOE genes (connected with Alzheimer's disease) and the INSR and CYP2D6 (associated with metabolic disorders). The results highlight the need for more effective management of T2DM and for tobacco smoking cessation interventions in this community, and further research on the associations of T2DM with other disease processes, including cancer and neurobehavioral pathways.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Department of Biology, Howard University, Washington, DC, USA
| | | | - Jyothirmai Simhadri
- Departments of Pediatrics and Child Health, College of Medicine, Howard University, Washington, DC, USA
| | - Gail Nunlee-Bland
- Departments of Pediatrics and Child Health, College of Medicine, Howard University, Washington, DC, USA
| | - Brent Korba
- Depaertment of Microbiology & Immunology, Georgetown University, Washington, DC, USA
| | | | - Sharleine Cotin
- Department of Biology, Howard University, Washington, DC, USA
| | - Gemeyel Moses
- Department of Biology, Howard University, Washington, DC, USA
| | - Ruth Quartey
- Viral Hepatitis Center, College of Medicine, Howard University, Washington, DC, USA
| | - Charles D Howell
- Viral Hepatitis Center, College of Medicine, Howard University, Washington, DC, USA
| | - Zarish Noreen
- Department of Healthcare Biotechnology, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Maria Arif
- Department of Biochemistry, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Somiranjan Ghosh
- Department of Biology, Howard University, Washington, DC, USA
- Departments of Pediatrics and Child Health, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
9
|
Jiang Y, Liu J, Liu H, Zhang W, Li X, Liu L, Zhou M, Wang J, Su S, Ding X, Wang C. miR-381-3p Inhibits Intramuscular Fat Deposition through Targeting FABP3 by ceRNA Regulatory Network. BIOLOGY 2022; 11:biology11101497. [PMID: 36290402 PMCID: PMC9598794 DOI: 10.3390/biology11101497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 01/24/2023]
Abstract
Intramuscular fat (IMF) deposition is an important determinant of pork quality and a complex process facilitated by non-coding ceRNAs. In this study, 52 Berkshire × Anqing Sixwhite crossbred pigs were slaughtered to measure eight carcass and pork quality traits. Whole-transcriptome sequencing analysis was performed using longissimus dorsi samples of six low- and high-IMF samples; 34 ceRNA networks, based on 881, 394, 158 differentially expressed (DE) lncRNAs, miRNAs, and mRNAs, were constructed. Following weighted gene co-expression network analysis between the low and high IMF, only one ceRNA, lncRNA4789/miR-381-3p/FABP3, that showed similar DE trend in longissimus dorsi tissue was retained. Dual-luciferase reporter assays further indicated that FABP3 was a direct, functional target of miR-381-3p, where miR-381-3p overexpression inhibited the mRNA and protein expression of FABP3. In addition, overexpressed lncRNA4789 attenuated the effect of miR-381-3p on FABP3 by sponging miR-381-3p. Cell function verification experiment demonstrated that miR-381-3p suppressed IMF deposition by inhibiting preadipocyte cell differentiation and lipid droplet deposition via the suppression of FABP3 expression in the peroxisome proliferator-activated receptor signalling pathway, whereas lncRNA4789 rescued FABP3 expression by sponging miR-381-3p. Our study may aid in identifying novel molecular markers for its optimization in IMF which is of importance in breeding for improving pork quality.
Collapse
Affiliation(s)
- Yao Jiang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- National Animal Husbandry Service, Beijing 100125, China
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiali Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huatao Liu
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaojin Li
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Linqing Liu
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Mei Zhou
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shiguang Su
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Correspondence:
| |
Collapse
|
10
|
Non-coding RNA network associated with obesity and rheumatoid arthritis. Immunobiology 2022; 227:152281. [DOI: 10.1016/j.imbio.2022.152281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
|
11
|
Østvold AC, Grundt K, Wiese C. NUCKS1 is a highly modified, chromatin-associated protein involved in a diverse set of biological and pathophysiological processes. Biochem J 2022; 479:1205-1220. [PMID: 35695515 PMCID: PMC10016235 DOI: 10.1042/bcj20220075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
The Nuclear Casein and Cyclin-dependent Kinase Substrate 1 (NUCKS1) protein is highly conserved in vertebrates, predominantly localized to the nucleus and one of the most heavily modified proteins in the human proteome. NUCKS1 expression is high in stem cells and the brain, developmentally regulated in mice and associated with several diverse malignancies in humans, including cancer, metabolic syndrome and Parkinson's disease. NUCKS1 function has been linked to modulating chromatin architecture and transcription, DNA repair and cell cycle regulation. In this review, we summarize and discuss the published information on NUCKS1 and highlight the questions that remain to be addressed to better understand the complex biology of this multifaceted protein.
Collapse
Affiliation(s)
- Anne Carine Østvold
- Institute of Basic Medical Science, Dept. of Biochemistry, University of Oslo, P.O box 1110 Blindern, 0317 Oslo, Norway
| | - Kirsten Grundt
- Institute of Basic Medical Science, Dept. of Biochemistry, University of Oslo, P.O box 1110 Blindern, 0317 Oslo, Norway
| | - Claudia Wiese
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
12
|
Li X, Liao M, Guan J, Zhou L, Shen R, Long M, Shao J. Identification of Key Genes and Pathways in Peripheral Blood Mononuclear Cells of Type 1 Diabetes Mellitus by Integrated Bioinformatics Analysis. Diabetes Metab J 2022; 46:451-463. [PMID: 35381625 PMCID: PMC9171163 DOI: 10.4093/dmj.2021.0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The onset and progression of type 1 diabetes mellitus (T1DM) is closely related to autoimmunity. Effective monitoring of the immune system and developing targeted therapies are frontier fields in T1DM treatment. Currently, the most available tissue that reflects the immune system is peripheral blood mononuclear cells (PBMCs). Thus, the aim of this study was to identify key PBMC biomarkers of T1DM. METHODS Common differentially expressed genes (DEGs) were screened from the Gene Expression Omnibus (GEO) datasets GSE9006, GSE72377, and GSE55098, and PBMC mRNA expression in T1DM patients was compared with that in healthy participants by GEO2R. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein-protein interaction (PPI) network analyses of DEGs were performed using the Cytoscape, DAVID, and STRING databases. The vital hub genes were validated by reverse transcription-polymerase chain reaction using clinical samples. The disease-gene-drug interaction network was built using the Comparative Toxicogenomics Database (CTD) and Drug Gene Interaction Database (DGIdb). RESULTS We found that various biological functions or pathways related to the immune system and glucose metabolism changed in PBMCs from T1DM patients. In the PPI network, the DEGs of module 1 were significantly enriched in processes including inflammatory and immune responses and in pathways of proteoglycans in cancer. Moreover, we focused on four vital hub genes, namely, chitinase-3-like protein 1 (CHI3L1), C-X-C motif chemokine ligand 1 (CXCL1), matrix metallopeptidase 9 (MMP9), and granzyme B (GZMB), and confirmed them in clinical PBMC samples. Furthermore, the disease-gene-drug interaction network revealed the potential of key genes as reference markers in T1DM. CONCLUSION These results provide new insight into T1DM pathogenesis and novel biomarkers that could be widely representative reference indicators or potential therapeutic targets for clinical applications.
Collapse
Affiliation(s)
- Xing Li
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Mingyu Liao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiangheng Guan
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Ling Zhou
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Rufei Shen
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Min Long
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Zhang X, Li TY, Xiao HM, Ehrlich KC, Shen H, Deng HW, Ehrlich M. Epigenomic and Transcriptomic Prioritization of Candidate Obesity-Risk Regulatory GWAS SNPs. Int J Mol Sci 2022; 23:1271. [PMID: 35163195 PMCID: PMC8836216 DOI: 10.3390/ijms23031271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Concern about rising rates of obesity has prompted searches for obesity-related single nucleotide polymorphisms (SNPs) in genome-wide association studies (GWAS). Identifying plausible regulatory SNPs is very difficult partially because of linkage disequilibrium. We used an unusual epigenomic and transcriptomic analysis of obesity GWAS-derived SNPs in adipose versus heterologous tissues. From 50 GWAS and 121,064 expanded SNPs, we prioritized 47 potential causal regulatory SNPs (Tier-1 SNPs) for 14 gene loci. A detailed examination of seven loci revealed that four (CABLES1, PC, PEMT, and FAM13A) had Tier-1 SNPs positioned so that they could regulate use of alternative transcription start sites, resulting in different polypeptides being generated or different amounts of an intronic microRNA gene being expressed. HOXA11 and long noncoding RNA gene RP11-392O17.1 had Tier-1 SNPs in their 3' or promoter region, respectively, and strong preferences for expression in subcutaneous versus visceral adipose tissue. ZBED3-AS1 had two intragenic Tier-1 SNPs, each of which could contribute to mediating obesity risk through modulating long-distance chromatin interactions. Our approach not only revealed especially credible novel regulatory SNPs, but also helped evaluate previously highlighted obesity GWAS SNPs that were candidates for transcription regulation.
Collapse
Affiliation(s)
- Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Tian-Ying Li
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China; (T.-Y.L.); (H.-M.X.)
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China; (T.-Y.L.); (H.-M.X.)
| | - Kenneth C. Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Melanie Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
- Tulane Cancer Center and Hayward Genetics Center, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
14
|
Identification of Sortilin Alternatively Spliced Variants in Mouse 3T3L1 Adipocytes. Int J Mol Sci 2021; 22:ijms22030983. [PMID: 33498179 PMCID: PMC7863940 DOI: 10.3390/ijms22030983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus is a metabolic disorder defined by systemic insulin resistance. Insulin resistance in adipocytes, an important regulator of glucose metabolism, results in impaired glucose uptake. The trafficking protein, sortilin, regulates major glucose transporter 4 (Glut4) movement, thereby promoting glucose uptake in adipocytes. Here, we demonstrate the presence of an alternatively spliced sortilin variant (Sort17b), whose levels increase with insulin resistance in mouse 3T3L1 adipocytes. Using a splicing minigene, we show that inclusion of alternative exon 17b results in the expression of Sort17b splice variant. Bioinformatic analysis indicated a novel intrinsic disorder region (IDR) encoded by exon 17b of Sort17b. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) measurements using molecular dynamics demonstrated increased flexibility of the protein backbone within the IDR. Using protein–protein docking and co-immunoprecipitation assays, we show robust binding of Glut4 to Sort17b. Further, results demonstrate that over-expression of Sort17b correlates with reduced Glut4 translocation and decreased glucose uptake in adipocytes. The study demonstrates that insulin resistance in 3T3L1 adipocytes promotes expression of a novel sortilin splice variant with thus far unknown implications in glucose metabolism. This knowledge may be used to develop therapeutics targeting sortilin variants in the management of type 2 diabetes and metabolic syndrome.
Collapse
|
15
|
Iwasaki H, Ichihara Y, Morino K, Lemecha M, Sugawara L, Sawano T, Miake J, Sakurai H, Nishi E, Maegawa H, Imamura T. MicroRNA-494-3p inhibits formation of fast oxidative muscle fibres by targeting E1A-binding protein p300 in human-induced pluripotent stem cells. Sci Rep 2021; 11:1161. [PMID: 33441918 PMCID: PMC7806978 DOI: 10.1038/s41598-020-80742-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
MYOD-induced microRNA-494-3p expression inhibits fast oxidative myotube formation by downregulating myosin heavy chain 2 (MYH2) in human induced pluripotent stem cells (hiPSCs) during skeletal myogenesis. However, the molecular mechanisms regulating MYH2 expression via miR-494-3p remain unknown. Here, using bioinformatic analyses, we show that miR-494-3p potentially targets the transcript of the E1A-binding protein p300 at its 3'-untranslated region (UTR). Myogenesis in hiPSCs with the Tet/ON-myogenic differentiation 1 (MYOD1) gene (MyoD-hiPSCs) was induced by culturing them in doxycycline-supplemented differentiation medium for 7 days. p300 protein expression decreased after transient induction of miR-494-3p during myogenesis. miR-494-3p mimics decreased the levels of p300 and its downstream targets MYOD and MYH2 and myotube formation efficiency. p300 knockdown decreased myotube formation efficiency, MYH2 expression, and basal oxygen consumption rate. The binding of miR-494-3p to the wild type p300 3'-UTR, but not the mutated site, was confirmed using luciferase assay. Overexpression of p300 rescued the miR-494-3p mimic-induced phenotype in MyoD-hiPSCs. Moreover, miR-494-3p mimic reduced the levels of p300, MYOD, and MYH2 in skeletal muscles in mice. Thus, miR-494-3p might modulate MYH2 expression and fast oxidative myotube formation by directly regulating p300 levels during skeletal myogenesis in MyoD-hiPSCs and murine skeletal muscle tissues.
Collapse
Affiliation(s)
- Hirotaka Iwasaki
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Yoshinori Ichihara
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Katsutaro Morino
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan.
| | - Mengistu Lemecha
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
- Department of Molecular and Cellular Biology, City of Hope, Los Angeles, USA
| | - Lucia Sugawara
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
| | - Tatsuya Sawano
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Junichiro Miake
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Hiroshi Maegawa
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
| | - Takeshi Imamura
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
16
|
Gottmann P, Ouni M, Zellner L, Jähnert M, Rittig K, Walther D, Schürmann A. Polymorphisms in miRNA binding sites involved in metabolic diseases in mice and humans. Sci Rep 2020; 10:7202. [PMID: 32350386 PMCID: PMC7190857 DOI: 10.1038/s41598-020-64326-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes and obesity are well-studied metabolic diseases, which are based on genetic and epigenetic alterations in combination with an obesogenic lifestyle. The aim of this study was to test whether SNPs in miRNA-mRNA binding sites that potentially disrupt binding, elevate the expression of miRNA targets, which participate in the development of metabolic diseases. A computational approach was developed that integrates transcriptomics, linkage analysis, miRNA-target prediction data, and sequence information of a mouse model of obesity and diabetes. A statistical analysis demonstrated a significant enrichment of 566 genes for a location in obesity- and diabetes-related QTL. They are expressed at higher levels in metabolically relevant tissues presumably due to altered miRNA-mRNA binding sites. Of these, 51 genes harbor conserved and impaired miRNA-mRNA-interactions in human. Among these, 38 genes have been associated to metabolic diseases according to the phenotypes of corresponding knockout mice or other results described in the literature. The remaining 13 genes (e.g. Jrk, Megf9, Slfn8 and Tmem132e) could be interesting candidates and will be investigated in the future.
Collapse
Affiliation(s)
- Pascal Gottmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München, Neuherberg, Germany
| | - Meriem Ouni
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München, Neuherberg, Germany
| | - Lisa Zellner
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München, Neuherberg, Germany
| | - Markus Jähnert
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München, Neuherberg, Germany
| | - Kilian Rittig
- Clinic for Angiology and Diabetology, 15236, Frankfurt (Oder), Germany.,University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Annette Schürmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany. .,German Center for Diabetes Research (DZD), 85764, München, Neuherberg, Germany. .,University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany. .,Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
17
|
Shan TD, Lv SY, Tian ZB, Liu XS, Liu FG, Sun XG. Knockdown of lncRNA H19 inhibits abnormal differentiation of small intestinal epithelial cells in diabetic mice. J Cell Physiol 2018; 234:837-848. [PMID: 30078183 DOI: 10.1002/jcp.26902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) comprises a group of metabolic diseases characterized by insulin deficiency or resistance and hyperglycemia. We previously reported the presence of abnormal differentiation of small intestinal epithelial cells (IECs) in diabetic mice, but the exact mechanism of this phenomenon has not been thoroughly elucidated to date. In this study, we found that H19 was markedly upregulated in IECs of DM mice. H19 knockdown significantly inhibited abnormal differentiation of IECs in DM mice. Bioinformatics analysis identified miR-141-3p as a candidate for H19. Based on luciferase reporter assays, we found that miR-141-3p directly targeted H19. Luciferase reporter assays also showed that miR-141-3p could directly target β-catenin. Furthermore, H19 might act as an endogenous "sponge" by competing for miR-141-3p binding to regulate miRNA targets in vitro and in vivo. In summary, our findings provide the first evidence supporting the role of H19 in IECs of DM mice, and miR-141-3p targets not only protein-coding genes but also the lncRNA H19.
Collapse
Affiliation(s)
- Ti-Dong Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shao-Yan Lv
- Department of Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zi-Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xi-Shuang Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fu-Guo Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xu-Guo Sun
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Lin H, Huang ZP, Liu J, Qiu Y, Tao YP, Wang MC, Yao H, Hou KZ, Gu FM, Xu XF. MiR-494-3p promotes PI3K/AKT pathway hyperactivation and human hepatocellular carcinoma progression by targeting PTEN. Sci Rep 2018; 8:10461. [PMID: 29992971 PMCID: PMC6041272 DOI: 10.1038/s41598-018-28519-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/21/2018] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown that miR-494-3p is oncogene and has a central role in many solid tumors; however, the role of miR-494-3p in the progression and prognosis of hepatocellular carcinoma (HCC) remains unknown. In this study, it was found that miR-494-3p was up-regulated in HCC tissues. The high level of miR-494-3p in HCC tumors was correlated with aggressive clinicopathological characteristics and predicted poor prognosis in HCC patients. Functional study demonstrated that miR-494-3p significantly promoted HCC cell metastasis in vitro and vivo. Since phosphoinositide 3-kinase/protein kinase-B (PI3K/AKT) signaling is a basic oncogenic driver in HCC, a potential role of miR-494-3p was explored as well as its target genes in PI3K/AKT activation. Of all the predicted target genes of miR-494-3p, the tumor-suppressor phosphatase and tensin homolog (PTEN) were identified. In conclusion, the data we collected could define an original mechanism of PI3K/AKT hyperactivation and sketch the regulatory role of miR-494-3p in suppressing the expression of PTEN. Therefore, targeting miR-494-3p could provide an effective therapeutic method for the treatment of the disease.
Collapse
Affiliation(s)
- Hui Lin
- The First Department of General Surgeny, Shidong Hospital, Yangpu District, Shanghai, Anhui Medical University, 999 Shiguang Road, Shanghai, 200438, China
| | - Zhi-Ping Huang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Jiao Liu
- Department of Hepatobiliary Surgery, Shanghai Public Health Clinical Center Affiliated to Fudan University, 921 Tongxin Road, Hongkou, Shanghai, 200080, China
| | - Yun Qiu
- Department of Radiotherapy, Shidong Hospital, Yangpu District, Shanghai, Anhui Medical University, 999 Shiguang Road, Shanghai, 200438, China
| | - Yuan-Ping Tao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Meng-Chao Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Hui Yao
- Department of Radiotherapy, Shidong Hospital, Yangpu District, Shanghai, Anhui Medical University, 999 Shiguang Road, Shanghai, 200438, China
| | - Ke-Zhu Hou
- The First Department of General Surgeny, Shidong Hospital, Yangpu District, Shanghai, Anhui Medical University, 999 Shiguang Road, Shanghai, 200438, China.
| | - Fang-Ming Gu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Xuan-Fu Xu
- Department of Gastroenterology, Shidong Hospital, Yangpu District, Shanghai, Anhui Medical University, 999 Shiguang Road, Shanghai, 200438, China.
| |
Collapse
|
19
|
Wang J, Yang W, Chen Z, Chen J, Meng Y, Feng B, Sun L, Dou L, Li J, Cui Q, Yang J. Long Noncoding RNA lncSHGL Recruits hnRNPA1 to Suppress Hepatic Gluconeogenesis and Lipogenesis. Diabetes 2018; 67:581-593. [PMID: 29382663 DOI: 10.2337/db17-0799] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022]
Abstract
Mammalian genomes encode a huge number of long noncoding RNAs (lncRNAs) with unknown functions. This study determined the role and mechanism of a new lncRNA, lncRNA suppressor of hepatic gluconeogenesis and lipogenesis (lncSHGL), in regulating hepatic glucose/lipid metabolism. In the livers of obese mice and patients with nonalcoholic fatty liver disease, the expression levels of mouse lncSHGL and its human homologous lncRNA B4GALT1-AS1 were reduced. Hepatic lncSHGL restoration improved hyperglycemia, insulin resistance, and steatosis in obese diabetic mice, whereas hepatic lncSHGL inhibition promoted fasting hyperglycemia and lipid deposition in normal mice. lncSHGL overexpression increased Akt phosphorylation and repressed gluconeogenic and lipogenic gene expression in obese mouse livers, whereas lncSHGL inhibition exerted the opposite effects in normal mouse livers. Mechanistically, lncSHGL recruited heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) to enhance the translation efficiency of CALM mRNAs to increase calmodulin (CaM) protein level without affecting their transcription, leading to the activation of the phosphatidyl inositol 3-kinase (PI3K)/Akt pathway and repression of the mTOR/SREBP-1C pathway independent of insulin and calcium in hepatocytes. Hepatic hnRNPA1 overexpression also activated the CaM/Akt pathway and repressed the mTOR/SREBP-1C pathway to ameliorate hyperglycemia and steatosis in obese mice. In conclusion, lncSHGL is a novel insulin-independent suppressor of hepatic gluconeogenesis and lipogenesis. Activating the lncSHGL/hnRNPA1 axis represents a potential strategy for the treatment of type 2 diabetes and steatosis.
Collapse
Affiliation(s)
- Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Ji Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Biaoqi Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Libo Sun
- Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Lin Dou
- Key Laboratory of Geriatrics, Beijing Institute of Geriatrics & Beijing Hospital, Ministry of Health, Beijing, China
| | - Jian Li
- Key Laboratory of Geriatrics, Beijing Institute of Geriatrics & Beijing Hospital, Ministry of Health, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
20
|
Rotimi CN, Bentley AR, Doumatey AP, Chen G, Shriner D, Adeyemo A. The genomic landscape of African populations in health and disease. Hum Mol Genet 2017; 26:R225-R236. [PMID: 28977439 PMCID: PMC6075021 DOI: 10.1093/hmg/ddx253] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022] Open
Abstract
A deeper appreciation of the complex architecture of African genomes is critical to the global effort to understand human history, biology and differential distribution of disease by geography and ancestry. Here, we report on how the growing engagement of African populations in genome science is providing new insights into the forces that shaped human genomes before and after the Out-of-Africa migrations. As a result of this human evolutionary history, African ancestry populations have the greatest genomic diversity in the world, and this diversity has important ramifications for genomic research. In the case of pharmacogenomics, for instance, variants of consequence are not limited to those identified in other populations, and diversity within African ancestry populations precludes summarizing risk across different African ethnic groups. Exposure of Africans to fatal pathogens, such as Plasmodium falciparum, Lassa Virus and Trypanosoma brucei rhodesiense, has resulted in elevated frequencies of alleles conferring survival advantages for infectious diseases, but that are maladaptive in modern-day environments. Illustrating with cardiometabolic traits, we show that while genomic research in African ancestry populations is still in early stages, there are already many examples of novel and African ancestry-specific disease loci that have been discovered. Furthermore, the shorter haplotypes in African genomes have facilitated fine-mapping of loci discovered in other human ancestry populations. Given the insights already gained from the interrogation of African genomes, it is imperative to continue and increase our efforts to describe genomic risk in and across African ancestry populations.
Collapse
Affiliation(s)
- Charles N. Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Amy R. Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Ayo P. Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Abstract
The study of host-microbiota interactions in humans is largely limited to identifying associations between microbial communities and host phenotypes. While these studies have generated important insights on the links between the microbiota and human disease, the assessment of cause-and-effect relationships has been challenging. Although this relationship can be studied in germfree mice, this system is costly, and it is difficult to accurately account for the effects of host genotypic variation and environmental effects seen in humans. Here, we have developed a novel approach to directly investigate the transcriptional changes induced by live microbial communities on human colonic epithelial cells and how these changes are modulated by host genotype. This method is easily scalable to large numbers of host genetic backgrounds and diverse microbiota and can be utilized to elucidate the mechanisms of host-microbiota interactions. Future extensions may also include colonic organoid cultures. Many studies have demonstrated the importance of the gut microbiota in healthy and disease states. However, establishing the causality of host-microbiota interactions in humans is still challenging. Here, we describe a novel experimental system to define the transcriptional response induced by the microbiota for human cells and to shed light on the molecular mechanisms underlying host-gut microbiota interactions. In primary human colonic epithelial cells, we identified over 6,000 genes whose expression changed at various time points following coculturing with the gut microbiota of a healthy individual. Among the differentially expressed genes we found a 1.8-fold enrichment of genes associated with diseases that have been previously linked to the microbiome, such as obesity and colorectal cancer. In addition, our experimental system allowed us to identify 87 host single nucleotide polymorphisms (SNPs) that show allele-specific expression in 69 genes. Furthermore, for 12 SNPs in 12 different genes, allele-specific expression is conditional on the exposure to the microbiota. Of these 12 genes, 8 have been associated with diseases linked to the gut microbiota, specifically colorectal cancer, obesity, and type 2 diabetes. Our study demonstrates a scalable approach to study host-gut microbiota interactions and can be used to identify putative mechanisms for the interplay between host genetics and the microbiota in health and disease. IMPORTANCE The study of host-microbiota interactions in humans is largely limited to identifying associations between microbial communities and host phenotypes. While these studies have generated important insights on the links between the microbiota and human disease, the assessment of cause-and-effect relationships has been challenging. Although this relationship can be studied in germfree mice, this system is costly, and it is difficult to accurately account for the effects of host genotypic variation and environmental effects seen in humans. Here, we have developed a novel approach to directly investigate the transcriptional changes induced by live microbial communities on human colonic epithelial cells and how these changes are modulated by host genotype. This method is easily scalable to large numbers of host genetic backgrounds and diverse microbiota and can be utilized to elucidate the mechanisms of host-microbiota interactions. Future extensions may also include colonic organoid cultures.
Collapse
|