1
|
Gupta S, Akhoon BA, Sharma D, Singh D, Kaul S, Dhar MK. Structural and functional characterization of genes and enzymes involved in withanolide biosynthesis in Physalis alkekengi L. Steroids 2025; 214:109557. [PMID: 39722263 DOI: 10.1016/j.steroids.2024.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/05/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Physalis alkekengi L. is recognized as a significant source of various secondary metabolites, particularly C28 steroidal lactones known as withanolides and physalins, renowned for their therapeutic properties with a rich history in traditional medicine. In this study, we characterized the sequences of key downstream genes (PaFPPS, PaSQS, PaSQE, PaCAS, PaHYD1, and PaDWF5-1) involved in the biosynthesis of withanolides, marking the first characterization of these genes in P. alkekengi. Our findings revealed highly conserved amino acid sequences in P. alkekengi, with maximum similarity observed with Withania somnifera. Notably, essential domains crucial for enzyme function were preserved in P. alkekengi, indicating conserved enzyme activity. Comparative analysis of secondary structures, 3D topologies, and evolutionary studies supported ancestral homology. Investigations into the differential gene expression of these genes across seven tissues (young leaves, stems, roots, flowers, mature green fruit, breaker fruit, and red ripe fruit) highlighted higher expression levels in P. alkekengi leaves. These gene expression patterns were corroborated by phytochemical analyses using chromatographic techniques. High-Performance Liquid Chromatography (HPLC) confirmed the production of two key withanolides, withanolide A and withanone, in P. alkekengi, with maximum production observed in leaves and flowers. These findings suggest that P. alkekengi holds promise as an alternative to W. somnifera for large-scale industrial production of withanolides, particularly withanolide A. Using P. alkekengi eliminates the need to sacrifice the plant, which is typically required in traditional extraction methods from the roots of W. somnifera.
Collapse
Affiliation(s)
- Swati Gupta
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Bashir Akhlaq Akhoon
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Deepak Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Deepika Singh
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India; Quality, Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Manoj Kumar Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India.
| |
Collapse
|
2
|
Yasuda A, Murase W, Kubota A, Uramaru N, Okuda K, Hakota R, Ikeda A, Kojima H. Effects of di-(2-ethylhexyl) phthalate and its metabolites on transcriptional activity via human nuclear receptors and gene expression in HepaRG cells. Toxicol In Vitro 2024; 101:105943. [PMID: 39341470 DOI: 10.1016/j.tiv.2024.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in polyvinyl chloride products. DEHP exposure in humans is of great concern due to its endocrine-disrupting properties. In this study, we characterized the agonistic activities of DEHP and its five metabolites, mono-(2-ethylhexyl) phthalate (MEHP), 5OH-MEHP, 5oxo-MEHP, 5cx-MEPP and 2cx-MMHP against human nuclear receptors, peroxisome proliferator-activated receptor α (PPARα), pregnane X receptor (PXR), and constitutive androstane receptor (CAR) using transactivation assays. In the PPARα assay, the order of the agonistic activity was MEHP >> 5cx-MEPP >5OH-MEHP, 5oxo-MEHP >2cx-MMHP > DEHP, with DEHP significantly inhibiting MEHP-induced PPARα agonistic activity. This finding was compared to the results from in silico docking simulation. In the PXR assay, DEHP showed PXR agonistic activity more potent than that of MEHP, whereas the other metabolites showed little activity. In the CAR assay, none of the tested compounds showed agonistic activity. Moreover, the expression levels of PPARα-, PXR-, and CAR-target genes in HepaRG cells exposed to DEHP or MEHP were investigated using qRT-PCR analysis. As a result, exposure to these compounds significantly upregulated PXR/CAR target genes (CYP3A4 and CYP2B6), but not PPARα target genes (CYP4A11, etc.) in HepaRG cells. Taken together, these results suggest that direct PXR and/or indirect CAR activation by several DEHP metabolites may be involved in the endocrine disruption by altering hormone metabolism.
Collapse
Affiliation(s)
- Ayaka Yasuda
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Naoto Uramaru
- School of Health and Social Services, Center for University-wide Education, Saitama Prefectural University, 820 San-Nomiya, Koshigaya, Saitama 343-8540, Japan; Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Katsuhiro Okuda
- Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Ryo Hakota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuko Ikeda
- Hokkaido University Faculty of Health Sciences, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
3
|
Ramezani E, Ghahramani M, Ghaedi H. The Effect of Eight Weeks of High-Intensity Interval Training on Follistatin Gene Expression in the Fast and Slow Twitch Muscles of Rats with Myocardial Infarction. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:716-723. [PMID: 39678528 PMCID: PMC11645421 DOI: 10.30476/ijms.2024.99387.3141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/23/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2024]
Abstract
Background Myocardial infarction causes mitochondrial atrophy and loss of function by reducing mitochondrial volume. Therefore, researchers are interested in finding a way to reduce the injuries and treat them. The study aims to evaluate the effect of 8 weeks of high-intensity interval training on follistatin (FST) gene expression in the fast and slow twitch muscles of rats with myocardial infarction. Methods The study was conducted in 2020 at the Cardiac Research Center, Shahid Rajaei University of Medical Sciences (Tehran, Iran). For this purpose, 12 male Wistar rats with myocardial infarction were assigned to the experimental group high-intensity interval training (3 days a week for 30 min, each interval consisting of 4 min of running with 85-90% VO2max intensity and 2 min of active recovery with intensity of 50-60% VO2max for 8 weeks) and a control group. Then, the expression of follistatin in fast and slow twitch muscle contraction genes was investigated as triggers and inhibitors of muscle atrophy. Statistical data were analyzed with SPSS18 (α≥0.05). To determine the normality of the data, the Kolmogorov-Smirnov test was used, and in the case of normality of the data distribution, the independent samples t test was used. Results Independent t test results showed that FST gene expression in the slow twitch (ST) muscle contraction group was significantly decreased compared with the control group (P<0.001). Moreover, the expression of the FST gene in fast twitch muscles was significantly increased in the severe exercise group compared with the control group (P<0.001). Conclusion Overall, 8 weeks of intense intermittent exercise decreased FST gene expression in slow and fast twitch muscles in rats with myocardial infarction.
Collapse
Affiliation(s)
- Edris Ramezani
- Department of Exercise Physiology, Lamerd Branch, Islamic Azad University, Lamerd, Iran
| | - Mehran Ghahramani
- Department of Exercise Physiology, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran
| | - Hadi Ghaedi
- Department of Exercise Physiology, Lamerd Branch, Islamic Azad University, Lamerd, Iran
| |
Collapse
|
4
|
Limón-Morales O, Morales-Quintero K, Arteaga-Silva M, Molina-Jiménez T, Cerbón M, Bonilla-Jaime H. Alterations of learning and memory are accompanied by alterations in the expression of 5-HT receptors, glucocorticoid receptor and brain-derived neurotrophic factor in different brain regions of an animal model of depression generated by neonatally male treatment with clomipramine in male rats. Behav Brain Res 2023; 455:114664. [PMID: 37714467 DOI: 10.1016/j.bbr.2023.114664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Depressive illness has been associated with impaired cognitive processes accompanied by reduced neurotrophin levels, especially brain-derived neurotrophic factor (BDNF), and dysfunctions in the hypothalamic-pituitary-adrenal (HPA) axis. In addition, depression is characterized by a decreased functioning of the serotonergic system due to changes in the activity or expression of its receptors including, most significantly, 5-HT1A, 5-HT2A, and 5-HT3 in brain regions that regulate mood, emotions, and memory, such as the prefrontal cortex, hippocampus, and amygdala. In this regard, rats treated with clomipramine (CMI) in the neonatal stage show depression-like behaviors that persist into adulthood; hence, this constitutes an adequate model of depression for exploring various molecular aspects associated with the etiology of this disorder. This, study, then, was designed to analyze the long-term effects of early postnatal exposure to CMI on the expression of 5-HT1A, 5-HT2A, and 5-HT3 receptors, as well as BDNF and GR in the following brain regions: PFC, amygdala, hippocampus, and hypothalamus, which could be related to alterations in memory and learning, as evaluated using the novel object recognition (NOR) and Morris water maze (MWM). Expression of the 5-HT1A, 5-HT2A, and 5-HT3 receptors, BDNF, and the glucocorticoid receptor (GR) was assessed by RT-qPCR in the four aforementioned brain regions, all of which play important roles in the control of memory and mood. Findings show that neonatal treatment with CMI causes alterations in memory and learning, as indicated by alterations in the results of the MWM and NOR tests. Expression of the 5-HT1A receptor increased in the hippocampus, amygdala, and hypothalamus, but decreased in the PFC, while the 5-HT2A and BDNF receptors decreased their expression in the PFC, amygdala, and hippocampus. There was no change in the expression of the 5-HT3 receptor. In addition, expression of GR in the hippocampus and PFC was low, but increased in the hypothalamus. Taken together, these data show that neonatal CMI treatment produces permanent molecular changes in brain regions related to learning and memory that could contribute to explaining the behavioral alterations observed in this model.
Collapse
Affiliation(s)
- Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico; Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Kenia Morales-Quintero
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico
| | - Tania Molina-Jiménez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria Xalapa, Veracruz, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico
| |
Collapse
|
5
|
Garcia V, Blaquiere M, Janvier A, Cresto N, Lana C, Genin A, Hirbec H, Audinat E, Faucherre A, Barbier EL, Hamelin S, Kahane P, Jopling C, Marchi N. PIEZO1 expression at the glio-vascular unit adjusts to neuroinflammation in seizure conditions. Neurobiol Dis 2023; 187:106297. [PMID: 37717661 DOI: 10.1016/j.nbd.2023.106297] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Mechanosensors are emerging players responding to hemodynamic and physical inputs. Their significance in the central nervous system remains relatively uncharted. Using human-derived brain specimens or cells and a pre-clinical model of mesio-temporal lobe epilepsy (MTLE), we examined how the mRNA levels of the mechanosensitive channel PIEZO1 adjust to disease-associated pro-inflammatory trajectories. In brain tissue micro-punches obtained from 18 drug-resistant MTLE patients, PIEZO1 expression positively correlated with pro-inflammatory biomarkers TNFα, IL-1β, and NF-kB in the epileptogenic hippocampus compared to the adjacent amygdala and temporal cortex tissues. In an experimental MTLE model, hippocampal Piezo1 and cytokine expression levels were increased post-status epilepticus (SE) and during epileptogenesis. Piezo1 expression positively correlated with Tnfα, Il1β, and Nf-kb in the hippocampal foci. Next, by combining RNAscope with immunohistochemistry, we identified Piezo1 in glio-vascular cells. Post-SE and during epileptogenesis, ameboid IBA1 microglia, hypertrophic GFAP astrocytes, and damaged NG2DsRed pericytes exhibited time-dependent patterns of increased Piezo1 expression. Digital droplet PCR analysis confirmed the Piezo1 trajectory in isolated hippocampal microvessels in the ipsi and contralateral hippocampi. The combined examinations performed in this model showed Piezo1 expression returning towards basal levels after the epileptogenesis-associated peak inflammation. From these associations, we next asked whether pro-inflammatory players directly regulate PIEZO1 expression. We used human-derived brain cells and confirmed that endothelium, astrocytes, and pericytes expressed PIEZO1. Exposure to human recombinant TNFα or IL1β upregulated NF-kB in all cells. Furthermore, TNFα induced PIEZO1 expression in a dose and time-dependent manner, primarily in astrocytes. This exploratory study describes a spatiotemporal dialogue between PIEZO1 brain cell-mechanobiology and neuro-inflammatory cell remodeling. The precise functional mechanisms regulating this interplay in disease conditions warrant further investigation.
Collapse
Affiliation(s)
- Valentin Garcia
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Marine Blaquiere
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Alicia Janvier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Carla Lana
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Athenais Genin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Helene Hirbec
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Adele Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institute Neuroscience, U1216 Grenoble, France
| | - Sophie Hamelin
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institute Neuroscience, U1216 Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble Institute Neuroscience, U1216 Grenoble, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
6
|
Fraczek W, Kregielewski K, Wierzbicki M, Krzeminski P, Zawadzka K, Szczepaniak J, Grodzik M. A Comprehensive Assessment of the Biocompatibility and Safety of Diamond Nanoparticles on Reconstructed Human Epidermis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5600. [PMID: 37629892 PMCID: PMC10456456 DOI: 10.3390/ma16165600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Diamond nanoparticles, also known as nanodiamonds (NDs), exhibit remarkable, awe-inspiring properties that make them suitable for various applications in the field of skin care products. However, a comprehensive assessment of their compatibility with human skin, according to the irritation criteria established by the Organization for Economic Cooperation and Development (OECD), has not yet been conducted. The purpose of this study was to evaluate if diamond nanoparticles at a concentration of 25 μg/mL, incubated with reconstituted human epidermis (EpiDermTM) for 18 h, conform to the OECD TG439 standard used to classify chemical irritants. For this purpose, a cell viability test (MTT assay), histological assessment, and analysis of pro-inflammatory cytokine expression were performed. The results indicated that NDs had no toxic effect at the tested concentration. They also did not adversely affect tissue structure and did not lead to a simultaneous increase in protein and mRNA expression of the analyzed cytokines. These results confirm the safety and biocompatibility of NDs for application in skincare products, thereby creating a wide range of possibilities to exert an impact on the advancement of contemporary cosmetology in the future.
Collapse
Affiliation(s)
- Wiktoria Fraczek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Kacper Kregielewski
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland;
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Patryk Krzeminski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Katarzyna Zawadzka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Jaroslaw Szczepaniak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland;
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| |
Collapse
|
7
|
Murase W, Kubota A, Ikeda-Araki A, Terasaki M, Nakagawa K, Shizu R, Yoshinari K, Kojima H. Effects of perfluorooctanoic acid (PFOA) on gene expression profiles via nuclear receptors in HepaRG cells: Comparative study with in vitro transactivation assays. Toxicology 2023:153577. [PMID: 37302725 DOI: 10.1016/j.tox.2023.153577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic perfluorinated eight-carbon organic chemical, has been reported to induce hepatotoxicity, including increased liver weight, hepatocellular hypertrophy, necrosis, and increased peroxisome proliferation in rodents. Epidemiological studies have demonstrated associations between serum PFOA levels and various adverse effects. In this study, we investigated the gene expression profiles of human HepaRG cells exposed to 10 and 100 μM PFOA for 24h. Treatment with 10 and 100 μM PFOA significantly modulated the expression of 190 genes and 996 genes, respectively. In particular, genes upregulated or downregulated by 100µM PFOA included peroxisome proliferator-activated receptor (PPAR) signaling genes related to lipid metabolism, adipocyte differentiation, and gluconeogenesis. In addition, we identified the "Nuclear receptors-meta pathways" following the activation of other nuclear receptors: constitutive androstane receptor (CAR), pregnane X receptor (PXR) and farnesoid X receptor (FXR), and the transcription factor, nuclear factor E2-related factor 2 (Nrf2). The expression levels of some target genes (CYP4A11, CYP2B6, CYP3A4, CYP7A1, and GPX2) of these nuclear receptors and Nrf2 were confirmed using quantitative reverse transcription polymerase chain reaction. Next, we performed transactivation assays using COS-7 or HEK293 cells to investigate whether these signaling-pathways were activated by the direct effects of PFOA on human PPARα, CAR, PXR, FXR and Nrf2. PFOA activated PPARα in a concentration-dependent manner, but did not activate CAR, PXR, FXR, or Nrf2. Taken together, these results suggest that PFOA affects the hepatic transcriptomic responses of HepaRG cells through direct activation of PPARα and indirect activation of CAR, PXR FXR and Nrf2. Our finding indicates that PPARα activation found in the "Nuclear receptors-meta pathways" functions as a molecular initiating event for PFOA, and indirect activation of alternative nuclear receptors and Nrf2 also provide important molecular mechanisms in PFOA-induced human hepatotoxicity.
Collapse
Affiliation(s)
- Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuko Ikeda-Araki
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Koji Nakagawa
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Ryota Shizu
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kouichi Yoshinari
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
8
|
Nor Nazli NA, Muthuraju S, Ahmad F, Mohamed Yusoff AA, Jaafar H, Shamsuddin S, Abdullah JM. Characterisation of Primary Human Hippocampal Astrocyte Cell Culture Following Exposure to Hypoxia. Malays J Med Sci 2023; 30:92-106. [PMID: 36875187 PMCID: PMC9984107 DOI: 10.21315/mjms2023.30.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/01/2022] [Indexed: 03/05/2023] Open
Abstract
Background The present study aimed to understand the characterisation of human hippocampal astrocyte following hypoxia exposure. Based on the preliminary screening, 15 min was chosen as the time point and the cells were exposed to different oxygen percentages. Methods The Trypan blue viability assay used to examine cell death. Immunofluorescence assay, glial fibrillary acidic protein (GFAP) was used to portray the morphology of astrocytes. The hypoxia-inducible factor 1 (HIF-1) staining was performed to confirm hypoxia induced cell death and there was a dramatic expression of HIF-1α displayed in exposed astrocyte cells compared to the control. In molecular level, genes were chosen, such as glyceraldehyde 3-phosphate dehydrogenase (GAPDH), GFAP, HIF-1α and B-cell lymphoma 2 (Bcl-2) and ran the reverse transcription-polymerase chain reaction (RT-PCR). Results Microscope revealed a filamentous and clear nucleus appearance in a control whereas the rupture nuclei with no rigid structure of the cell were found in the 3% oxygen. The control and hypoxia cells were also stained with the annexin V-fluorescein isothiocyanate (annexin V-FITC). Fluorescence microscope reveals astrocyte cells after hypoxia showed higher expression of nuclei but not in control. Merging PI and FITC showed the differences of nuclei expression between the control and hypoxia. In the molecular analysis, there were significant changes of GFAP, HIF-1α and Bcl-2 in hypoxia exposed cells when compared to the control group. Conclusion Cells that were exposed to hypoxia (3% oxygen for 15 min) clearly showed damage. General view of human hippocampal astrocyte genomic response to hypoxia was obtained.
Collapse
Affiliation(s)
- Nurul Atikah Nor Nazli
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Sangu Muthuraju
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Shaharum Shamsuddin
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
9
|
Tu L, Wang Z, Yang L, Sun X, Yao Y, Zhang P, Zhang X, Wang L, Yu Y, Yang M. Incorporation of a TGF-β2-inhibiting oligodeoxynucleotide molecular adjuvant into a tumor cell lysate vaccine to enhance antiglioma immunity in mice. Front Immunol 2023; 14:1013342. [PMID: 36776837 PMCID: PMC9914600 DOI: 10.3389/fimmu.2023.1013342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Transforming growth factor β2 (TGF-β2), also known as glioma-derived T-cell suppressor factor, is associated with the impairment of tumor immune surveillance. Therefore, blocking TGF-β2 signaling probably be a feasible strategy to develop a novel type of adjuvant for glioma vaccines to enhance antitumor immunity. Methods A TGF-β2 inhibitory oligodeoxynucleotide, TIO3, was designed with sequences complementary to the 3' untranslated region of TGF-β2 mRNA. The expression of TGF-β2 and MHC-I was detected by qPCR, western and flow cytometry in vitro. All the percentage and activation of immune cells were detected by flow cytometry. Subsequently, TIO3 was formulated with Glioma cell lysate (TCL) and investigated for its antitumor effects in GL261 murine glioma prophylactic and therapeutic models. Results TIO3 could efficiently downregulate the expression of TGF-β2 while increase the MHC-I's expression in GL261 and U251 glioma cells in vitro. Meanwhile, TIO3 was detected in mice CD4+ T, CD8+ T, B and Ly6G+ cells from lymph nodes after 24 hours incubation. Moreover, TCL+TIO3 vaccination significantly prolonged the survival of primary glioma-bearing mice and protected these mice from glioma re-challenge in vivo. Mechanistically, TCL+TIO3 formulation strongly evoke the antitumor immune responses. 1) TCL+TIO3 significantly increased the composition of CD4+ and CD8+ T cells from draining lymph nodes while promoted their IFN-γ production and reduced the expression of TGF-β2 and PD1. 2) TCL+TIO3 activated the NK cells with the elevation of CD69 or NKG2D expression and PD1 reduction. 3) TCL+TIO3 increased the glioma-specific lysis CTLs from spleen. 4) TCL+TIO3 downregulated PD-L1 expression in glioma tissues and in Ly6G+ cells among glioma-infiltrating immune cells. Conclusion TIO3 is a promising adjuvant for enhancing TCL-based vaccines to produce a more vigorous and long-lasting antitumor response by interfering with TGF-β2 expression.
Collapse
Affiliation(s)
- Liqun Tu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Zhe Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Lei Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xiaomeng Sun
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yunpeng Yao
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Peng Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaotian Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,*Correspondence: Yongli Yu, ; Ming Yang,
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China,*Correspondence: Yongli Yu, ; Ming Yang,
| |
Collapse
|
10
|
Szczepaniak J, Sosnowska M, Wierzbicki M, Witkowska-Pilaszewicz O, Strojny-Cieslak B, Jagiello J, Fraczek W, Kusmierz M, Grodzik M. Reduced Graphene Oxide Modulates the FAK-Dependent Signaling Pathway in Glioblastoma Multiforme Cells In Vitro. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175843. [PMID: 36079225 PMCID: PMC9457042 DOI: 10.3390/ma15175843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 08/19/2022] [Indexed: 05/27/2023]
Abstract
Aggressive invasiveness is a common feature of malignant gliomas, despite their high level of tumor heterogeneity and possible diverse cell origins. Therefore, it is important to explore new therapeutic methods. In this study, we evaluated and compared the effects of graphene (GN) and reduced graphene oxides (rGOs) on a highly invasive and neoplastic cell line, U87. The surface functional groups of the GN and rGO flakes were characterized by X-ray photoelectron spectroscopy. The antitumor activity of these flakes was obtained by using the neutral red assay and their anti-migratory activity was determined using the wound healing assay. Further, we investigated the mRNA and protein expression levels of important cell adhesion molecules involved in migration and invasiveness. The rGO flakes, particularly rGO/ATS and rGO/TUD, were found highly toxic. The migration potential of both U87 and Hs5 cells decreased, especially after rGO/TUD treatment. A post-treatment decrease in mobility and FAK expression was observed in U87 cells treated with rGO/ATS and rGO/TUD flakes. The rGO/TUD treatment also reduced β-catenin expression in U87 cells. Our results suggest that rGO flakes reduce the migration and invasiveness of U87 tumor cells and can, thus, be used as potential antitumor agents.
Collapse
Affiliation(s)
- Jaroslaw Szczepaniak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Olga Witkowska-Pilaszewicz
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Barbara Strojny-Cieslak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Joanna Jagiello
- Graphene and Composites Research Group, Łukasiewicz Research Network-Institute of Microelectronics and Photonics, 01-919 Warsaw, Poland
| | - Wiktoria Fraczek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Marcin Kusmierz
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| |
Collapse
|
11
|
Gu J, Dai J, Lu H, Zhao H. Comprehensive analysis of ubiquitously expressed genes in human, from a data-driven perspective. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00042-0. [PMID: 35569803 PMCID: PMC10373092 DOI: 10.1016/j.gpb.2021.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 07/18/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023]
Abstract
Comprehensive characterization of spatial and temporal gene expression patterns in humans is critical for uncovering the regulatory codes of the human genome and understanding the molecular mechanism of human disease. The ubiquitously expressed genes (UEGs) refer to those genes expressed across a majority, if not all, phenotypic and physiological conditions of an organism. It is known that many human genes are broadly expressed across tissues. However, most previous UEG studies have only focused on providing a list of UEGs without capturing their global expression patterns, thus limiting the potential use of UEG information. In this article, we proposed a novel data-driven framework to leverage the extensive collection of ∼40,000 human transcriptomes to derive a list of UEGs and their corresponding global expression patterns, which offers a valuable resource to further characterize human transcriptome. Our results suggest that about half (12,234; 49.01%) of the human genes are expressed in at least 80% of human transcriptomes, and the median size of the human transcriptome is 16,342 (65.44%). Through gene clustering, we identified a set of UEGs, named LoVarUEGs, that have stable expression across human transcriptomes and can be used as internal reference genes for expression measurement. To further demonstrate the usefulness of this resource, we evaluated the global expression patterns for 16 previously predicted disallowed genes in islets beta cells and found that seven of these genes showed relatively more varied expression patterns, suggesting that the repression of these genes may not be unique to islets beta cells.
Collapse
Affiliation(s)
- Jianlei Gu
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai 200040, China; Department of Biostatistics, Yale University, New Haven, CT, 06511, United States
| | - Jiawei Dai
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Lu
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai 200040, China.
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, 06511, United States.
| |
Collapse
|
12
|
Hernández-Ochoa B, Fernández-Rosario F, Castillo-Rodríguez RA, Marhx-Bracho A, Cárdenas-Rodríguez N, Martínez-Rosas V, Morales-Luna L, González-Valdez A, Calderón-Jaimes E, Pérez de la Cruz V, Rivera-Gutiérrez S, Meza-Toledo S, Wong-Baeza C, Baeza-Ramírez I, Gómez-Manzo S. Validation and Selection of New Reference Genes for RT-qPCR Analysis in Pediatric Glioma of Different Grades. Genes (Basel) 2021; 12:1335. [PMID: 34573317 PMCID: PMC8468898 DOI: 10.3390/genes12091335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Gliomas are heterogeneous, solid, and intracranial tumors that originate from glial cells. Malignant cells from the tumor undergo metabolic alterations to obtain the energy required for proliferation and the invasion of the cerebral parenchyma. The alterations in the expression of the genes related to the metabolic pathways can be detected in biopsies of gliomas of different CNS WHO grades. In this study, we evaluated the expression of 16 candidate reference genes in the HMC3 microglia cell line. Then, statistical algorithms such as BestKeeper, the comparative ΔCT method, geNorm, NormFinder, and RefFinder were applied to obtain the genes most suitable to be considered as references for measuring the levels of expression in glioma samples. The results show that PKM and TPI1 are two novel genes suitable for genic expression studies on gliomas. Finally, we analyzed the expression of genes involved in metabolic pathways in clinical samples of brain gliomas of different CNS WHO grades. RT-qPCR analysis showed that in CNS WHO grade 3 and 4 gliomas, the expression levels of HK1, PFKM, GAPDH, G6PD, PGD1, IDH1, FASN, ACACA, and ELOVL2 were higher than those of CNS WHO grade 1 and 2 glioma biopsies. Hence, our results suggest that reference genes from metabolic pathways have different expression profiles depending on the stratification of gliomas and constitute a potential model for studying the development of this type of tumor and the search for molecular targets to treat gliomas.
Collapse
Affiliation(s)
- Beatriz Hernández-Ochoa
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (B.H.-O.); (V.M.-R.)
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | - Fabiola Fernández-Rosario
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (F.F.-R.); (L.M.-L.)
| | - Rosa Angelica Castillo-Rodríguez
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Alfonso Marhx-Bracho
- Departamento de Neurocirugía, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Víctor Martínez-Rosas
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (B.H.-O.); (V.M.-R.)
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (F.F.-R.); (L.M.-L.)
| | - Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (F.F.-R.); (L.M.-L.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Ernesto Calderón-Jaimes
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, México City 14269, Mexico;
| | - Sandra Rivera-Gutiérrez
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico;
| | - Sergio Meza-Toledo
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Carlos Wong-Baeza
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (C.W.-B.); (I.B.-R.)
| | - Isabel Baeza-Ramírez
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (C.W.-B.); (I.B.-R.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (F.F.-R.); (L.M.-L.)
| |
Collapse
|
13
|
Ferreira WAS, Burbano RR, do Ó Pessoa C, Harada ML, do Nascimento Borges B, de Oliveira EHC. Pisosterol Induces G2/M Cell Cycle Arrest and Apoptosis via the ATM/ATR Signaling Pathway in Human Glioma Cells. Anticancer Agents Med Chem 2021; 20:734-750. [PMID: 32013837 DOI: 10.2174/1871520620666200203160117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/05/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. OBJECTIVE This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. METHODS The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). RESULTS Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. CONCLUSION It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.
Collapse
Affiliation(s)
- Wallax A S Ferreira
- Laboratorio de Cultura de Tecidos e Citogenetica, SAMAM, Instituto Evandro Chagas, Ananindeua, Para, Brazil
| | - Rommel R Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Belém, Pará, Brazil.,Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, Pará, Brazil
| | - Claudia do Ó Pessoa
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceara, Fortaleza, Ceara, Brazil
| | - Maria L Harada
- Laboratorio de Biologia Molecular Francisco Mauro Salzano, Instituto de Ciencias Biologicas, Universidade Federal do Para, Belem, Para, Brazil
| | - Bárbara do Nascimento Borges
- Laboratorio de Biologia Molecular Francisco Mauro Salzano, Instituto de Ciencias Biologicas, Universidade Federal do Para, Belem, Para, Brazil
| | - Edivaldo H Correa de Oliveira
- Laboratorio de Cultura de Tecidos e Citogenetica, SAMAM, Instituto Evandro Chagas, Ananindeua, Para, Brazil.,Instituto de Ciências Exatas e Naturais, Faculdade de Ciências Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
14
|
da Cruz LLP, de Souza PO, Dal Prá M, Falchetti M, de Abreu AM, Azambuja JH, Bertoni APS, Paz AHR, Araújo AB, Visioli F, Fazolo T, da Silva GG, Worm PV, Wink MR, Zanotto-Filho A, Braganhol E. TLR4 expression and functionality are downregulated in glioblastoma cells and in tumor-associated macrophages: A new mechanism of immune evasion? Biochim Biophys Acta Mol Basis Dis 2021; 1867:166155. [PMID: 33932524 DOI: 10.1016/j.bbadis.2021.166155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/30/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GB) is the most common and aggressive form of primary brain tumor, in which the presence of an inflammatory environment, composed mainly by tumor-associated macrophages (TAMs), is related to its progression and development of chemoresistance. Toll-Like Receptors (TLRs) are key components of the innate immune system and their expression in both tumor and immune-associated cells may impact the cell communication in the tumor microenvironment (TME), further modeling cancer growth and response to therapy. Here, we investigated the participation of TLR4-mediated signaling as a mechanism of induced-immune escape in GB. Initially, bioinformatics analysis of public datasets revealed that TLR4 expression is lower in GB tumors when compared to astrocytomas (AST), and in a subset of TAMs. Further, we confirmed that TLR4 expression is downregulated in chemoresistant GB, as well as in macrophages co-cultured with GB cells. Additionally, TLR4 function is impaired in those cells even following stimulation with LPS, an agonist of TLR4. Finally, experiments performed in a cohort of clinical primary and metastatic brain tumors indicated that the immunostaining of TLR4 and CD45 are inversely proportional, and confirmed the low TLR4 expression in GBs. Interestingly, the cytoplasmic/nuclear pattern of TLR4 staining in cancer tissues suggests additional roles of this receptor in carcinogenesis. Overall, our data suggest the downregulation of TLR4 expression and activity as a strategy for GB-associated immune escape. Additional studies are necessary to better understand TLR4 signaling in TME in order to improve the benefits of immunotherapy based on TLR signaling.
Collapse
Affiliation(s)
- L L P da Cruz
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - P O de Souza
- Programa de Pós-Graduação em Biociências, UFCSPA, Porto Alegre, RS, Brazil
| | - M Dal Prá
- Programa de Pós-Graduação em Biociências, UFCSPA, Porto Alegre, RS, Brazil
| | - M Falchetti
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - A M de Abreu
- Programa de Pós-Graduação em Biociências, UFCSPA, Porto Alegre, RS, Brazil
| | - J H Azambuja
- Programa de Pós-Graduação em Biociências, UFCSPA, Porto Alegre, RS, Brazil
| | - A P S Bertoni
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - A H R Paz
- Departamento de Morfologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - A B Araújo
- Centro de Processamento Celular, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - F Visioli
- Faculdade de Odontologia, UFRGS, Porto Alegre, RS, Brazil
| | - T Fazolo
- Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - G G da Silva
- Hospital São José, Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, RS, Brazil
| | - P V Worm
- Hospital São José, Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, RS, Brazil; Departamento de Cirurgia, UFCSPA, Porto Alegre, RS, Brazil
| | - M R Wink
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biociências, UFCSPA, Porto Alegre, RS, Brazil
| | - A Zanotto-Filho
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - E Braganhol
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biociências, UFCSPA, Porto Alegre, RS, Brazil; Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária do Instituto de Cardiologia (IC-FUC), Porto Alegre, RS, Brazil.
| |
Collapse
|
15
|
Reduced Graphene Oxides Modulate the Expression of Cell Receptors and Voltage-Dependent Ion Channel Genes of Glioblastoma Multiforme. Int J Mol Sci 2021; 22:ijms22020515. [PMID: 33419226 PMCID: PMC7825604 DOI: 10.3390/ijms22020515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
The development of nanotechnology based on graphene and its derivatives has aroused great scientific interest because of their unusual properties. Graphene (GN) and its derivatives, such as reduced graphene oxide (rGO), exhibit antitumor effects on glioblastoma multiforme (GBM) cells in vitro. The antitumor activity of rGO with different contents of oxygen-containing functional groups and GN was compared. Using FTIR (fourier transform infrared) analysis, the content of individual functional groups (GN/exfoliation (ExF), rGO/thermal (Term), rGO/ammonium thiosulphate (ATS), and rGO/ thiourea dioxide (TUD)) was determined. Cell membrane damage, as well as changes in the cell membrane potential, was analyzed. Additionally, the gene expression of voltage-dependent ion channels (clcn3, clcn6, cacna1b, cacna1d, nalcn, kcne4, kcnj10, and kcnb1) and extracellular receptors was determined. A reduction in the potential of the U87 glioma cell membrane was observed after treatment with rGO/ATS and rGO/TUD flakes. Moreover, it was also demonstrated that major changes in the expression of voltage-dependent ion channel genes were observed in clcn3, nalcn, and kcne4 after treatment with rGO/ATS and rGO/TUD flakes. Furthermore, the GN/ExF, rGO/ATS, and rGO/TUD flakes significantly reduced the expression of extracellular receptors (uPar, CD105) in U87 glioblastoma cells. In conclusion, the cytotoxic mechanism of rGO flakes may depend on the presence and types of oxygen-containing functional groups, which are more abundant in rGO compared to GN.
Collapse
|
16
|
Ryan M, Tan VTY, Thompson N, Guévremont D, Mockett BG, Tate WP, Abraham WC, Hughes SM, Williams J. Lentivirus-Mediated Expression of Human Secreted Amyloid Precursor Protein-Alpha Promotes Long-Term Induction of Neuroprotective Genes and Pathways in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2021; 79:1075-1090. [PMID: 33386801 DOI: 10.3233/jad-200757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Secreted amyloid precursor protein-alpha (sAPPα) can enhance memory and is neurotrophic and neuroprotective across a range of disease-associated insults, including amyloid-β toxicity. In a significant step toward validating sAPPα as a therapeutic for Alzheimer's disease (AD), we demonstrated that long-term overexpression of human sAPPα (for 8 months) in a mouse model of amyloidosis (APP/PS1) could prevent the behavioral and electrophysiological deficits that develop in these mice. OBJECTIVE To explore the underlying molecular mechanisms responsible for the significant physiological and behavioral improvements observed in sAPPα-treated APP/PS1 mice. METHODS We assessed the long-term effects on the hippocampal transcriptome following continuous lentiviral delivery of sAPPα or empty-vector to male APP/PS1 mice and wild-type controls using Affymetrix Mouse Transcriptome Assays. Data analysis was carried out within the Affymetrix Transcriptome Analysis Console and an integrated analysis of the resulting transcriptomic data was performed with Ingenuity Pathway analysis (IPA). RESULTS Mouse transcriptome assays revealed expected AD-associated gene expression changes in empty-vector APP/PS1 mice, providing validation of the assays used for the analysis. By contrast, there were specific sAPPα-associated gene expression profiles which included increases in key neuroprotective genes such as Decorin, betaine-GABA transporter and protocadherin beta-5, subsequently validated by qRT-PCR. An integrated biological pathways analysis highlighted regulation of GABA receptor signaling, cell survival and inflammatory responses. Furthermore, upstream gene regulatory analysis implicated sAPPα activation of Interleukin-4, which can counteract inflammatory changes in AD. CONCLUSION This study identified key molecular processes that likely underpin the long-term neuroprotective and therapeutic effects of increasing sAPPα levels in vivo.
Collapse
Affiliation(s)
- Margaret Ryan
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Valerie T Y Tan
- Department of Psychology, University of Otago, Dunedin, New Zealand.,Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Nasya Thompson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Diane Guévremont
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Bruce G Mockett
- Department of Psychology, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Warren P Tate
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Joanna Williams
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Unique Role of Caffeine Compared to Other Methylxanthines (Theobromine, Theophylline, Pentoxifylline, Propentofylline) in Regulation of AD Relevant Genes in Neuroblastoma SH-SY5Y Wild Type Cells. Int J Mol Sci 2020; 21:ijms21239015. [PMID: 33260941 PMCID: PMC7730563 DOI: 10.3390/ijms21239015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Methylxanthines are a group of substances derived from the purine base xanthine with a methyl group at the nitrogen on position 3 and different residues at the nitrogen on position 1 and 7. They are widely consumed in nutrition and used as pharmaceuticals. Here we investigate the transcriptional regulation of 83 genes linked to Alzheimer’s disease in the presence of five methylxanthines, including the most prominent naturally occurring methylxanthines—caffeine, theophylline and theobromine—and the synthetic methylxanthines pentoxifylline and propentofylline. Methylxanthine-regulated genes were found in pathways involved in processes including oxidative stress, lipid homeostasis, signal transduction, transcriptional regulation, as well as pathways involved in neuronal function. Interestingly, multivariate analysis revealed different or inverse effects on gene regulation for caffeine compared to the other methylxanthines, which was further substantiated by multiple comparison analysis, pointing out a distinct role for caffeine in gene regulation. Our results not only underline the beneficial effects of methylxanthines in the regulation of genes in neuroblastoma wild-type cells linked to neurodegenerative diseases in general, but also demonstrate that individual methylxanthines like caffeine mediate unique or inverse expression patterns. This suggests that the replacement of single methylxanthines by others could result in unexpected effects, which could not be anticipated by the comparison to other substances in this substance class.
Collapse
|
18
|
Asiabi P, Ambroise J, Giachini C, Coccia ME, Bearzatto B, Chiti MC, Dolmans MM, Amorim CA. Assessing and validating housekeeping genes in normal, cancerous, and polycystic human ovaries. J Assist Reprod Genet 2020; 37:2545-2553. [PMID: 32729067 DOI: 10.1007/s10815-020-01901-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Housekeeping genes (HKGs), reference or endogenous control genes, are vital to normalize mRNA levels between different samples. Since using inappropriate HKGs can lead to unreliable results, selecting the proper ones is critical for gene expression studies. To this end, normal human ovaries, as well as those from patients diagnosed with ovarian endometrioid adenocarcinoma (OEA), ovarian mucinous adenocarcinoma (OMA), ovarian serous papillary carcinoma (OSPC), and polycystic ovary syndrome (PCOS), were used to identify the most suitable housekeeping genes. METHODS RNA was isolated from 5 normal human ovaries (52-79 years of age), 9 cancerous ovaries (3 OEA, 3 OMA, 3 OSPC; 49-75 years of age), and 4 PCOS ovaries (18-35 years of age) in women undergoing hysterectomy. cDNA was synthesized using a whole transcriptome kit, and quantitative real-time PCR was performed using TaqMan array 96-well plates containing 32 human endogenous controls in triplicate. RESULTS Among 32 HKGs studied, RPS17, RPL37A, PPIA, 18srRNA, B2M, RPLP0, RPLP30, HPRT1, POP4, CDKN1B, and ELF1 were selected as the best reference genes. CONCLUSIONS This study confirms recent investigations demonstrating that conventional HKGs, such as GAPDH and beta-actin, are not suitable reference genes for specific pathological conditions, emphasizing the importance of determining the best HKGs on a case-by-case basis and according to tissue type. Our results have identified reliable HKGs for studies of normal human ovaries and those affected by OEA, OMA, OSPC, or PCOS, as well as combined studies of control subjects vs. each cancer or PCOS group.
Collapse
Affiliation(s)
- P Asiabi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte B1.52.02, 1200, Brussels, Belgium
| | - J Ambroise
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - C Giachini
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - M E Coccia
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - B Bearzatto
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - M C Chiti
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte B1.52.02, 1200, Brussels, Belgium
| | - M M Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte B1.52.02, 1200, Brussels, Belgium
- Gynecology Department, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | - C A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte B1.52.02, 1200, Brussels, Belgium.
| |
Collapse
|
19
|
Xin H, Wang C, Chi Y, Liu Z. MicroRNA-196b-5p promotes malignant progression of colorectal cancer by targeting ING5. Cancer Cell Int 2020; 20:119. [PMID: 32308564 PMCID: PMC7149860 DOI: 10.1186/s12935-020-01200-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Background miR-196b-5p expression is deregulated in many malignant tumors. Although miR-196b-5p has been implicated in the malignant transformation of colorectal cancer, its role in this specific type of cancer has not been fully explored. Thus, the present study was aimed to examine the cellular function of miR-196b-5p and its role in malignant biological behavior in colorectal cancer. Methods miR-196b-5p expression was measured in colorectal cancer tissues and cell lines using quantitative real-time PCR. Cell counting kit-8 (CCK-8) assay and Transwell assay were used to detect proliferation, migration, and invasion in cell lines, whereas flow cytometry was applied to study apoptosis. Western blot analysis was performed to measure the protein levels. Dual luciferase reporter assay was used to investigate the interaction between miR-196b-5p and ING5. Tumor formation was evaluated in mice. Results MiR-196b-5p was abundantly expressed in colorectal cancer tissues and cell lines, whereas ING5 was expressed at low levels. MiR-196b-5p was successfully overexpressed or knocked down in colorectal cancer cells. We found that miR-196b-5p overexpression significantly accelerated the proliferation, cell cycle, migration and invasion, while inhibited cell apoptosis in colorectal cancer cells. However, miR-196b-5p inhibitor showed the opposite effects. Moreover, ING5 overexpression or knockdown was successfully performed in colorectal cancer cells. ING5 overexpression suppressed proliferation, migration, invasion, the phosphorylation of PI3K, Akt as well as MEK, and promoted cell apoptosis, which could be reversed by ING5 knockdown. Additionally, ING5 was identified as a target of miR-196b-5p through bioinformatics analysis and a luciferase activity assay. Furthermore, ING5 knockdown could attenuate the decrease in proliferation, migration, invasion, and the protein levels of p-PI3K, p-Akt, and p-MEK, which were induced by miRNA-196b-5p inhibitor. Besides, miR-196b-5p knockdown inhibited tumor growth, whereas ING5 knockdown elevated it in vivo. Conclusions In conclusion, miR-196b-5p promotes cell proliferation, migration, invasion, and inhibits apoptosis in colorectal cancer by targeting ING5.
Collapse
Affiliation(s)
- He Xin
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004 People's Republic of China
| | - Chuanzhuo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004 People's Republic of China
| | - Yuan Chi
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004 People's Republic of China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004 People's Republic of China
| |
Collapse
|
20
|
Ibrahim MA, Radwan MI, Kim HK, Han J, Warda M. Evaluation of global expression of selected genes as potential candidates for internal normalizing control during transcriptome analysis in dromedary camel (camelus dromedarius). Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Bertoni APS, Iser IC, de Campos RP, Wink MR. Normalization in Human Glioma Tissue. Methods Mol Biol 2019; 2065:175-190. [PMID: 31578695 DOI: 10.1007/978-1-4939-9833-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
For tissues obtained from glioma samples with/without nonneoplastic brain there is no consensus for universal reference gene but there are some potential genes that might have good stability, under certain conditions. Considering all points described in this work, the care with tissue collection, until gene amplification, directly impacts on the reliable characterization of its mRNA levels. Moreover, it is clear the importance of selecting the most appropriate reference genes for each experimental situation, to allow the accurate normalization of target genes, especially for genes that are subtly regulated.
Collapse
Affiliation(s)
- Ana Paula Santin Bertoni
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Isabele Cristiana Iser
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Rafael Paschoal de Campos
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Laboratório de Sinalização e Plasticidade Celular, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosangela Wink
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde (DCBS), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Civita P, Franceschi S, Aretini P, Ortenzi V, Menicagli M, Lessi F, Pasqualetti F, Naccarato AG, Mazzanti CM. Laser Capture Microdissection and RNA-Seq Analysis: High Sensitivity Approaches to Explain Histopathological Heterogeneity in Human Glioblastoma FFPE Archived Tissues. Front Oncol 2019; 9:482. [PMID: 31231613 PMCID: PMC6568189 DOI: 10.3389/fonc.2019.00482] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
Laser capture microdissection (LCM) coupled with RNA-seq is a powerful tool to identify genes that are differentially expressed in specific histological tumor subtypes. To better understand the role of single tumor cell populations in the complex heterogeneity of glioblastoma, we paired microdissection and NGS technology to study intra-tumoral differences into specific histological regions and cells of human GBM FFPE tumors. We here isolated astrocytes, neurons and endothelial cells in 6 different histological contexts: tumor core astrocytes, pseudopalisading astrocytes, perineuronal astrocytes in satellitosis, neurons with satellitosis, tumor blood vessels, and normal blood vessels. A customized protocol was developed for RNA amplification, library construction, and whole transcriptome analysis of each single portion. We first validated our protocol comparing the obtained RNA expression pattern with the gene expression levels of RNA-seq raw data experiments from the BioProject NCBI database, using Spearman's correlation coefficients calculation. We found a good concordance for pseudopalisading and tumor core astrocytes compartments (0.5 Spearman correlation) and a high concordance for perineuronal astrocytes, neurons, normal, and tumor endothelial cells compartments (0.7 Spearman correlation). Then, Principal Component Analysis and differential expression analysis were employed to find differences between tumor compartments and control tissue and between same cell types into distinct tumor contexts. Data consistent with the literature emerged, in which multiple therapeutic targets significant for glioblastoma (such as Integrins, Extracellular Matrix, transmembrane transport, and metabolic processes) play a fundamental role in the disease progression. Moreover, specific cellular processes have been associated with certain cellular subtypes within the tumor. Our results are promising and suggest a compelling method for studying glioblastoma heterogeneity in FFPE samples and its application in both prospective and retrospective studies.
Collapse
Affiliation(s)
| | | | | | - Valerio Ortenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University Hospital, Pisa, Italy
| | | | | | | | - Antonio Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University Hospital, Pisa, Italy
| | | |
Collapse
|
23
|
Grodzik M, Szczepaniak J, Strojny-Cieslak B, Hotowy A, Wierzbicki M, Jaworski S, Kutwin M, Soltan E, Mandat T, Lewicka A, Chwalibog A. Diamond Nanoparticles Downregulate Expression of CycD and CycE in Glioma Cells. Molecules 2019; 24:molecules24081549. [PMID: 31010146 PMCID: PMC6515518 DOI: 10.3390/molecules24081549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/06/2023] Open
Abstract
Our previous studies have shown that diamond nanoparticles (NDs) exhibited antiangiogenic and proapoptotic properties in vitro in glioblastoma multiforme (GBM) cells and in tumors in vivo. Moreover, NDs inhibited adhesion, leading to the suppression of migration and invasion of GBM. In the present study, we hypothesized that the NDs might also inhibit proliferation and cell cycle in glioma cells. Experiments were performed in vitro with the U87 and U118 lines of GBM cells, and for comparison, the Hs5 line of stromal cells (normal cells) after 24 h and 72 h of treatment. The analyses included cell morphology, cell death, viability, and cell cycle analysis, double timing assay, and gene expression (Rb, E2F1, CycA, CycB, CycD, CycE, PTEN, Ki-67). After 72 h of ND treatment, the expression level of Rb, CycD, and CycE in the U118 cells, and E2F1, CycD, and CycE in the U87 cells were significantly lower in comparison to those in the control group. We observed that decreased expression of cyclins inhibited the G1/S phase transition, arresting the cell cycle in the G0/G1 phase in glioma cells. The NDs did not affect the cell cycle as well as PTEN and Ki-67 expression in normal cells (Hs5), although it can be assumed that the NDs reduced proliferation and altered the cell cycle in fast dividing cells.
Collapse
Affiliation(s)
- Marta Grodzik
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Jaroslaw Szczepaniak
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Barbara Strojny-Cieslak
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Anna Hotowy
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Mateusz Wierzbicki
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Slawomir Jaworski
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Marta Kutwin
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Emilia Soltan
- Department of Neurosurgery, Oncology Center- Maria Sklodowska Curie Memorial, Warsaw, Roentgena 5, 02-781 Warsaw, Poland.
| | - Tomasz Mandat
- Department of Neurosurgery, Oncology Center- Maria Sklodowska Curie Memorial, Warsaw, Roentgena 5, 02-781 Warsaw, Poland.
| | - Aneta Lewicka
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
| | - Andre Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark.
| |
Collapse
|
24
|
Toraih EA, Abdallah HY, Rashed EA, El-Wazir A, Tantawy MA, Fawzy MS. Comprehensive data analysis for development of custom qRT-PCR miRNA assay for glioblastoma: a prevalidation study. Epigenomics 2019; 11:367-380. [DOI: 10.2217/epi-2018-0134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Glioblastoma (GB) is one notable example of miRNA-modulated neoplasms. Given its unique expression signature, proper miRNA profiling can help discriminate between GB and other types of brain tumors. The current work aimed to develop a more GB-specific and applicable custom designed quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) miRNA assay. Materials & methods: A comprehensive data analysis of bioinformatics databases, previous literature and commercially available pre-designed miRNA PCR arrays within the market. Results: A highly enriched panel of 84 deregulated and GB-specific miRNAs has been developed. Conclusion: After validation of this newly developed array, it can not only save the researcher's time and effort, but can also have a potential diagnostic and/or prognostic role in GB, paving the road toward personalized medicine.
Collapse
Affiliation(s)
- Eman A Toraih
- Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center of Excellence of Molecular & Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Hoda Y Abdallah
- Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center of Excellence of Molecular & Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Essam A Rashed
- Department of Mathematics, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Department of Computer Science, Faculty of Informatics and Computer Science, The British University in Egypt, Cairo 11837, Egypt
| | - Aya El-Wazir
- Department of Histology & Cell Biology, Genetics Unit, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center of Excellence of Molecular & Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed A Tantawy
- Hormones Department, Medical Research Division, National Research Center, Cairo, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
25
|
Jovanović N, Mitrović T, Cvetković VJ, Tošić S, Vitorović J, Stamenković S, Nikolov V, Kostić A, Vidović N, Krstić M, Jevtović-Stoimenov T, Pavlović D. The Impact of MGMT Promoter Methylation and Temozolomide Treatment in Serbian Patients with Primary Glioblastoma. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E34. [PMID: 30717206 PMCID: PMC6409652 DOI: 10.3390/medicina55020034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 01/29/2019] [Indexed: 01/25/2023]
Abstract
Background and objective: Despite recent advances in treatment, glioblastoma (GBM) remains the most lethal and aggressive brain tumor. A continuous search for a reliable molecular marker establishes the methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter as a key prognostic factor in primary glioblastoma. The aim of our study was to screen Serbian patients with primary glioblastoma for an MGMT promoter hypermethylation and to evaluate its associations with overall survival (OS) and sensitivity to temozolomide (TMZ) treatment. Materials and methods: A cohort of 30 Serbian primary glioblastoma patients treated with radiation therapy and chemotherapy were analyzed for MGMT promoter methylation and correlated with clinical data. Results: MGMT methylation status was determined in 25 out of 30 primary glioblastomas by methylation-specific PCR (MSP). MGMT promoter hypermethylation was detected in 12 out of 25 patients (48%). The level of MGMT promoter methylation did not correlate with patients' gender (p = 0.409), age (p = 0.536), and OS (p = 0.394). Treatment with TMZ significantly prolonged the median survival of a patient (from 5 to 15 months; p < 0.001). Conclusions: Due to a small cohort of primary GBM patients, our study is not sufficient for definitive conclusions regarding the prognostic value of MGMT methylation for the Serbian population. Our preliminary data suggest a lack of association between MGMT promoter methylation and overall survival and a significant correlation of TMZ treatment with overall survival. Further population-based studies are needed to assess the prognostic value of the MGMT promoter methylation status for patients with primary glioblastoma.
Collapse
Affiliation(s)
- Nikola Jovanović
- University of Niš, Department of Biology and Ecology, Faculty of Sciences and Mathematics, 18000 Niš, Serbia.
| | - Tatjana Mitrović
- University of Niš, Department of Biology and Ecology, Faculty of Sciences and Mathematics, 18000 Niš, Serbia.
| | - Vladimir J Cvetković
- University of Niš, Department of Biology and Ecology, Faculty of Sciences and Mathematics, 18000 Niš, Serbia.
| | - Svetlana Tošić
- University of Niš, Department of Biology and Ecology, Faculty of Sciences and Mathematics, 18000 Niš, Serbia.
| | - Jelena Vitorović
- University of Niš, Department of Biology and Ecology, Faculty of Sciences and Mathematics, 18000 Niš, Serbia.
| | - Slaviša Stamenković
- University of Niš, Department of Biology and Ecology, Faculty of Sciences and Mathematics, 18000 Niš, Serbia.
| | - Vesna Nikolov
- University of Niš, Faculty of Medicine, Clinic of Neurosurgery, Clinical Center, 18000 Niš, Serbia.
| | - Aleksandar Kostić
- University of Niš, Faculty of Medicine, Clinic of Neurosurgery, Clinical Center, 18000 Niš, Serbia.
| | - Nataša Vidović
- University of Niš, Faculty of Medicine, Pathology and Pathological Anatomy Center, 18000 Niš, Serbia.
| | - Miljan Krstić
- University of Niš, Faculty of Medicine, Pathology and Pathological Anatomy Center, 18000 Niš, Serbia.
| | | | - Dušica Pavlović
- University of Niš, Faculty of Medicine, Institute of Biochemistry, 18000 Niš, Serbia.
| |
Collapse
|
26
|
Szczepaniak J, Strojny B, Chwalibog ES, Jaworski S, Jagiello J, Winkowska M, Szmidt M, Wierzbicki M, Sosnowska M, Balaban J, Winnicka A, Lipinska L, Pilaszewicz OW, Grodzik M. Effects of Reduced Graphene Oxides on Apoptosis and Cell Cycle of Glioblastoma Multiforme. Int J Mol Sci 2018; 19:ijms19123939. [PMID: 30544611 PMCID: PMC6320889 DOI: 10.3390/ijms19123939] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023] Open
Abstract
Graphene (GN) and its derivatives (rGOs) show anticancer properties in glioblastoma multiforme (GBM) cells in vitro and in tumors in vivo. We compared the anti-tumor effects of rGOs with different oxygen contents with those of GN, and determined the characteristics of rGOs useful in anti-glioblastoma therapy using the U87 glioblastoma line. GN/ExF, rGO/Term, rGO/ATS, and rGO/TUD were structurally analysed via transmission electron microscopy, Raman spectroscopy, FTIR, and AFM. Zeta potential, oxygen content, and electrical resistance were determined. We analyzed the viability, metabolic activity, apoptosis, mitochondrial membrane potential, and cell cycle. Caspase- and mitochondrial-dependent apoptotic pathways were investigated by analyzing gene expression. rGO/TUD induced the greatest decrease in the metabolic activity of U87 cells. rGO/Term induced the highest level of apoptosis compared with that induced by GN/ExF. rGO/ATS induced a greater decrease in mitochondrial membrane potential than GN/ExF. No significant changes were observed in the cytometric study of the cell cycle. The effectiveness of these graphene derivatives was related to the presence of oxygen-containing functional groups and electron clouds. Their cytotoxicity mechanism may involve electron clouds, which are smaller in rGOs, decreasing their cytotoxic effect. Overall, cytotoxic activity involved depolarization of the mitochondrial membrane potential and the induction of apoptosis in U87 glioblastoma cells.
Collapse
Affiliation(s)
- Jaroslaw Szczepaniak
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Ewa Sawosz Chwalibog
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Slawomir Jaworski
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Joanna Jagiello
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Magdalena Winkowska
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Maciej Szmidt
- Department of Morphologic Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Malwina Sosnowska
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Jasmina Balaban
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Anna Winnicka
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Ludwika Lipinska
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Olga Witkowska Pilaszewicz
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| |
Collapse
|
27
|
Toraih EA, Alghamdi SA, El-Wazir A, Hosny MM, Hussein MH, Khashana MS, Fawzy MS. Dual biomarkers long non-coding RNA GAS5 and microRNA-34a co-expression signature in common solid tumors. PLoS One 2018; 13:e0198231. [PMID: 30289954 PMCID: PMC6173395 DOI: 10.1371/journal.pone.0198231] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicates that non-coding RNAs including microRNAs (miRs) and long non-coding RNAs (lncRNAs) are aberrantly expressed in cancer, providing promising biomarkers for diagnosis, prognosis and/or therapeutic targets. We aimed in the current work to quantify the expression profile of miR-34a and one of its bioinformatically selected partner lncRNA growth arrest-specific 5 (GAS5) in a sample of Egyptian cancer patients, including three prevalent types of cancer in our region; renal cell carcinoma (RCC), glioblastoma (GB), and hepatocellular carcinoma (HCC) as well as to correlate these expression profiles with the available clinicopathological data in an attempt to clarify their roles in cancer. Quantitative real-time polymerase chain reaction analysis was applied. Different bioinformatics databases were searched to confirm the potential miRNAs-lncRNA interactions of the selected ncRNAs in cancer pathogenesis. The tumor suppressor lncRNA GAS5 was significantly under-expressed in the three types of cancer [0.08 (0.006-0.38) in RCC, p <0.001; 0.10 (0.003-0.89) in GB, p < 0.001; and 0.12 (0.015-0.74) in HCC, p < 0.001]. However, levels of miR-34a greatly varied according to the tumor type; it displayed an increased expression in RCC [4.05 (1.003-22.69), p <0.001] and a decreased expression in GB [0.35 (0.04-0.95), p <0.001]. Consistent to the computationally predicted miRNA-lncRNA interaction, negative correlations were observed between levels of GAS5 and miR-34a in RCC samples (r = -0.949, p < 0.001), GB (r = -0.518, p < 0.001) and HCC (r = -0.455, p = 0.013). Kaplan-Meier curve analysis revealed that RCC patients with down-regulated miR-34a levels had significantly poor overall survival than their corresponding (p < 0.05). Hierarchical clustering analysis showed RCC patients could be clustered by GAS5 and miR-34a co-expression profile. Our results suggest potential applicability of GAS5 and miR-34a with other conventional markers for various types of cancer. Further functional validation studies are warranted to confirm miR-34a/GAS5 interplay in cancer.
Collapse
Affiliation(s)
- Eman A. Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Saleh Ali Alghamdi
- Medical Genetics, Clinical Laboratory Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Aya El-Wazir
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Marwa M. Hosny
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | | | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
28
|
Toraih EA, Aly NM, Abdallah HY, Al-Qahtani SA, Shaalan AA, Hussein MH, Fawzy MS. MicroRNA-target cross-talks: Key players in glioblastoma multiforme. Tumour Biol 2017; 39:1010428317726842. [PMID: 29110584 DOI: 10.1177/1010428317726842] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The role of microRNAs in brain cancer is still naive. Some act as oncogene and others as tumor suppressors. Discovery of efficient biomarkers is mandatory to debate that aggressive disease. Bioinformatically selected microRNAs and their targets were investigated to evaluate their putative signature as diagnostic and prognostic biomarkers in primary glioblastoma multiforme. Expression of a panel of seven microRNAs (hsa-miR-34a, hsa-miR-16, hsa-miR-17, hsa-miR-21, hsa-miR-221, hsa-miR-326, and hsa-miR-375) and seven target genes ( E2F3, PI3KCA, TOM34, WNT5A, PDCD4, DFFA, and EGFR) in 43 glioblastoma multiforme specimens were profiled compared to non-cancer tissues via quantitative reverse transcription-polymerase chain reaction. Immunohistochemistry staining for three proteins (VEGFA, BAX, and BCL2) was performed. Gene enrichment analysis identified the biological regulatory functions of the gene panel in glioma pathway. MGMT ( O-6-methylguanine-DNA methyltransferase) promoter methylation was analyzed for molecular subtyping of tumor specimens. Our data demonstrated a significant upregulation of five microRNAs (hsa-miR-16, hsa-miR-17, hsa-miR-21, hsa-miR-221, and hsa-miR-375), three genes ( E2F3, PI3KCA, and Wnt5a), two proteins (VEGFA and BCL2), and downregulation of hsa-miR-34a and three other genes ( DFFA, PDCD4, and EGFR) in brain cancer tissues. Receiver operating characteristic analysis revealed that miR-34a (area under the curve = 0.927) and miR-17 (area under the curve = 0.900) had the highest diagnostic performance, followed by miR-221 (area under the curve = 0.845), miR-21 (area under the curve = 0.836), WNT5A (area under the curve = 0.809), PDCD4 (area under the curve = 0.809), and PI3KCA (area under the curve = 0.800). MGMT promoter methylation status was associated with high miR-221 levels. Moreover, patients with VEGFA overexpression and downregulation of TOM34 and BAX had poor overall survival. Nevertheless, miR-17, miR-221, and miR-326 downregulation were significantly associated with high recurrence rate. Multivariate analysis by hierarchical clustering classified patients into four distinct groups based on gene panel signature. In conclusion, the explored microRNA-target dysregulation could pave the road toward developing potential therapeutic strategies for glioblastoma multiforme. Future translational and functional studies are highly recommended to better understand the complex bio-molecular signature of this difficult-to-treat tumor.
Collapse
Affiliation(s)
- Eman Ali Toraih
- 1 Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nagwa Mahmoud Aly
- 2 Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hoda Y Abdallah
- 1 Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Saeed Awad Al-Qahtani
- 3 Department of Physiology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Aly Am Shaalan
- 4 Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,5 Department of Anatomy and Histology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | | | - Manal Said Fawzy
- 2 Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,7 Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
29
|
Khan S, Roberts J, Wu SB. Reference gene selection for gene expression study in shell gland and spleen of laying hens challenged with infectious bronchitis virus. Sci Rep 2017; 7:14271. [PMID: 29079779 PMCID: PMC5660252 DOI: 10.1038/s41598-017-14693-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/13/2017] [Indexed: 01/08/2023] Open
Abstract
Ten reference genes were investigated for normalisation of candidate target gene expression data in the shell gland and spleen of laying hens challenged with two strains of infectious bronchitis virus (IBV). Data were analysed with geNorm, NormFinder and BestKeeper, and a comprehensive ranking (geomean) was calculated. In the combined data set of IBV challenged shell gland samples, the comprehensive ranking showed TATA-box binding protein (TBP) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) as the two most stable, and succinate dehydrogenase complex flavoprotein subunit A (SDHA) and albumin (ALB) as the two least stable reference genes. In the spleen, and in the combined data set of the shell gland and spleen, the two most stable and the two least stable reference genes were TBP and YWHAZ, and ribosomal protein L4 (RPL4) and ALB, respectively. Different ranking has been due to different algorithms. Validation studies showed that the use of the two most stable reference genes produced accurate and more robust gene expression data. The two most and least stable reference genes obtained in the study, were further used for candidate target gene expression data normalisation of the shell gland and spleen under an IBV infection model.
Collapse
Affiliation(s)
- Samiullah Khan
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Juliet Roberts
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| | - Shu-Biao Wu
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia.
| |
Collapse
|
30
|
Chow RD, Guzman CD, Wang G, Schmidt F, Youngblood MW, Ye L, Errami Y, Dong MB, Martinez MA, Zhang S, Renauer P, Bilguvar K, Gunel M, Sharp PA, Zhang F, Platt RJ, Chen S. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat Neurosci 2017; 20:1329-1341. [PMID: 28805815 PMCID: PMC5614841 DOI: 10.1038/nn.4620] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/09/2017] [Indexed: 12/15/2022]
Abstract
A causative understanding of genetic factors that regulate glioblastoma (GBM) pathogenesis is of central importance. Here, we developed an adeno-associated virus (AAV)-mediated autochthonous CRISPR screen in GBM. Stereotaxic delivery of an AAV library targeting genes commonly mutated in human cancers into the brains of conditional Cas9 mice resulted in tumors that recapitulate human GBM. Capture sequencing revealed diverse mutational profiles across tumors. The mutation frequencies in mice correlate with those in two independent patient cohorts. Co-mutation analysis identified co-occurring driver combinations such as Mll2, B2m-Nf1, Mll3-Nf1 and Zc3h13-Rb1, which were subsequently validated using AAV minipools. Distinct from Nf1-mutant tumors, Rb1-mutant tumors are undifferentiated and aberrantly express Homeobox gene clusters. The addition of Zc3h13 or Pten mutations altered the gene expression profiles of Rb1 mutants, rendering them more resistant to temozolomide. Our study provides a functional landscape of gliomagenesis suppressors in vivo.
Collapse
Affiliation(s)
- Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University School of Medicine, West Haven, Connecticut, USA.,Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Christopher D Guzman
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University School of Medicine, West Haven, Connecticut, USA.,Biological and Biomedical Sciences Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Immunobiology Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Guangchuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University School of Medicine, West Haven, Connecticut, USA
| | - Florian Schmidt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Department of Chemistry, University of Basel, Basel, Switzerland
| | - Mark W Youngblood
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University School of Medicine, West Haven, Connecticut, USA
| | - Youssef Errami
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University School of Medicine, West Haven, Connecticut, USA
| | - Matthew B Dong
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University School of Medicine, West Haven, Connecticut, USA.,Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael A Martinez
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University School of Medicine, West Haven, Connecticut, USA
| | - Sensen Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University School of Medicine, West Haven, Connecticut, USA
| | - Paul Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University School of Medicine, West Haven, Connecticut, USA.,Biological and Biomedical Sciences Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Murat Gunel
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA.,Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA.,Department of Biology, MIT, Cambridge, Massachusetts, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Department of Chemistry, University of Basel, Basel, Switzerland
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.,Systems Biology Institute, Yale University School of Medicine, West Haven, Connecticut, USA.,Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Biological and Biomedical Sciences Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Immunobiology Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
31
|
Fawzy MS, Toraih EA, Abdallah HY. Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1): A molecular predictor of poor survival in glioblastoma multiforme in Egyptian patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2017. [DOI: 10.1016/j.ejmhg.2016.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
32
|
Al Mahi N, Begum M. A two-step integrated approach to detect differentially expressed genes in RNA-Seq data. J Bioinform Comput Biol 2016; 14:1650034. [PMID: 27774870 DOI: 10.1142/s0219720016500347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the primary objectives of ribonucleic acid (RNA) sequencing or RNA-Seq experiment is to identify differentially expressed (DE) genes in two or more treatment conditions. It is a common practice to assume that all read counts from RNA-Seq data follow overdispersed (OD) Poisson or negative binomial (NB) distribution, which is sometimes misleading because within each condition, some genes may have unvarying transcription levels with no overdispersion. In such a case, it is more appropriate and logical to consider two sets of genes: OD and non-overdispersed (NOD). We propose a new two-step integrated approach to distinguish DE genes in RNA-Seq data using standard Poisson and NB models for NOD and OD genes, respectively. This is an integrated approach because this method can be merged with any other NB-based methods for detecting DE genes. We design a simulation study and analyze two real RNA-Seq data to evaluate the proposed strategy. We compare the performance of this new method combined with the three [Formula: see text]-software packages namely edgeR, DESeq2, and DSS with their default settings. For both the simulated and real data sets, integrated approaches perform better or at least equally well compared to the regular methods embedded in these [Formula: see text]-packages.
Collapse
Affiliation(s)
- Naim Al Mahi
- * Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Munni Begum
- † Department of Mathematical Sciences, Ball State University, Muncie, IN 47306, USA
| |
Collapse
|
33
|
Aberrant expression of Notch1, HES1, and DTX1 genes in glioblastoma formalin-fixed paraffin-embedded tissues. Tumour Biol 2015; 37:6935-42. [PMID: 26662803 DOI: 10.1007/s13277-015-4592-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/03/2015] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common malignant brain tumor accounting for more than 54 % of all gliomas. Despite aggressive treatments, median survival remains less than 1 year. This might be due to the unavailability of effective molecular diagnostic markers and targeted therapy. Thus, it is essential to discover molecular mechanisms underlying disease by identifying dysregulated pathways involved in tumorigenesis. Notch signaling is one such pathway which plays an important role in determining cell fates. Since it is found to play a critical role in many cancers, we investigated the role of Notch genes in glioblastoma with an aim to identify biomarkers that can improve diagnosis. Using real-time PCR, we assessed the expression of Notch genes including receptors (Notch1, Notch2, Notch3, and Notch4), ligands (JAG1, JAG2, and DLL3), downstream targets (HES1 and HEY2), regulator Deltex1 (DTX1), inhibitor NUMB along with transcriptional co-activator MAML1, and a component of gamma-secretase complex APH1A in 15 formalin-fixed paraffin-embedded (FFPE) patient samples. Relative quantification was done by the 2(-ΔΔCt) method; the data are presented as fold change in gene expression normalized to an internal control gene and relative to the calibrator. The data revealed aberrant expression of Notch genes in glioblastoma compared to normal brain. More than 85 % of samples showed high Notch1 (P = 0.0397) gene expression and low HES1 (P = 0.011) and DTX1 (P = 0.0001) gene expression. Our results clearly show aberrant expression of Notch genes in glioblastoma which can be used as putative biomarkers together with histopathological observation to improve diagnosis, therapeutic strategies, and patient prognosis.
Collapse
|