1
|
Liu Y, Zheng J, Zhong L, Wang Z, Zhao D, Lin H, Zhang X, Meng K, Yang X, Zhang D, Lin L, Qiao L. Vessel-On-A-Chip Coupled Proteomics Reveal Pressure-Overload-Induced Vascular Remodeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415024. [PMID: 40126137 PMCID: PMC12097099 DOI: 10.1002/advs.202415024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/01/2025] [Indexed: 03/25/2025]
Abstract
Hypertension, the leading cause of cardiovascular disease and premature mortality, is characterized by increased vessel stretch and alterations in vascular smooth muscle cells (VSMCs). In this study, a vessel-on-a-chip model is developed to simulate both physiological and pathological stretch conditions alongside a mouse model of hypertension. Proteomics analysis is applied to investigate changes in VSMCs using the vessel-on-a-chip system and compared these findings with data from the mouse model. The results demonstrates that physiological stretch enhances the expression of contractile markers in VSMCs. Additionally, the chip effectively replicates cellular responses to pathological stretch and stress, including the upregulation of ERK signaling, calcium ion transport pathway, integrin signaling pathway, endoplasmic reticulum stress, toll-like receptor activation, oxidative stress, and synthesis of sphingolipids and ceramides. These findings indicate that the vessel chip successfully mimics in vivo biological events associated with hypertension. The vessel-on-a-chip system holds promise for advancing the study of vessel-related diseases and facilitating the development of novel hypertension therapeutics.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of ChemistryZhongshan HospitalFudan UniversityShanghai200000China
| | - Jianxujie Zheng
- Department of ChemistryZhongshan HospitalFudan UniversityShanghai200000China
| | - Lingyan Zhong
- Department of ChemistryZhongshan HospitalFudan UniversityShanghai200000China
| | - Zengyu Wang
- Department of ChemistryZhongshan HospitalFudan UniversityShanghai200000China
| | - Dan Zhao
- Department of ChemistryZhongshan HospitalFudan UniversityShanghai200000China
| | - Hong Lin
- Department of ChemistryZhongshan HospitalFudan UniversityShanghai200000China
| | - Xiaoxue Zhang
- Department of ChemistryZhongshan HospitalFudan UniversityShanghai200000China
| | - Ke Meng
- Department of NeurosurgeryZhongshan Hospital (Xiamen)Fudan UniversityXiamenFujian361015China
| | - Xiaoxia Yang
- Department of ChemistryZhongshan HospitalFudan UniversityShanghai200000China
| | - Dongxue Zhang
- Department of ChemistryZhongshan HospitalFudan UniversityShanghai200000China
| | - Ling Lin
- Department of ChemistryZhongshan HospitalFudan UniversityShanghai200000China
| | - Liang Qiao
- Department of ChemistryZhongshan HospitalFudan UniversityShanghai200000China
| |
Collapse
|
2
|
Kalkman HO, Smigielski L. Ceramides may Play a Central Role in the Pathogenesis of Alzheimer's Disease: a Review of Evidence and Horizons for Discovery. Mol Neurobiol 2025:10.1007/s12035-025-04989-0. [PMID: 40295359 DOI: 10.1007/s12035-025-04989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025]
Abstract
While several hypotheses have been proposed to explain the underlying mechanisms of Alzheimer's disease, none have been entirely satisfactory. Both genetic and non-genetic risk factors, such as infections, metabolic disorders and psychological stress, contribute to this debilitating disease. Multiple lines of evidence indicate that ceramides may be central to the pathogenesis of Alzheimer's disease. Tumor necrosis factor-α, saturated fatty acids and cortisol elevate the brain levels of ceramides, while genetic risk factors, such as mutations in APP, presenilin, TREM2 and APOE ε4, also elevate ceramide synthesis. Importantly, ceramides displace sphingomyelin and cholesterol from lipid raft-like membrane patches that connect the endoplasmic reticulum and mitochondria, disturbing mitochondrial oxidative phosphorylation and energy production. As a consequence, the flattening of lipid rafts alters the function of γ-secretase, leading to increased production of Aβ42. Moreover, ceramides inhibit the insulin-signaling cascade via at least three mechanisms, resulting in the activation of glycogen synthase kinase-3 β. Activation of this kinase has multiple consequences, as it further deteriorates insulin resistance, promotes the transcription of BACE1, causes hyperphosphorylation of tau and inhibits the transcription factor Nrf2. Functional Nrf2 prevents apoptosis, mediates anti-inflammatory activity and improves blood-brain barrier function. Thus, various seemingly unrelated Alzheimer's disease risk factors converge on ceramide production, whereas the elevated levels of ceramides give rise to the well-known pathological features of Alzheimer's disease. Understanding and targeting these mechanisms may provide a promising foundation for the development of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Hans O Kalkman
- Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Lukasz Smigielski
- Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
SenthilKumar G, Zirgibel Z, Cohen KE, Katunaric B, Jobe AM, Shult CG, Limpert RH, Freed JK. Ying and Yang of Ceramide in the Vascular Endothelium. Arterioscler Thromb Vasc Biol 2024; 44:1725-1736. [PMID: 38899471 PMCID: PMC11269027 DOI: 10.1161/atvbaha.124.321158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Ceramides, a group of biologically active sphingolipids, have been described as the new cholesterol given strong evidence linking high plasma ceramide with endothelial damage, risk for early adverse cardiovascular events, and development of cardiometabolic disease. This relationship has sparked great interest in investigating therapeutic targets with the goal of suppressing ceramide formation. However, the growing data challenge this paradigm of ceramide as solely eliciting detrimental effects to the cardiovascular system. Studies show that ceramides are necessary for maintaining proper endothelial redox states, mechanosensation, and membrane integrity. Recent work in preclinical models and isolated human microvessels highlights that the loss of ceramide formation can in fact propagate vascular endothelial dysfunction. Here, we delve into these conflicting findings to evaluate how ceramide may be capable of exerting both beneficial and damaging effects within the vascular endothelium. We propose a unifying theory that while basal levels of ceramide in response to physiological stimuli are required for the production of vasoprotective metabolites such as S1P (sphingosine-1-phosphate), the chronic accumulation of ceramide can promote activation of pro-oxidative stress pathways in endothelial cells. Clinically, the evidence discussed here highlights the potential challenges associated with therapeutic suppression of ceramide formation as a means of reducing cardiovascular disease risk.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Zachary Zirgibel
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Katie E. Cohen
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee WI
| | - Boran Katunaric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Alyssa M. Jobe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Carolyn G. Shult
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Rachel H. Limpert
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Julie K. Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| |
Collapse
|
4
|
Christensen KB, Ünsal Ş, Ebbesen MF, Hemstra L, Schlosser A, Rosenstand K, Hansen PBL, Jensen BL, Bloksgaard M, Simonsen U, Sorensen GL. MFAP4-Deficiency Aggravates Age-Induced Changes in Resistance Artery Structure, While Ameliorating Hypertension. Hypertension 2024; 81:1308-1319. [PMID: 38563153 DOI: 10.1161/hypertensionaha.123.22283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Abnormalities of resistance arteries may play essential roles in the pathophysiology of aging and hypertension. Deficiency of the vascular extracellular matrix protein MFAP4 (microfibrillar-associated protein 4) has previously been observed as protective against aberrant arterial remodeling. We hypothesized that MFAP4-deficiency would reduce age- and hypertension-dependent arterial changes in extracellular matrix composition and stiffening. METHODS Mesenteric arteries were isolated from old (20-23 months) littermate Mfap4+/+ and Mfap4-/- mice, and 2-photon excitation microscopy imaging was used to quantify elastin and collagen volumes and dimensions in the vascular wall. Ten-week-old littermate Mfap4+/+ and Mfap4-/- mice were subjected to 20 days of continuous Ang II (angiotensin II) infusion and hypertension was monitored using invasive blood pressure measurements. Arterial stiffness, responses to vascular constrictors, and myogenic tone were monitored using wire- or pressure-myography. Collagen contents were assessed by Western blotting. RESULTS MFAP4-deficiency significantly increased collagen volume and elastin fragmentation in aged mesenteric arteries without affecting arterial stiffness. MFAP4-deficient mice exhibited reduced diastolic pressure in Ang II-induced hypertension. There was no significant effect of MFAP4-deficiency on mesenteric artery structural remodeling or myogenic tone, although collagen content in mesenteric arteries was tendentially increased in hypertensive Mfap4+/+ mice relative to Mfap4-/- mice. Increased efficacy of vasoconstrictors (phenylephrine, thromboxane) and reduced stiffness were observed in Ang II-treated Mfap4-/- mouse mesenteric arteries in ex vivo myography recordings. CONCLUSIONS MFAP4-deficiency reduces the elastin/collagen ratio in the aging resistance artery without affecting arterial stiffness. In contrast, MFAP4-deficiency reduces the stiffness of resistance arteries and ameliorates Ang II-induced hypertension.
Collapse
Affiliation(s)
- Kimmie B Christensen
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Şeyda Ünsal
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Morten F Ebbesen
- Department of Biochemistry and Molecular Biology (M.F.E.), University of Southern Denmark, Odense
| | - Line Hemstra
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Anders Schlosser
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Kristoffer Rosenstand
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Pernille B L Hansen
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Boye L Jensen
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Maria Bloksgaard
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| | - Ulf Simonsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark (U.S.)
| | - Grith L Sorensen
- Department of Molecular Medicine, Faculty of Health Sciences (K.B.C., Ş.Ü., L.H., A.S., K.R., P.B.L.H., B.L.J., M.B., G.L.S.), University of Southern Denmark, Odense
| |
Collapse
|
5
|
Jensen LJ. Functional, Structural and Proteomic Effects of Ageing in Resistance Arteries. Int J Mol Sci 2024; 25:2601. [PMID: 38473847 DOI: 10.3390/ijms25052601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The normal ageing process affects resistance arteries, leading to various functional and structural changes. Systolic hypertension is a common occurrence in human ageing, and it is associated with large artery stiffening, heightened pulsatility, small artery remodeling, and damage to critical microvascular structures. Starting from young adulthood, a progressive elevation in the mean arterial pressure is evidenced by clinical and epidemiological data as well as findings from animal models. The myogenic response, a protective mechanism for the microcirculation, may face disruptions during ageing. The dysregulation of calcium entry channels (L-type, T-type, and TRP channels), dysfunction in intracellular calcium storage and extrusion mechanisms, altered expression of potassium channels, and a change in smooth muscle calcium sensitization may contribute to the age-related dysregulation of myogenic tone. Flow-mediated vasodilation, a hallmark of endothelial function, is compromised in ageing. This endothelial dysfunction is related to increased oxidative stress, lower nitric oxide bioavailability, and a low-grade inflammatory response, further exacerbating vascular dysfunction. Resistance artery remodeling in ageing emerges as a hypertrophic response of the vessel wall that is typically observed in conjunction with outward remodeling (in normotension), or as inward hypertrophic remodeling (in hypertension). The remodeling process involves oxidative stress, inflammation, reorganization of actin cytoskeletal components, and extracellular matrix fiber proteins. Reactive oxygen species (ROS) signaling and chronic low-grade inflammation play substantial roles in age-related vascular dysfunction. Due to its role in the regulation of vascular tone and structural proteins, the RhoA/Rho-kinase pathway is an important target in age-related vascular dysfunction and diseases. Understanding the intricate interplay of these factors is crucial for developing targeted interventions to mitigate the consequences of ageing on resistance arteries and enhance the overall vascular health.
Collapse
Affiliation(s)
- Lars Jørn Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
6
|
González LDM, Romero-Orjuela SP, Rabeya FJ, del Castillo V, Echeverri D. Age and vascular aging: an unexplored frontier. Front Cardiovasc Med 2023; 10:1278795. [PMID: 38028481 PMCID: PMC10665864 DOI: 10.3389/fcvm.2023.1278795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Vascular age is an emerging field in cardiovascular risk assessment. This concept includes multifactorial changes in the arterial wall, with arterial stiffness as its most relevant manifestation, leading to increased arterial pressure and pulsatile flow in the organs. Today, the approved test for measuring vascular age is pulse wave velocity, which has been proven to predict cardiovascular events. Furthermore, vascular phenotypes, such as early vascular aging and "SUPERNOVA," representing phenotypic extremes of vascular aging, have been found. The identification of these phenotypes opens a new field of study in cardiovascular physiology. Lifestyle interventions and pharmacological therapy have positively affected vascular health, reducing arterial stiffness. This review aims to define the concepts related to vascular age, pathophysiology, measurement methods, clinical signs and symptoms, and treatment.
Collapse
Affiliation(s)
- Laura del Mar González
- Department of Cardiology, Fundación Cardioinfantil–Instituto de Cardiología, Bogotá, Colombia
| | | | - Fernando J. Rabeya
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Valeria del Castillo
- Department of Cardiology, Fundación Cardioinfantil–Instituto de Cardiología, Bogotá, Colombia
| | - Darío Echeverri
- Department of Cardiology, Fundación Cardioinfantil–Instituto de Cardiología, Bogotá, Colombia
| |
Collapse
|
7
|
Callegari K, Dash S, Uchida H, Shingai Y, Liu C, Khodarkovskaya A, Lee Y, Ito A, Lopez A, Zhang T, Xiang J, Kluk MJ, Sanchez T. Molecular profiling of the stroke-induced alterations in the cerebral microvasculature reveals promising therapeutic candidates. Proc Natl Acad Sci U S A 2023; 120:e2205786120. [PMID: 37058487 PMCID: PMC10120001 DOI: 10.1073/pnas.2205786120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
Stroke-induced cerebral microvascular dysfunction contributes to aggravation of neuronal injury and compromises the efficacy of current reperfusion therapies. Understanding the molecular alterations in cerebral microvessels in stroke will provide original opportunities for scientific investigation of novel therapeutic strategies. Toward this goal, using a recently optimized method which minimizes cell activation and preserves endothelial cell interactions and RNA integrity, we conducted a genome-wide transcriptomic analysis of cerebral microvessels in a mouse model of stroke and compared these transcriptomic alterations with the ones observed in human, nonfatal, brain stroke lesions. Results from these unbiased comparative analyses have revealed the common alterations in mouse stroke microvessels and human stroke lesions and identified shared molecular features associated with vascular disease (e.g., Serpine1/Plasminogen Activator Inhibitor-1, Hemoxygenase-1), endothelial activation (e.g., Angiopoietin-2), and alterations in sphingolipid metabolism and signaling (e.g., Sphigosine-1-Phosphate Receptor 2). Sphingolipid profiling of mouse cerebral microvessels validated the transcript data and revealed the enrichment of sphingomyelin and sphingoid species in the cerebral microvasculature compared to brain and the stroke-induced increase in ceramide species. In summary, our study has identified novel molecular alterations in several microvessel-enriched, translationally relevant, and druggable targets, which are potent modulators of endothelial function. Our comparative analyses have revealed the presence of molecular features associated with cerebral microvascular dysfunction in human chronic stroke lesions. The results shared here provide a detailed resource for therapeutic discovery of candidates for neurovascular protection in stroke and potentially, other pathologies exhibiting cerebral microvascular dysfunction.
Collapse
Affiliation(s)
- Keri Callegari
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Hiroki Uchida
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Yuto Shingai
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Catherine Liu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Anne Khodarkovskaya
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Yunkyoung Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Akira Ito
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Amanda Lopez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY10065
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY10065
| | - Michael J. Kluk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Teresa Sanchez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10065
| |
Collapse
|
8
|
Tian Y, Fopiano KA, Buncha V, Lang L, Suggs HA, Wang R, Rudic RD, Filosa JA, Bagi Z. The role of ADAM17 in cerebrovascular and cognitive function in the APP/PS1 mouse model of Alzheimer's disease. Front Mol Neurosci 2023; 16:1125932. [PMID: 36937050 PMCID: PMC10018024 DOI: 10.3389/fnmol.2023.1125932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/27/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction The disintegrin and metalloproteinase 17 (ADAM17) exhibits α-secretase activity, whereby it can prevent the production of neurotoxic amyloid precursor protein-α (APP). ADAM17 is abundantly expressed in vascular endothelial cells and may act to regulate vascular homeostatic responses, including vasomotor function, vascular wall morphology, and formation of new blood vessels. The role of vascular ADAM17 in neurodegenerative diseases remains poorly understood. Here, we hypothesized that cerebrovascular ADAM17 plays a role in the pathogenesis of Alzheimer's disease (AD). Methods and results We found that 9-10 months old APP/PS1 mice with b-amyloid accumulation and short-term memory and cognitive deficits display a markedly reduced expression of ADAM17 in cerebral microvessels. Systemic delivery and adeno-associated virus (AAV)-mediated re-expression of ADAM17 in APP/PS1 mice improved cognitive functioning, without affecting b-amyloid plaque density. In isolated and pressurized cerebral arteries of APP/PS1 mice the endothelium-dependent dilation to acetylcholine was significantly reduced, whereas the vascular smooth muscle-dependent dilation to the nitric oxide donor, sodium nitroprusside was maintained when compared to WT mice. The impaired endothelium-dependent vasodilation of cerebral arteries in APP/PS1 mice was restored to normal level by ADAM17 re-expression. The cerebral artery biomechanical properties (wall stress and elasticity) and microvascular network density was not affected by ADAM17 re-expression in the APP/PS1 mice. Additionally, proteomic analysis identified several differentially expressed molecules involved in AD neurodegeneration and neuronal repair mechanisms that were reversed by ADAM17 re-expression. Discussion Thus, we propose that a reduced ADAM17 expression in cerebral microvessels impairs vasodilator function, which may contribute to the development of cognitive dysfunction in APP/PS1 mice, and that ADAM17 can potentially be targeted for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Yanna Tian
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Katie Anne Fopiano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Vadym Buncha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Liwei Lang
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Hayden A. Suggs
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rongrong Wang
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - R. Daniel Rudic
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jessica A. Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
9
|
Wu S, Tyler LK, Henson RNA, Rowe JB, Cam-Can, Tsvetanov KA. Cerebral blood flow predicts multiple demand network activity and fluid intelligence across the adult lifespan. Neurobiol Aging 2023; 121:1-14. [PMID: 36306687 PMCID: PMC7613814 DOI: 10.1016/j.neurobiolaging.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
The preservation of cognitive function in old age is a public health priority. Cerebral hypoperfusion is a hallmark of dementia but its impact on maintaining cognitive ability across the lifespan is less clear. We investigated the relationship between baseline cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) response during a fluid reasoning task in a population-based adult lifespan cohort. As age differences in CBF could lead to non-neuronal contributions to the BOLD signal, we introduced commonality analysis to neuroimaging to dissociate performance-related CBF effects from the physiological confounding effects of CBF on the BOLD response. Accounting for CBF, we confirmed that performance- and age-related differences in BOLD responses in the multiple-demand network were implicated in fluid reasoning. Age differences in CBF explained not only performance-related BOLD responses but also performance-independent BOLD responses. Our results suggest that CBF is important for maintaining cognitive function, while its non-neuronal contributions to BOLD signals reflect an age-related confound. Maintaining perfusion into old age may serve to support brain function and preserve cognitive performance.
Collapse
Affiliation(s)
- Shuyi Wu
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Department of Management, School of Business, Hong Kong Baptist University, Hong Kong, China
| | - Lorraine K Tyler
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Richard N A Henson
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK
| | - James B Rowe
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cam-Can
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK
| | - Kamen A Tsvetanov
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Prevalence and determinants of peripheral arterial disease in children with nephrotic syndrome. PLoS One 2022; 17:e0266432. [PMID: 35951636 PMCID: PMC9371348 DOI: 10.1371/journal.pone.0266432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022] Open
Abstract
Peripheral arterial disease (PAD) is the least studied complication of nephrotic syndrome (NS). Risk factors which predispose children with NS to developing PAD include hyperlipidaemia, hypertension and prolonged use of steroids. The development of PAD significantly increases the morbidity and mortality associated with NS as such children are prone to sudden cardiac death. The ankle brachial index (ABI) is a tool that has been proven to have high specificity and sensitivity in detecting PAD even in asymptomatic individuals. We aimed to determine the prevalence of PAD in children with NS and to identify risk factors that can independently predict its development. A comparative cross-sectional study was conducted involving 200 subjects (100 with NS and 100 apparently healthy comparative subjects that were matched for age, sex and socioeconomic class). Systolic blood pressures were measured in all limbs using the pocket Doppler machine (Norton Doppler scan machine). ABI was calculated as a ratio of ankle to arm systolic blood pressure. PAD was defined as ABI less than 0.9. The prevalence of PAD was significantly higher in children with NS than matched comparison group (44.0% vs 6.0%, p < 0.001). Average values of waist and hip circumference were significantly higher in subjects with PAD than those without PAD (61.68± 9.1cm and 67.6± 11.2 cm vs 57.03 ± 8.3cm and 65.60± 12.5cm respectively, p< 0.005). Serum lipids (triglyceride, very low density lipoprotein, total cholesterol and low density lipoprotein) were also significantly higher in subjects with PAD than those without PAD [106.65mg/dl (67.8–136.7) vs 45.72mg/dl (37.7–61.3), 21.33mg/dl (13.6–27.3) vs 9.14mg/dl (7.5–12.3), 164.43mg/dl (136.1–259.6) vs 120.72mg/dl (111.1–142.1) and 93.29mg/dl (63.5–157.3) vs 61.84mg/dl (32.6–83.1), respectively p< 0.05]. Increasing duration since diagnosis of NS, having a steroid resistant NS and increasing cumulative steroid dose were independent predictors of PAD in children with NS; p< 0.05 respectively. With these findings, it is recommended that screening for PAD in children with NS should be done to prevent cardiovascular complications before they arise.
Collapse
|
11
|
Soares RN, Ramirez-Perez FI, Cabral-Amador FJ, Morales-Quinones M, Foote CA, Ghiarone T, Sharma N, Power G, Smith JA, Rector RS, Martinez-Lemus LA, Padilla J, Manrique-Acevedo C. SGLT2 inhibition attenuates arterial dysfunction and decreases vascular F-actin content and expression of proteins associated with oxidative stress in aged mice. GeroScience 2022; 44:1657-1675. [PMID: 35426600 PMCID: PMC9213629 DOI: 10.1007/s11357-022-00563-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Aging of the vasculature is characterized by endothelial dysfunction and arterial stiffening, two key events in the pathogenesis of cardiovascular disease (CVD). Treatment with sodium glucose transporter 2 (SGLT2) inhibitors is now known to decrease cardiovascular morbidity and mortality in type 2 diabetes. However, whether SGLT2 inhibition attenuates vascular aging is unknown. We first confirmed in a cohort of adult subjects that aging is associated with impaired endothelial function and increased arterial stiffness and that these two variables are inversely correlated. Next, we investigated whether SGLT2 inhibition with empagliflozin (Empa) ameliorates endothelial dysfunction and reduces arterial stiffness in aged mice with confirmed vascular dysfunction. Specifically, we assessed mesenteric artery endothelial function and stiffness (via flow-mediated dilation and pressure myography mechanical responses, respectively) and aortic stiffness (in vivo via pulse wave velocity and ex vivo via atomic force microscopy) in Empa-treated (14 mg/kg/day for 6 weeks) and control 80-week-old C57BL/6 J male mice. We report that Empa-treated mice exhibited improved mesenteric endothelial function compared with control, in parallel with reduced mesenteric artery and aortic stiffness. Additionally, Empa-treated mice had greater vascular endothelial nitric oxide synthase activation, lower phosphorylated cofilin, and filamentous actin content, with downregulation of pathways involved in production of reactive oxygen species. Our findings demonstrate that Empa improves endothelial function and reduces arterial stiffness in a preclinical model of aging, making SGLT2 inhibition a potential therapeutic alternative to reduce the progression of CVD in older individuals.
Collapse
Affiliation(s)
| | | | | | | | - Christopher A. Foote
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO USA
| | - Thaysa Ghiarone
- Department of Medicine, University of Missouri, Columbia, MO USA
| | - Neekun Sharma
- Department of Medicine, University of Missouri, Columbia, MO USA
| | - Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA
| | - James A. Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA ,Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO USA ,Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO USA
| | - Luis A. Martinez-Lemus
- Department of Medicine, University of Missouri, Columbia, MO USA ,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO USA ,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO USA ,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO USA ,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO USA
| | - Camila Manrique-Acevedo
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO USA ,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO USA ,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, MO USA
| |
Collapse
|
12
|
Effect of Empagliflozin on Sphingolipid Catabolism in Diabetic and Hypertensive Rats. Int J Mol Sci 2022; 23:ijms23052883. [PMID: 35270028 PMCID: PMC8910883 DOI: 10.3390/ijms23052883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022] Open
Abstract
The profile of sphingomyelin and its metabolites shows changes in the plasma, organs, and tissues of patients with cardiovascular, renal, and metabolic diseases. The objective of this study was to investigate the effect of empagliflozin on the levels of sphingomyelin and its metabolites, as well as on the activity of acid and neutral sphingomyelinase (aSMase and nSMase) and neutral ceramidase (nCDase) in the plasma, kidney, heart, and liver of streptozotocin-induced diabetic and Angiotensin II (Ang II)-induced hypertension rats. Empagliflozin treatment decreased hyperglycemia in diabetic rats whereas blood pressure remained elevated in hypertensive rats. In diabetic rats, empagliflozin treatment decreased sphingomyelin in the plasma and liver, ceramide in the heart, sphingosine-1-phosphate (S1P) in the kidney, and nCDase activity in the plasma, heart, and liver. In hypertensive rats, empagliflozin treatment decreased sphingomyelin in the plasma, kidney, and liver; S1P in the plasma and kidney; aSMase in the heart, and nCDase activity in the plasma, kidney, and heart. Our results suggest that empagliflozin downregulates the interaction of the de novo pathway and the catabolic pathway of sphingolipid metabolism in the diabetes, whereas in Ang II-dependent hypertension, it only downregulates the sphingolipid catabolic pathway.
Collapse
|
13
|
Tian Y, Fopiano KA, Buncha V, Lang L, Rudic RD, Filosa JA, Dou H, Bagi Z. Aging-induced impaired endothelial wall shear stress mechanosensing causes arterial remodeling via JAM-A/F11R shedding by ADAM17. GeroScience 2022; 44:349-369. [PMID: 34718985 PMCID: PMC8810930 DOI: 10.1007/s11357-021-00476-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022] Open
Abstract
Physiological and pathological vascular remodeling is uniquely driven by mechanical forces from blood flow in which wall shear stress (WSS) mechanosensing by the vascular endothelium plays a pivotal role. This study aimed to determine the novel role for a disintegrin and metalloproteinase 17 (ADAM17) in impaired WSS mechanosensing, which was hypothesized to contribute to aging-associated abnormal vascular remodeling. Without changes in arterial blood pressure and blood flow rate, skeletal muscle resistance arteries of aged mice (30-month-old vs. 12-week-old) exhibited impaired WSS mechanosensing and displayed inward hypertrophic arterial remodeling. These vascular changes were recapitulated by in vivo confined, AAV9-mediated overexpression of ADAM17 in the resistance arteries of young mice. An aging-related increase in ADAM17 expression reduced the endothelial junction level of its cleavage substrate, junctional adhesion molecule-A/F11 receptor (JAM-A/F11R). In cultured endothelial cells subjected to steady WSS ADAM17 activation or JAM-A/F11R knockdown inhibited WSS mechanosensing. The ADAM17-activation induced, impaired WSS mechanosensing was normalized by overexpression of ADAM17 cleavage resistant, mutated JAM-AV232Y both in cultured endothelial cells and in resistance arteries of aged mice, in vivo. These data demonstrate a novel role for ADAM17 in JAM-A/F11R cleavage-mediated impaired endothelial WSS mechanosensing and subsequently developed abnormal arterial remodeling in aging. ADAM17 could prove to be a key regulator of WSS mechanosensing, whereby it can also play a role in pathological vascular remodeling in diseases.
Collapse
Affiliation(s)
- Yanna Tian
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Katie Anne Fopiano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Vadym Buncha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Liwei Lang
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - R Daniel Rudic
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Huijuan Dou
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
14
|
Fuster JJ, Zuriaga MA, Zorita V, MacLauchlan S, Polackal MN, Viana-Huete V, Ferrer-Pérez A, Matesanz N, Herrero-Cervera A, Sano S, Cooper MA, González-Navarro H, Walsh K. TET2-Loss-of-Function-Driven Clonal Hematopoiesis Exacerbates Experimental Insulin Resistance in Aging and Obesity. Cell Rep 2020; 33:108326. [PMID: 33113366 PMCID: PMC7856871 DOI: 10.1016/j.celrep.2020.108326] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 01/10/2023] Open
Abstract
Human aging is frequently accompanied by the acquisition of somatic mutations in the hematopoietic system that induce clonal hematopoiesis, leading to the development of a mutant clone of hematopoietic progenitors and leukocytes. This somatic-mutation-driven clonal hematopoiesis has been associated with an increased incidence of cardiovascular disease and type 2 diabetes, but whether this epidemiological association reflects a direct, causal contribution of mutant hematopoietic and immune cells to age-related metabolic abnormalities remains unexplored. Here, we show that inactivating mutations in the epigenetic regulator TET2, which lead to clonal hematopoiesis, aggravate age- and obesity-related insulin resistance in mice. This metabolic dysfunction is paralleled by increased expression of the pro-inflammatory cytokine IL-1β in white adipose tissue, and it is suppressed by pharmacological inhibition of NLRP3 inflammasome-mediated IL-1β production. These findings support a causal contribution of somatic TET2 mutations to insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Boston University School of Medicine, Boston, MA, USA.
| | - María A Zuriaga
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Boston University School of Medicine, Boston, MA, USA
| | - Virginia Zorita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Vanesa Viana-Huete
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Alba Ferrer-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Nuria Matesanz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Andrea Herrero-Cervera
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA; Institute of Health Research-INCLIVA, Valencia, Spain
| | - Soichi Sano
- Boston University School of Medicine, Boston, MA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, QLD, Australia
| | - Herminia González-Navarro
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA; Institute of Health Research-INCLIVA, Valencia, Spain; Department of Didactics of Experimental and Social Sciences, University of Valencia, Valencia, Spain; CIBER Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Kenneth Walsh
- Boston University School of Medicine, Boston, MA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
16
|
Park MH, Lee JY, Park KH, Jung IK, Kim KT, Lee YS, Ryu HH, Jeong Y, Kang M, Schwaninger M, Gulbins E, Reichel M, Kornhuber J, Yamaguchi T, Kim HJ, Kim SH, Schuchman EH, Jin HK, Bae JS. Vascular and Neurogenic Rejuvenation in Aging Mice by Modulation of ASM. Neuron 2018; 100:167-182.e9. [PMID: 30269989 DOI: 10.1016/j.neuron.2018.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/19/2018] [Accepted: 09/05/2018] [Indexed: 01/26/2023]
Abstract
Although many reports have revealed dysfunction of endothelial cells in aging, resulting in blood-brain barrier (BBB) breakdown, the underlying mechanism or mechanisms remain to be explored. Here, we find that acid sphingomyelinase (ASM) is a critical factor for regulating brain endothelial barrier integrity. ASM is increased in brain endothelium and/or plasma of aged humans and aged mice, leading to BBB disruption by increasing caveolae-mediated transcytosis. Genetic inhibition and endothelial-specific knockdown of ASM in mice ameliorated BBB breakdown and neurocognitive impairment during aging. Using primary mouse brain endothelial cells, we found that ASM regulated the caveolae-cytoskeleton interaction through protein phosphatase 1-mediated ezrin/radixin/moesin (ERM) dephosphorylation and apoptosis. Moreover, mice with conditional ASM overexpression in brain endothelium accelerated significant BBB impairment and neurodegenerative change. Overall, these results reveal a novel role for ASM in the control of neurovascular function in aging, suggesting that ASM may represent a new therapeutic target for anti-aging.
Collapse
Affiliation(s)
- Min Hee Park
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Korea
| | - Ju Youn Lee
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Korea
| | - Kang Ho Park
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Korea
| | - In Kyung Jung
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Hee Ryu
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea; Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advance Institute of Science and Technology, Daejeon, Korea
| | - Minseok Kang
- Department of Bio and Brain Engineering, Korea Advance Institute of Science and Technology, Daejeon, Korea
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Hee-Jin Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hee Kyung Jin
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea.
| | - Jae-Sung Bae
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu, Korea; Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea; Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
17
|
Schoenauer R, Larpin Y, Babiychuk EB, Drücker P, Babiychuk VS, Avota E, Schneider-Schaulies S, Schumacher F, Kleuser B, Köffel R, Draeger A. Down‐regulation of acid sphingomyelinase and neutral sphingomyelinase‐2 inversely determines the cellular resistance to plasmalemmal injury by pore‐forming toxins. FASEB J 2018; 33:275-285. [DOI: 10.1096/fj.201800033r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Roman Schoenauer
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Yu Larpin
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Eduard B. Babiychuk
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Patrick Drücker
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | | | - Elita Avota
- Institute of Virology and ImmunobiologyUniversity of Würzburg Würzburg Germany
| | | | - Fabian Schumacher
- Institute of Nutritional ScienceUniversity of Potsdam Potsdam Germany
| | - Burkhard Kleuser
- Institute of Nutritional ScienceUniversity of Potsdam Potsdam Germany
| | - René Köffel
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Annette Draeger
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| |
Collapse
|
18
|
Trayssac M, Hannun YA, Obeid LM. Role of sphingolipids in senescence: implication in aging and age-related diseases. J Clin Invest 2018; 128:2702-2712. [PMID: 30108193 PMCID: PMC6025964 DOI: 10.1172/jci97949] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aging is defined as the progressive deterioration of physiological function with age. Incidence of many pathologies increases with age, including neurological and cardiovascular diseases and cancer. Aging tissues become less adaptable and renewable, and cells undergo senescence, a process by which they "irreversibly" stop dividing. Senescence has been shown to serve as a tumor suppression mechanism with clear desirable effects. However, senescence also has deleterious consequences, especially for cardiovascular, metabolic, and immune systems. Sphingolipids are a major class of lipids that regulate cell biology, owing to their structural and bioactive properties and diversity. Their involvement in the regulation of aging and senescence has been demonstrated and studied in multiple organisms and cell types, especially that of ceramide and sphingosine-1-phosphate; ceramide induces cellular senescence and sphingosine-1-phosphate delays it. These discoveries could be very useful in the future to understand aging mechanisms and improve therapeutic interventions.
Collapse
Affiliation(s)
- Magali Trayssac
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Yusuf A. Hannun
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Lina M. Obeid
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Northport Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
19
|
Morris TG, Borland SJ, Clarke CJ, Wilson C, Hannun YA, Ohanian V, Canfield AE, Ohanian J. Sphingosine 1-phosphate activation of ERM contributes to vascular calcification. J Lipid Res 2017; 59:69-78. [PMID: 29167409 DOI: 10.1194/jlr.m079731] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/11/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification is the deposition of mineral in the artery wall by vascular smooth muscle cells (VSMCs) in response to pathological stimuli. The process is similar to bone formation and is an independent risk factor for cardiovascular disease. Given that ceramide and sphingosine 1-phosphate (S1P) are involved in cardiovascular pathophysiology and biomineralization, their role in VSMC matrix mineralization was investigated. During phosphate-induced VSMC mineralization, endogenous S1P levels increased accompanied by increased sphingosine kinase (SK) activity and increased mRNA expression of SK1 and SK2. Consistent with this, mineralization was increased by exogenous S1P, but decreased by C2-ceramide. Mechanistically, exogenous S1P stimulated ezrin-radixin-moesin (ERM) phosphorylation in VSMCs and ERM phosphorylation was increased concomitantly with endogenous S1P during mineralization. Moreover, inhibition of acid sphingomyelinase and ceramidase with desipramine prevented increased S1P levels, ERM activation, and mineralization. Finally, pharmacological inhibition of ERM phosphorylation with NSC663894 decreased mineralization induced by phosphate and exogenous S1P. Although further studies will be needed to verify these findings in vivo, this study defines a novel role for the SK-S1P-ERM pathways in phosphate-induced VSMC matrix mineralization and shows that blocking these pathways with pharmacological inhibitors reduces mineralization. These results may inform new therapeutic approaches to inhibit or delay vascular calcification.
Collapse
Affiliation(s)
- Thomas G Morris
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Samantha J Borland
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Christopher J Clarke
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Claire Wilson
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Yusuf A Hannun
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Vasken Ohanian
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ann E Canfield
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jacqueline Ohanian
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Lacolley P, Regnault V, Segers P, Laurent S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev 2017; 97:1555-1617. [DOI: 10.1152/physrev.00003.2017] [Citation(s) in RCA: 483] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
The cushioning function of large arteries encompasses distension during systole and recoil during diastole which transforms pulsatile flow into a steady flow in the microcirculation. Arterial stiffness, the inverse of distensibility, has been implicated in various etiologies of chronic common and monogenic cardiovascular diseases and is a major cause of morbidity and mortality globally. The first components that contribute to arterial stiffening are extracellular matrix (ECM) proteins that support the mechanical load, while the second important components are vascular smooth muscle cells (VSMCs), which not only regulate actomyosin interactions for contraction but mediate also mechanotransduction in cell-ECM homeostasis. Eventually, VSMC plasticity and signaling in both conductance and resistance arteries are highly relevant to the physiology of normal and early vascular aging. This review summarizes current concepts of central pressure and tensile pulsatile circumferential stress as key mechanical determinants of arterial wall remodeling, cell-ECM interactions depending mainly on the architecture of cytoskeletal proteins and focal adhesion, the large/small arteries cross-talk that gives rise to target organ damage, and inflammatory pathways leading to calcification or atherosclerosis. We further speculate on the contribution of cellular stiffness along the arterial tree to vascular wall stiffness. In addition, this review provides the latest advances in the identification of gene variants affecting arterial stiffening. Now that important hemodynamic and molecular mechanisms of arterial stiffness have been elucidated, and the complex interplay between ECM, cells, and sensors identified, further research should study their potential to halt or to reverse the development of arterial stiffness.
Collapse
Affiliation(s)
- Patrick Lacolley
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Véronique Regnault
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Patrick Segers
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Stéphane Laurent
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| |
Collapse
|
21
|
Talaska K, Ferreira A. An Approach to Identifying Phenomena Accompanying Micro and Nanoparticles in Contact With Irregular Vessel Walls. IEEE Trans Nanobioscience 2017. [PMID: 28641266 DOI: 10.1109/tnb.2017.2717178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The objective of this paper is to present the method for determining the nature and values of the forces needed to set micro and nanoparticles sitting immobile at the blood vessel wall in motion. The problem was tackled in two ways. Microparticles were examined as objects coming into contact with the wall with the actual large arteriole-type vessel structure. The forces acting on microparticles 10, 30, and [Formula: see text] in diameter were determined: drag force FD , lift force FL , electrostatic force FE , and gravity force FG . Fluid-structure interaction analysis was used to research the problem. However, nanoparticles were examined as objects coming into contact with the endothelial surface layer (ESL). Resistance forces during the movement of nanoparticles 20, 50, and 100 nm in diameter in the ESL were determined. The same was done for aggregates of nanoparticles 50 nm in diameter. Local irregularities in wall surface are important for microparticles. Small irregularities with the small values of electrostatic force FE can effectively stop the particle. In the case of nanoparticles, the key is the interaction of the particle with ESL. The research methodology presented can be used to better understand the particle-blood vessel wall interaction phenomena, leading to a more informed particle movement control. The new application of known calculation methods presented in this paper can be successfully used as an additional tool that simplifies planning and design of strategies for drug delivery by means of micro and nanoparticles.
Collapse
|
22
|
Diaz-Otero JM, Garver H, Fink GD, Jackson WF, Dorrance AM. Aging is associated with changes to the biomechanical properties of the posterior cerebral artery and parenchymal arterioles. Am J Physiol Heart Circ Physiol 2016; 310:H365-75. [PMID: 26637558 PMCID: PMC4796626 DOI: 10.1152/ajpheart.00562.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/02/2015] [Indexed: 12/15/2022]
Abstract
Artery remodeling, described as a change in artery structure, may be responsible for the increased risk of cardiovascular disease with aging. Although the risk for stroke is known to increase with age, relatively young animals have been used in most stroke studies. Therefore, more information is needed on how aging alters the biomechanical properties of cerebral arteries. Posterior cerebral arteries (PCAs) and parenchymal arterioles (PAs) are important in controlling brain perfusion. We hypothesized that aged (22-24 mo old) C57bl/6 mice would have stiffer PCAs and PAs than young (3-5 mo old) mice. The biomechanical properties of the PCAs and PAs were assessed by pressure myography. Data are presented as means ± SE of young vs. old. In the PCA, older mice had increased outer (155.6 ± 3.2 vs. 169.9 ± 3.2 μm) and lumen (116.4 ± 3.6 vs. 137.1 ± 4.7 μm) diameters. Wall stress (375.6 ± 35.4 vs. 504.7 ± 60.0 dyn/cm(2)) and artery stiffness (β-coefficient: 5.2 ± 0.3 vs. 7.6 ± 0.9) were also increased. However, wall strain (0.8 ± 0.1 vs. 0.6 ± 0.1) was reduced with age. In the PAs from old mice, wall thickness (3.9 ± 0.3 vs. 5.1 ± 0.2 μm) and area (591.1 ± 95.4 vs. 852.8 ± 100 μm(2)) were increased while stress (758.1 ± 100.0 vs. 587.2 ± 35.1 dyn/cm(2)) was reduced. Aging also increased mean arterial and pulse pressures. We conclude that age-associated remodeling occurs in large cerebral arteries and arterioles and may increase the risk of cerebrovascular disease.
Collapse
Affiliation(s)
- Janice M Diaz-Otero
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
23
|
Wang K, Xu R, Schrandt J, Shah P, Gong YZ, Preston C, Wang L, Yi JK, Lin CL, Sun W, Spyropoulos DD, Rhee S, Li M, Zhou J, Ge S, Zhang G, Snider AJ, Hannun YA, Obeid LM, Mao C. Alkaline Ceramidase 3 Deficiency Results in Purkinje Cell Degeneration and Cerebellar Ataxia Due to Dyshomeostasis of Sphingolipids in the Brain. PLoS Genet 2015; 11:e1005591. [PMID: 26474409 PMCID: PMC4608763 DOI: 10.1371/journal.pgen.1005591] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 09/18/2015] [Indexed: 01/21/2023] Open
Abstract
Dyshomeostasis of both ceramides and sphingosine-1-phosphate (S1P) in the brain has been implicated in aging-associated neurodegenerative disorders in humans. However, mechanisms that maintain the homeostasis of these bioactive sphingolipids in the brain remain unclear. Mouse alkaline ceramidase 3 (Acer3), which preferentially catalyzes the hydrolysis of C18:1-ceramide, a major unsaturated long-chain ceramide species in the brain, is upregulated with age in the mouse brain. Acer3 knockout causes an age-dependent accumulation of various ceramides and C18:1-monohexosylceramide and abolishes the age-related increase in the levels of sphingosine and S1P in the brain; thereby resulting in Purkinje cell degeneration in the cerebellum and deficits in motor coordination and balance. Our results indicate that Acer3 plays critically protective roles in controlling the homeostasis of various sphingolipids, including ceramides, sphingosine, S1P, and certain complex sphingolipids in the brain and protects Purkinje cells from premature degeneration. Bioactive sphingolipids, such as ceramides and sphingosine-1-phosphates, have been implicated in neurodegenerative diseases. However, it remains unclear as to how the homeostasis of these bioactive lipids is sustained. Alkaline ceramidase 3 (ACER3) catalyzes the hydrolysis of saturated long-chain ceramides (C18:1-ceramide and C20:1-ceramide) to generate sphingosine (SPH), which is phosphorylated to form sphingosine-1-phosphate (S1P). In this study we found that Acer3 is upregulated with age in the mouse brain and blocking Acer3 upregulation elevates the levels of ceramides while reducing S1P levels in the brain, thereby resulting in Purkinje cell loss and cerebellar ataxia. This study not only offers novel insights into the role for the homeostasis of ceramides and their metabolites in regulating normal aging of the cerebellum, but also provides a useful genetic tool to dissect the mechanism by which an aberrant accumulation of ceramides results in age-related neurological disorders.
Collapse
Affiliation(s)
- Kai Wang
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruijuan Xu
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Jennifer Schrandt
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Prithvi Shah
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York, United States of America
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
| | - Yong Z. Gong
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Chet Preston
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York, United States of America
| | - Louis Wang
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York, United States of America
| | - Jae Kyo Yi
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Chih-Li Lin
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Wei Sun
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Demetri D. Spyropoulos
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Soyoung Rhee
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Mingsong Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyu Ge
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Guofeng Zhang
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institute of Health, Bethesda, Maryland, United States of America
| | - Ashley J. Snider
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
- Northport Veterans Affairs Medical Center, Northport, New York, United States of America
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
- Northport Veterans Affairs Medical Center, Northport, New York, United States of America
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Affiliation(s)
- Brian R Weil
- From the Departments of Medicine, Biomedical Engineering, and Physiology and Biophysics, The Veterans Affairs Western New York Healthcare System and the Clinical and Translational Research Center at the University at Buffalo
| | - John M Canty
- From the Departments of Medicine, Biomedical Engineering, and Physiology and Biophysics, The Veterans Affairs Western New York Healthcare System and the Clinical and Translational Research Center at the University at Buffalo.
| |
Collapse
|
25
|
Ageing, adipose tissue, fatty acids and inflammation. Biogerontology 2014; 16:235-48. [PMID: 25367746 DOI: 10.1007/s10522-014-9536-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022]
Abstract
A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults.
Collapse
|
26
|
Shamseddine AA, Airola MV, Hannun YA. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv Biol Regul 2014; 57:24-41. [PMID: 25465297 DOI: 10.1016/j.jbior.2014.10.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/11/2014] [Indexed: 12/23/2022]
Abstract
Our understanding of the functions of ceramide signaling has advanced tremendously over the past decade. In this review, we focus on the roles and regulation of neutral sphingomyelinase 2 (nSMase2), an enzyme that generates the bioactive lipid ceramide through the hydrolysis of the membrane lipid sphingomyelin. A large body of work has now implicated nSMase2 in a diverse set of cellular functions, physiological processes, and disease pathologies. We discuss different aspects of this enzyme's regulation from transcriptional, post-translational, and biochemical. Furthermore, we highlight nSMase2 involvement in cellular processes including inflammatory signaling, exosome generation, cell growth, and apoptosis, which in turn play important roles in pathologies such as cancer metastasis, Alzheimer's disease, and other organ systems disorders. Lastly, we examine avenues where targeted nSMase2-inhibition may be clinically beneficial in disease scenarios.
Collapse
Affiliation(s)
- Achraf A Shamseddine
- Department of Medicine, Stony Brook, NY 11794, USA; The Stony Brook Cancer Center, Stony Brook, NY 11794, USA
| | - Michael V Airola
- Department of Medicine, Stony Brook, NY 11794, USA; The Stony Brook Cancer Center, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook, NY 11794, USA; The Stony Brook Cancer Center, Stony Brook, NY 11794, USA.
| |
Collapse
|