1
|
Porter AW, Vorndran HE, Marciszyn A, Mutchler SM, Subramanya AR, Kleyman TR, Hendershot LM, Brodsky JL, Buck TM. Excess dietary sodium restores electrolyte and water homeostasis caused by loss of the endoplasmic reticulum molecular chaperone, GRP170, in the mouse nephron. Am J Physiol Renal Physiol 2025; 328:F173-F189. [PMID: 39556479 DOI: 10.1152/ajprenal.00192.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an acute kidney injury (AKI)-like phenotype, typified by tubular injury, elevation of kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers apoptosis, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in these rodents and that these and other phenotypes might be rectified by sodium supplementation. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and kidney injury markers in a sex-specific manner but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model and indicate that GRP170 function in kidney epithelia is essential to both maintain electrolyte balance and ER homeostasis.NEW & NOTEWORTHY Loss of the endoplasmic reticulum chaperone, GRP170, results in widespread kidney injury and induction of the unfolded protein response (UPR). We now show that sodium supplementation is able to at least partially restore electrolyte imbalance and reduce kidney injury markers in a sex-dependent manner.
Collapse
Affiliation(s)
- Aidan W Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Pediatric Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hannah E Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Allison Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Stephanie M Mutchler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
2
|
Porter A, Vorndran HE, Marciszyn A, Mutchler SM, Subramanya AR, Kleyman TR, Hendershot LM, Brodsky JL, Buck TM. Excess dietary sodium partially restores salt and water homeostasis caused by loss of the endoplasmic reticulum molecular chaperone, GRP170, in the mouse nephron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575426. [PMID: 38260467 PMCID: PMC10802592 DOI: 10.1101/2024.01.13.575426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an AKI-like phenotype, typified by tubular injury, elevation of clinical kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers an apoptotic response, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in rodents, but that these and other phenotypes might be rectified by supplementation with high salt. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided with a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and reduced clinical kidney injury markers, but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model, and that the role of GRP170 in kidney epithelia is essential to both maintain electrolyte balance and cellular protein homeostasis.
Collapse
Affiliation(s)
- Aidan Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
- Division of Pediatric Nephrology, University of Pittsburgh, Pittsburgh, PA
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Allison Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Stephanie M. Mutchler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Arohan R. Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
3
|
Guindolet D, Woodward AM, Gabison EE, Argüeso P. Alleviation of Endoplasmic Reticulum Stress Enhances Human Corneal Epithelial Cell Viability under Hyperosmotic Conditions. Int J Mol Sci 2022; 23:ijms23094528. [PMID: 35562919 PMCID: PMC9104051 DOI: 10.3390/ijms23094528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Tear hyperosmolarity plays an essential role in the initiation and progression of dry-eye disease. Under a hyperosmotic environment, corneal epithelial cells experience perturbations in endoplasmic reticulum function that can lead to proinflammatory signaling and apoptosis. In this study, we investigated the effect of tauroursodeoxycholic acid (TUDCA), a chemical chaperone known to protect against endoplasmic reticulum stress, on corneal epithelial cells exposed to hyperosmotic conditions. We found that the expression of the genes involved in the activation of the unfolded protein response and the pro-apoptotic transcription factor DDIT3 were markedly upregulated in patients with Sjögren’s dry-eye disease and in a human model of corneal epithelial differentiation following treatment with hyperosmotic saline. Experiments in vitro demonstrated that TUDCA prevented hyperosmotically induced cell death by reducing nuclear DNA fragmentation and caspase-3 activation. TUDCA supplementation also led to the transcriptional repression of CXCL8 and IL5, two inflammatory mediators associated with dry-eye pathogenesis. These studies highlight the role of hyperosmotic conditions in promoting endoplasmic reticulum stress in the cornea and identify TUDCA as a potential therapeutic agent for the treatment of dry-eye disease.
Collapse
Affiliation(s)
- Damien Guindolet
- Schepens Eye Research Institute of Mass. Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114, USA; (D.G.); (A.M.W.)
- Hôpital Fondation A. de Rothschild, 25 rue Manin, 75019 Paris, France;
| | - Ashley M. Woodward
- Schepens Eye Research Institute of Mass. Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114, USA; (D.G.); (A.M.W.)
| | - Eric E. Gabison
- Hôpital Fondation A. de Rothschild, 25 rue Manin, 75019 Paris, France;
- UFR Médecine, Université Paris Cité, 75018 Paris, France
| | - Pablo Argüeso
- Schepens Eye Research Institute of Mass. Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114, USA; (D.G.); (A.M.W.)
- Correspondence:
| |
Collapse
|
4
|
Casali CI, Parra L, Erjavec LC, Fernández Tome MDC. Analysis of XBP1 Contribution to Hyperosmolarity-Induced Lipid Synthesis. Methods Mol Biol 2022; 2378:169-187. [PMID: 34985700 DOI: 10.1007/978-1-0716-1732-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The unfolded protein response (UPR) is a complex network of intracellular pathways that transmits signals from ER lumen and/or ER bilayer to the nuclear compartment in order to activate gene transcription. UPR is activated by the loss of ER capacities, known as ER stress, and occurs to restore ER properties. In this regard, glycerolipid (GL) synthesis activation contributes to ER membrane homeostasis and IRE1α-XBP1, one UPR pathway, has a main role in lipogenic genes transcription. Herein, we describe the strategy and methodology used to evaluate whether IRE1α-XBP1 pathway regulates lipid metabolism in renal epithelial cells subjected to hyperosmolar environment. XBP1s activity was hindered by blocking IRE1α RNAse activity and by impeding its expression; under these conditions, we determined GL synthesis and lipogenic enzymes expression.
Collapse
Affiliation(s)
- Cecilia I Casali
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Leandro Parra
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luciana C Erjavec
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Del Carmen Fernández Tome
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Miyata Y, Fuse H, Tokumoto S, Hiki Y, Deviatiiarov R, Yoshida Y, Yamada TG, Cornette R, Gusev O, Shagimardanova E, Funahashi A, Kikawada T. Cas9-mediated genome editing reveals a significant contribution of calcium signaling pathways to anhydrobiosis in Pv11 cells. Sci Rep 2021; 11:19698. [PMID: 34611198 PMCID: PMC8492635 DOI: 10.1038/s41598-021-98905-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/16/2021] [Indexed: 01/01/2023] Open
Abstract
Pv11 is an insect cell line established from the midge Polypedilum vanderplanki, whose larval form exhibits an extreme desiccation tolerance known as anhydrobiosis. Pv11 itself is also capable of anhydrobiosis, which is induced by trehalose treatment. Here we report the successful construction of a genome editing system for Pv11 cells and its application to the identification of signaling pathways involved in anhydrobiosis. Using the Cas9-mediated gene knock-in system, we established Pv11 cells that stably expressed GCaMP3 to monitor intracellular Ca2+ mobilization. Intriguingly, trehalose treatment evoked a transient increase in cytosolic Ca2+ concentration, and further experiments revealed that the calmodulin-calcineurin-NFAT pathway contributes to tolerance of trehalose treatment as well as desiccation tolerance, while the calmodulin-calmodulin kinase-CREB pathway conferred only desiccation tolerance on Pv11 cells. Thus, our results show a critical contribution of the trehalose-induced Ca2+ surge to anhydrobiosis and demonstrate temporally different roles for each signaling pathway.
Collapse
Affiliation(s)
- Yugo Miyata
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hiroto Fuse
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoko Tokumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yusuke Hiki
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Ruslan Deviatiiarov
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Takahiro G Yamada
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Richard Cornette
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Oleg Gusev
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa, Japan
| | - Elena Shagimardanova
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Takahiro Kikawada
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
6
|
Ion Channels as Therapeutic Targets for Viral Infections: Further Discoveries and Future Perspectives. Viruses 2020; 12:v12080844. [PMID: 32756358 PMCID: PMC7472218 DOI: 10.3390/v12080844] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Ion channels play key roles in almost all facets of cellular physiology and have emerged as key host cell factors for a multitude of viral infections. A catalogue of ion channel-blocking drugs have been shown to possess antiviral activity, some of which are in widespread human usage for ion channel-related diseases, highlighting new potential for drug repurposing. The emergence of ion channel–virus interactions has also revealed the intriguing possibility that channelopathies may explain some commonly observed virus induced pathologies. This field is rapidly evolving and an up-to-date summary of new discoveries can inform future perspectives. We herein discuss the role of ion channels during viral lifecycles, describe the recently identified ion channel drugs that can inhibit viral infections, and highlight the potential contribution of ion channels to virus-mediated disease.
Collapse
|
7
|
Heimer S, Knoll G, Neubert P, Hammer KP, Wagner S, Bauer RJ, Jantsch J, Ehrenschwender M. Hypertonicity counteracts MCL-1 and renders BCL-XL a synthetic lethal target in head and neck cancer. FEBS J 2020; 288:1822-1838. [PMID: 32710568 DOI: 10.1111/febs.15492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive and difficult-to-treat cancer entity. Current therapies ultimately aim to activate the mitochondria-controlled (intrinsic) apoptosis pathway, but complex alterations in intracellular signaling cascades and the extracellular microenvironment hamper treatment response. On the one hand, proteins of the BCL-2 family set the threshold for cell death induction and prevent accidental cellular suicide. On the other hand, controlling a cell's readiness to die also determines whether malignant cells are sensitive or resistant to anticancer treatments. Here, we show that HNSCC cells upregulate the proapoptotic BH3-only protein NOXA in response to hyperosmotic stress. Induction of NOXA is sufficient to counteract the antiapoptotic properties of MCL-1 and switches HNSCC cells from dual BCL-XL/MCL-1 protection to exclusive BCL-XL addiction. Hypertonicity-induced functional loss of MCL-1 renders BCL-XL a synthetically lethal target in HNSCC, and inhibition of BCL-XL efficiently kills HNSCC cells that poorly respond to conventional therapies. We identify hypertonicity-induced upregulation of NOXA as link between osmotic pressure in the tumor environment and mitochondrial priming, which could perspectively be exploited to boost efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Sina Heimer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Gertrud Knoll
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Karin P Hammer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Richard J Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany.,Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology, University Hospital Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Martin Ehrenschwender
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Sassi A, Wang Y, Chassot A, Komarynets O, Roth I, Olivier V, Crambert G, Dizin E, Boscardin E, Hummler E, Feraille E. Interaction between Epithelial Sodium Channel γ-Subunit and Claudin-8 Modulates Paracellular Sodium Permeability in Renal Collecting Duct. J Am Soc Nephrol 2020; 31:1009-1023. [PMID: 32245797 DOI: 10.1681/asn.2019080790] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Water and solute transport across epithelia can occur via the transcellular or paracellular pathways. Tight junctions play a key role in mediating paracellular ion reabsorption in the kidney. In the renal collecting duct, which is a typical absorptive tight epithelium, coordination between transcellular sodium reabsorption and paracellular permeability may prevent the backflow of reabsorbed sodium to the tubular lumen along a steep electrochemical gradient. METHODS To investigate whether transcellular sodium transport controls tight-junction composition and paracellular permeability via modulating expression of the transmembrane protein claudin-8, we used cultured mouse cortical collecting duct cells to see how overexpression or silencing of epithelial sodium channel (ENaC) subunits and claudin-8 affect paracellular permeability. We also used conditional kidney tubule-specific knockout mice lacking ENaC subunits to assess the ENaC's effect on claudin-8 expression. RESULTS Overexpression or silencing of the ENaC γ-subunit was associated with parallel and specific changes in claudin-8 abundance. Increased claudin-8 abundance was associated with a reduction in paracellular permeability to sodium, whereas decreased claudin-8 abundance was associated with the opposite effect. Claudin-8 overexpression and silencing reproduced these functional effects on paracellular ion permeability. Conditional kidney tubule-specific ENaC γ-subunit knockout mice displayed decreased claudin-8 expression, confirming the cell culture experiments' findings. Importantly, ENaC β-subunit or α-subunit silencing or kidney tubule-specific β-ENaC or α-ENaC knockout mice did not alter claudin-8 abundance. CONCLUSIONS Our data reveal the specific coupling between ENaC γ-subunit and claudin-8 expression. This coupling may play an important role in preventing the backflow of reabsorbed solutes and water to the tubular lumen, as well as in coupling paracellular and transcellular sodium permeability.
Collapse
Affiliation(s)
- Ali Sassi
- Department of Cellular Physiology and Metabolism, University of Geneva, University Medical Center, Geneva, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| | - Yubao Wang
- Department of Cellular Physiology and Metabolism, University of Geneva, University Medical Center, Geneva, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| | - Alexandra Chassot
- Department of Cellular Physiology and Metabolism, University of Geneva, University Medical Center, Geneva, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| | - Olga Komarynets
- Department of Cellular Physiology and Metabolism, University of Geneva, University Medical Center, Geneva, Switzerland
| | - Isabelle Roth
- Department of Cellular Physiology and Metabolism, University of Geneva, University Medical Center, Geneva, Switzerland
| | - Valérie Olivier
- Department of Cellular Physiology and Metabolism, University of Geneva, University Medical Center, Geneva, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| | - Gilles Crambert
- Sorbonne University, Unité Mixte de Recherche (UMR) S1138, Cordeliers Research Center, Paris, France
| | - Eva Dizin
- Department of Cellular Physiology and Metabolism, University of Geneva, University Medical Center, Geneva, Switzerland.,National Center of Competence in Research Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| | - Emilie Boscardin
- National Center of Competence in Research Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- National Center of Competence in Research Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland.,Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Eric Feraille
- Department of Cellular Physiology and Metabolism, University of Geneva, University Medical Center, Geneva, Switzerland .,National Center of Competence in Research Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland
| |
Collapse
|
9
|
Ziemens A, Sonntag SR, Wulfmeyer VC, Edemir B, Bleich M, Himmerkus N. Claudin 19 Is Regulated by Extracellular Osmolality in Rat Kidney Inner Medullary Collecting Duct Cells. Int J Mol Sci 2019; 20:ijms20184401. [PMID: 31500238 PMCID: PMC6770061 DOI: 10.3390/ijms20184401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 01/27/2023] Open
Abstract
The inner medullary collecting duct (IMCD) is subject to severe changes in ambient osmolality and must either allow water transport or be able to seal the lumen against a very high osmotic pressure. We postulate that the tight junction protein claudin-19 is expressed in IMCD and that it takes part in epithelial adaptation to changing osmolality at different functional states. Presence of claudin-19 in rat IMCD was investigated by Western blotting and immunofluorescence. Primary cell culture of rat IMCD cells on permeable filter supports was performed under different osmotic culture conditions and after stimulation by antidiuretic hormone (AVP). Electrogenic transepithelial transport properties were measured in Ussing chambers. IMCD cells cultivated at 300 mosm/kg showed high transepithelial resistance, a cation selective paracellular pathway and claudin-19 was mainly located in the tight junction. Treatment by AVP increased cation selectivity but did not alter transepithelial resistance or claudin-19 subcellular localization. In contrast, IMCD cells cultivated at 900 mosm/kg had low transepithelial resistance, anion selectivity, and claudin-19 was relocated from the tight junctions to intracellular vesicles. The data shows osmolality-dependent transformation of IMCD epithelium from tight and sodium-transporting to leaky, with claudin-19 expression in the tight junction associated to tightness and cation selectivity under low osmolality.
Collapse
Affiliation(s)
- Annalisa Ziemens
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
| | - Svenja R Sonntag
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Vera C Wulfmeyer
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
- Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Bayram Edemir
- Department of Internal Medicine IV, Hematology and Oncology, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| | - Markus Bleich
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
| |
Collapse
|
10
|
Mose FH, Jörgensen AN, Vrist MH, Ekelöf NP, Pedersen EB, Bech JN. Effect of 3% saline and furosemide on biomarkers of kidney injury and renal tubular function and GFR in healthy subjects - a randomized controlled trial. BMC Nephrol 2019; 20:200. [PMID: 31159750 PMCID: PMC6545674 DOI: 10.1186/s12882-019-1342-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chloride is speculated to have nephrotoxic properties. In healthy subjects we tested the hypothesis that acute chloride loading with 3% saline would induce kidney injury, which could be prevented with the loop-diuretic furosemide. METHODS The study was designed as a randomized, placebo-controlled, crossover study. Subjects were given 3% saline accompanied by either placebo or furosemide. Before, during and after infusion of 3% saline we measured glomerular filtration rate (GFR), fractional excretion of sodium (FENa), urinary chloride excretion (u-Cl), urinary excretions of aquaporin-2 (u-AQP2) and epithelial sodium channels (u-ENaCγ), neutrophil gelatinase-associated lipocalin (u-NGAL) and kidney injury molecule-1 (u-KIM-1) as marker of kidney injury and vasoactive hormones: renin (PRC), angiotensin II (p-AngII), aldosterone (p-Aldo) and arginine vasopressin (p-AVP). Four days prior to each of the two examinations subjects were given a standardized fluid and diet intake. RESULTS After 3% saline infusion u-NGAL and KIM-1 excretion increased slightly (u-NGAL: 17 ± 24 during placebo vs. -7 ± 23 ng/min during furosemide, p = 0.039, u-KIM-1: 0.21 ± 0.23 vs - 0.06 ± 0.14 ng/ml, p < 0.001). The increase in u-NGAL was absent when furosemide was given simultaneously, and the responses in u-NGAL were not significantly different from placebo control. Furosemide changed responses in u-KIM-1 where a delayed increase was observed. GFR was increased by 3% saline but decreased when furosemide accompanied the infusion. U-Na, FENa, u-Cl, and u-osmolality increased in response to saline, and the increase was markedly pronounced when furosemide was added. FEK decreased slightly during 3% saline infusion, but simultaneously furosemide increased FEK. U-AQP2 increased after 3% saline and placebo, and the response was further increased by furosemide. U-ENaCγ decreased to the same extent after 3% saline infusion in the two groups. 3% saline significantly reduced PRC, p-AngII and p-Aldo, and responses were attenuated by furosemide. p-AVP was increased by 3% saline, with a larger increase during furosemide. CONCLUSION This study shows minor increases in markers of kidney injury after 3% saline infusion Furosemide abolished the increase in NGAL and postponed the increase in u-KIM-1. The clinical importance of these findings needs further investigation. TRIAL REGISTRATION (EU Clinical trials register number: 2015-002585-23 , registered on 5th November 2015).
Collapse
Affiliation(s)
- F. H. Mose
- Holstebro Hospital, Hospital Unit West, Holstebro, Denmark
- University Clinic in Nephrology and Hypertension, Aarhus University, Aarhus, Denmark
| | - A. N. Jörgensen
- Holstebro Hospital, Hospital Unit West, Holstebro, Denmark
- University Clinic in Nephrology and Hypertension, Aarhus University, Aarhus, Denmark
| | - M. H. Vrist
- Holstebro Hospital, Hospital Unit West, Holstebro, Denmark
- University Clinic in Nephrology and Hypertension, Aarhus University, Aarhus, Denmark
| | - N. P. Ekelöf
- Department of Anaesthesiology, Holstebro Hospital, Hospital Unit West, Holstebro, Denmark
| | - E. B. Pedersen
- Holstebro Hospital, Hospital Unit West, Holstebro, Denmark
- University Clinic in Nephrology and Hypertension, Aarhus University, Aarhus, Denmark
| | - J. N. Bech
- Holstebro Hospital, Hospital Unit West, Holstebro, Denmark
- University Clinic in Nephrology and Hypertension, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Brand JD, Lazrak A, Trombley JE, Shei RJ, Adewale AT, Tipper JL, Yu Z, Ashtekar AR, Rowe SM, Matalon S, Harrod KS. Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis. JCI Insight 2018; 3:123467. [PMID: 30333319 DOI: 10.1172/jci.insight.123467] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
Severe influenza (IAV) infection can develop into bronchopneumonia and edema, leading to acquired respiratory distress syndrome (ARDS) and pathophysiology. Underlying causes for pulmonary edema and aberrant fluid regulation largely remain unknown, particularly regarding the role of viral-mediated mechanisms. Herein, we show that distinct IAV strains reduced the functions of the epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane regulator (CFTR) in murine respiratory and alveolar epithelia in vivo, as assessed by measurements of nasal potential differences and single-cell electrophysiology. Reduced ion channel activity was distinctly limited to virally infected cells in vivo and not bystander uninfected lung epithelium. Multiple lines of evidence indicated ENaC and CFTR dysfunction during the acute infection period; however, only CFTR dysfunction persisted beyond the infection period. ENaC, CFTR, and Na,K-ATPase activities and protein levels were also reduced in virally infected human airway epithelial cells. Reduced ENaC and CFTR led to changes in airway surface liquid morphology of human tracheobronchial cultures and airways of IAV-infected mice. Pharmacologic correction of CFTR function ameliorated IAV-induced physiologic changes. These changes are consistent with mucous stasis and pulmonary edema; furthermore, they indicate that repurposing therapeutic interventions correcting CFTR dysfunction may be efficacious for treatment of IAV lung pathophysiology.
Collapse
Affiliation(s)
- Jeffrey D Brand
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - John E Trombley
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Ren-Jay Shei
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Timothy Adewale
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Tipper
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Amit R Ashtekar
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Steven M Rowe
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| |
Collapse
|
12
|
Mitochondria, Oxytocin, and Vasopressin: Unfolding the Inflammatory Protein Response. Neurotox Res 2018; 36:239-256. [PMID: 30259418 DOI: 10.1007/s12640-018-9962-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
Neuroendocrine and immune signaling pathways are activated following insults such as stress, injury, and infection, in a systemic response aimed at restoring homeostasis. Mitochondrial metabolism and function have been implicated in the control of immune responses. Commonly studied along with mitochondrial function, reactive oxygen species (ROS) are closely linked to cellular inflammatory responses. It is also accepted that cells experiencing mitochondrial or endoplasmic reticulum (ER) stress induce response pathways in order to cope with protein-folding dysregulation, in homeostatic responses referred to as the unfolded protein responses (UPRs). Recent reports indicate that the UPRs may play an important role in immune responses. Notably, the homeostasis-regulating hormones oxytocin (OXT) and vasopressin (AVP) are also associated with the regulation of inflammatory responses and immune function. Intriguingly, OXT and AVP have been linked with ER unfolded protein responses (UPRER), and can impact ROS production and mitochondrial function. Here, we will review the evidence for interactions between these various factors and how these neuropeptides might influence mitochondrial processes.
Collapse
|
13
|
Ernandez T, Udwan K, Chassot A, Martin PY, Feraille E. Uninephrectomy and apical fluid shear stress decrease ENaC abundance in collecting duct principal cells. Am J Physiol Renal Physiol 2017; 314:F763-F772. [PMID: 28877879 DOI: 10.1152/ajprenal.00200.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute nephron reduction such as after living kidney donation may increase the risk of hypertension. Uninephrectomy induces major hemodynamic changes in the remaining kidney, resulting in rapid increase of single-nephron glomerular filtration rate (GFR) and fluid delivery in the distal nephron. Decreased sodium (Na) fractional reabsorption after the distal tubule has been reported after uninephrectomy in animals preserving volume homeostasis. In the present study, we thought to specifically explore the effect of unilateral nephrectomy on epithelial Na channel (ENaC) subunit expression in mice. We show that γ-ENaC subunit surface expression was specifically downregulated after uninephrectomy, whereas the expression of the aldosterone-sensitive α-ENaC and α1-Na-K-ATPase subunits as well as of kidney-specific Na-K-Cl cotransporter isoform and Na-Cl cotransporter were not significantly altered. Because acute nephron reduction induces a rapid increase of single-nephron GFR, resulting in a higher tubular fluid flow, we speculated that local mechanical factors such as fluid shear stress (FSS) were involved in Na reabsorption regulation after uninephrectomy. We further explore such hypothesis in an in vitro model of FSS applied on highly differentiated collecting duct principal cells. We found that FSS specifically downregulates β-ENaC and γ-ENaC subunits at the transcriptional level through an unidentified heat-insensitive paracrine basolateral factor. The primary cilium as a potential mechanosensor was not required. In contrast, protein kinase A and calcium-sensitive cytosolic phospholipase A2 were involved, but we could not demonstrate a role for cyclooxygenase or epoxygenase metabolites.
Collapse
Affiliation(s)
- T Ernandez
- Service of Nephrology, University Hospital of Geneva , Geneva , Switzerland.,Department of Cell Physiology and Metabolism, University Medical Center , Geneva , Switzerland
| | - K Udwan
- Department of Cell Physiology and Metabolism, University Medical Center , Geneva , Switzerland
| | - A Chassot
- Department of Cell Physiology and Metabolism, University Medical Center , Geneva , Switzerland
| | - P-Y Martin
- Service of Nephrology, University Hospital of Geneva , Geneva , Switzerland
| | - E Feraille
- Department of Cell Physiology and Metabolism, University Medical Center , Geneva , Switzerland
| |
Collapse
|