1
|
Chen J, Markworth JF, Ferreira C, Zhang C, Kuang S. Lipid droplets as cell fate determinants in skeletal muscle. Trends Endocrinol Metab 2024:S1043-2760(24)00274-1. [PMID: 39613547 DOI: 10.1016/j.tem.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 12/01/2024]
Abstract
Lipid droplets (LDs) are dynamic organelles that communicate with other cellular components to orchestrate energetic homeostasis and signal transduction. In skeletal muscle, the presence and importance of LDs have been widely studied in myofibers of both rodents and humans under physiological conditions and in metabolic disorders. However, the role of LDs in myogenic stem cells has only recently begun to be unveiled. In this review we briefly summarize the process of LD biogenesis and degradation in the most prevalent model. We then review recent knowledge on LDs in skeletal muscle and muscle stem cells. We further introduce advanced methodologies for LD imaging and mass spectrometry that have propelled our understanding of the dynamics and heterogeneity of LDs.
Collapse
Affiliation(s)
- Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA
| | - James F Markworth
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Christina Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Fan Y, Chen J, Fan Z, Chirinos J, Stein JL, Sullivan PF, Wang R, Nadig A, Zhang DY, Huang S, Jiang Z, Guan PY, Qian X, Li T, Li H, Sun Z, Ritchie MD, O’Brien J, Witschey W, Rader DJ, Li T, Zhu H, Zhao B. Mapping rare protein-coding variants on multi-organ imaging traits. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.16.24317443. [PMID: 39606337 PMCID: PMC11601754 DOI: 10.1101/2024.11.16.24317443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Human organ structure and function are important endophenotypes for clinical outcomes. Genome-wide association studies (GWAS) have identified numerous common variants associated with phenotypes derived from magnetic resonance imaging (MRI) of the brain and body. However, the role of rare protein-coding variations affecting organ size and function is largely unknown. Here we present an exome-wide association study that evaluates 596 multi-organ MRI traits across over 50,000 individuals from the UK Biobank. We identified 107 variant-level associations and 224 gene-based burden associations (67 unique gene-trait pairs) across all MRI modalities, including PTEN with total brain volume, TTN with regional peak circumferential strain in the heart left ventricle, and TNFRSF13B with spleen volume. The singleton burden model and AlphaMissense annotations contributed 8 unique gene-trait pairs including the association between an approved drug target gene of KCNA5 and brain functional activity. The identified rare coding signals elucidate some shared genetic regulation across organs, prioritize previously identified GWAS loci, and are enriched for drug targets. Overall, we demonstrate how rare variants enhance our understanding of genetic effects on human organ morphology and function and their connections to complex diseases.
Collapse
Affiliation(s)
- Yijun Fan
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zirui Fan
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julio Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jason L. Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick F. Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rujin Wang
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY, 10591, USA
| | - Ajay Nadig
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Y. Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuai Huang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhiwen Jiang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter Yi Guan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xinjie Qian
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ting Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haoyue Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zehui Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
| | - Joan O’Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Medicine Center for Ophthalmic Genetics in Complex Diseases, Philadelphia, PA 19104, USA
| | - Walter Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bingxin Zhao
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
- Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Population Aging Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Eye-Brain Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Adamo KB, Goudreau AD, Corson AE, MacDonald ML, O'Rourke N, Tzaneva V. Physically active pregnancies: Insights from the placenta. Physiol Rep 2024; 12:e16104. [PMID: 38872466 PMCID: PMC11176744 DOI: 10.14814/phy2.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Physical activity (PA) positively influences pregnancy, a critical period for health promotion, and affects placental structure and function in ways previously overlooked. Here, we summarize the current body of literature examining the association between PA, placenta biology, and physiology while also highlighting areas where gaps in knowledge exist. PA during pregnancy induces metabolic changes, influencing nutrient availability and transporter expression in the placenta. Hormones and cytokines secreted during PA contribute to health benefits, with intricate interactions in pro- and anti-inflammatory markers. Extracellular vesicles and placental "-omics" data suggest that gestational PA can shape placental biology, affecting gene expression, DNA methylation, metabolite profiles, and protein regulation. However, whether cytokines that respond to PA alter placental proteomic profiles during pregnancy remains to be elucidated. The limited research on placenta mitochondria of physically active gestational parents (gesP), has shown improvements in mitochondrial DNA and antioxidant capacity, but the relationship between PA, placental mitochondrial dynamics, and lipid metabolism remains unexplored. Additionally, PA influences the placenta-immune microenvironment, angiogenesis, and may confer positive effects on neurodevelopment and mental health through placental changes, vascularization, and modulation of brain-derived neurotrophic factor. Ongoing exploration is crucial for unraveling the multifaceted impact of PA on the intricate placental environment.
Collapse
Affiliation(s)
- Kristi B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexandra D Goudreau
- Department of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Abbey E Corson
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Meaghan L MacDonald
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas O'Rourke
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Velislava Tzaneva
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Griseti E, Bello AA, Bieth E, Sabbagh B, Iacovoni JS, Bigay J, Laurell H, Čopič A. Molecular mechanisms of perilipin protein function in lipid droplet metabolism. FEBS Lett 2024; 598:1170-1198. [PMID: 38140813 DOI: 10.1002/1873-3468.14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.
Collapse
Affiliation(s)
- Elena Griseti
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Abdoul Akim Bello
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Eric Bieth
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
- Departement de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, France
| | - Bayane Sabbagh
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| | - Jason S Iacovoni
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| |
Collapse
|
5
|
Fu T, Amoah K, Chan TW, Bahn JH, Lee JH, Terrazas S, Chong R, Kosuri S, Xiao X. Massively parallel screen uncovers many rare 3' UTR variants regulating mRNA abundance of cancer driver genes. Nat Commun 2024; 15:3335. [PMID: 38637555 PMCID: PMC11026479 DOI: 10.1038/s41467-024-46795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Understanding the function of rare non-coding variants represents a significant challenge. Using MapUTR, a screening method, we studied the function of rare 3' UTR variants affecting mRNA abundance post-transcriptionally. Among 17,301 rare gnomAD variants, an average of 24.5% were functional, with 70% in cancer-related genes, many in critical cancer pathways. This observation motivated an interrogation of 11,929 somatic mutations, uncovering 3928 (33%) functional mutations in 155 cancer driver genes. Functional MapUTR variants were enriched in microRNA- or protein-binding sites and may underlie outlier gene expression in tumors. Further, we introduce untranslated tumor mutational burden (uTMB), a metric reflecting the amount of somatic functional MapUTR variants of a tumor and show its potential in predicting patient survival. Through prime editing, we characterized three variants in cancer-relevant genes (MFN2, FOSL2, and IRAK1), demonstrating their cancer-driving potential. Our study elucidates the function of tens of thousands of non-coding variants, nominates non-coding cancer driver mutations, and demonstrates their potential contributions to cancer.
Collapse
Affiliation(s)
- Ting Fu
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kofi Amoah
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Tracey W Chan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jae-Hyung Lee
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Life and Nanopharmaceutical Sciences & Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Sari Terrazas
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rockie Chong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sriram Kosuri
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinshu Xiao
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Gilbert CJ, Rabolli CP, Golubeva VA, Sattler KM, Wang M, Ketabforoush A, Arnold WD, Lepper C, Accornero F. YTHDF2 governs muscle size through a targeted modulation of proteostasis. Nat Commun 2024; 15:2176. [PMID: 38467649 PMCID: PMC10928198 DOI: 10.1038/s41467-024-46546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
The regulation of proteostasis is fundamental for maintenance of muscle mass and function. Activation of the TGF-β pathway drives wasting and premature aging by favoring the proteasomal degradation of structural muscle proteins. Yet, how this critical post-translational mechanism is kept in check to preserve muscle health remains unclear. Here, we reveal the molecular link between the post-transcriptional regulation of m6A-modified mRNA and the modulation of SMAD-dependent TGF-β signaling. We show that the m6A-binding protein YTHDF2 is essential to determining postnatal muscle size. Indeed, muscle-specific genetic deletion of YTHDF2 impairs skeletal muscle growth and abrogates the response to hypertrophic stimuli. We report that YTHDF2 controls the mRNA stability of the ubiquitin ligase ASB2 with consequences on anti-growth gene program activation through SMAD3. Our study identifies a post-transcriptional to post-translational mechanism for the coordination of gene expression in muscle.
Collapse
Affiliation(s)
- Christopher J Gilbert
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Charles P Rabolli
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Volha A Golubeva
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Kristina M Sattler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Meifang Wang
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
| | - Arsh Ketabforoush
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
| | - W David Arnold
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
- Department of Neurology, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Division of Neuromuscular Disorders, Department of Neurology, The Ohio State University, Columbus, OH, USA
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, USA
| | - Christoph Lepper
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
Cinato M, Andersson L, Miljanovic A, Laudette M, Kunduzova O, Borén J, Levin MC. Role of Perilipins in Oxidative Stress-Implications for Cardiovascular Disease. Antioxidants (Basel) 2024; 13:209. [PMID: 38397807 PMCID: PMC10886189 DOI: 10.3390/antiox13020209] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Oxidative stress is the imbalance between the production of reactive oxygen species (ROS) and antioxidants in a cell. In the heart, oxidative stress may deteriorate calcium handling, cause arrhythmia, and enhance maladaptive cardiac remodeling by the induction of hypertrophic and apoptotic signaling pathways. Consequently, dysregulated ROS production and oxidative stress have been implicated in numerous cardiac diseases, including heart failure, cardiac ischemia-reperfusion injury, cardiac hypertrophy, and diabetic cardiomyopathy. Lipid droplets (LDs) are conserved intracellular organelles that enable the safe and stable storage of neutral lipids within the cytosol. LDs are coated with proteins, perilipins (Plins) being one of the most abundant. In this review, we will discuss the interplay between oxidative stress and Plins. Indeed, LDs and Plins are increasingly being recognized for playing a critical role beyond energy metabolism and lipid handling. Numerous reports suggest that an essential purpose of LD biogenesis is to alleviate cellular stress, such as oxidative stress. Given the yet unmet suitability of ROS as targets for the intervention of cardiovascular disease, the endogenous antioxidant capacity of Plins may be beneficial.
Collapse
Affiliation(s)
- Mathieu Cinato
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; (M.C.); (L.A.); (A.M.); (M.L.); (J.B.)
| | - Linda Andersson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; (M.C.); (L.A.); (A.M.); (M.L.); (J.B.)
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; (M.C.); (L.A.); (A.M.); (M.L.); (J.B.)
| | - Marion Laudette
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; (M.C.); (L.A.); (A.M.); (M.L.); (J.B.)
| | - Oksana Kunduzova
- Institute of Metabolic and Cardiovascular Diseases (I2MC), National Institute of Health and Medical Research (INSERM) 1297, Toulouse III University—Paul Sabatier, 31432 Toulouse, France;
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; (M.C.); (L.A.); (A.M.); (M.L.); (J.B.)
| | - Malin C. Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden; (M.C.); (L.A.); (A.M.); (M.L.); (J.B.)
| |
Collapse
|
8
|
Maggi L, Gibertini S, Iannibelli E, Gallone A, Bonanno S, Cazzato D, Gerevini S, Moscatelli M, Blasevich F, Riolo G, Mantegazza R, Ruggieri A. PLIN4-related myopathy: clinical, histological and imaging data in a large cohort of patients. J Neurol 2023; 270:4538-4543. [PMID: 37145156 PMCID: PMC10421775 DOI: 10.1007/s00415-023-11729-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Gibertini
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eliana Iannibelli
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Annamaria Gallone
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Bonanno
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Cazzato
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Marco Moscatelli
- Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Flavia Blasevich
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giorgia Riolo
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Ruggieri
- Neuroimmunology and Neuromuscular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
9
|
Dalen KT, Li Y. Regulation of lipid droplets and cholesterol metabolism in adrenal cortical cells. VITAMINS AND HORMONES 2023; 124:79-136. [PMID: 38408810 DOI: 10.1016/bs.vh.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal gland is composed of two distinctly different endocrine moieties. The interior medulla consists of neuroendocrine chromaffin cells that secrete catecholamines like adrenaline and noradrenaline, while the exterior cortex consists of steroidogenic cortical cells that produce steroid hormones, such as mineralocorticoids (aldosterone), glucocorticoids (cortisone and cortisol) and androgens. Synthesis of steroid hormones in cortical cells requires substantial amounts of cholesterol, which is the common precursor for steroidogenesis. Cortical cells may acquire cholesterol from de novo synthesis and uptake from circulating low- and high-density lipoprotein particles (LDL and HDL). As cholesterol is part of the plasma membrane in all mammalian cells and an important regulator of membrane fluidity, cellular levels of free cholesterol are tightly regulated. To ensure a robust supply of cholesterol for steroidogenesis and to avoid cholesterol toxicity, cortical cells store large amounts of cholesterol as cholesteryl esters in intracellular lipid droplets. Cortical steroidogenesis relies on both mobilization of cholesterol from lipid droplets and constant uptake of circulating cholesterol to replenish lipid droplet stores. This chapter will describe mechanisms involved in cholesterol uptake, cholesteryl ester synthesis, lipid droplet formation, hydrolysis of stored cholesteryl esters, as well as their impact on steroidogenesis. Additionally, animal models and human diseases characterized by altered cortical cholesteryl ester storage, with or without abnormal steroidogenesis, will be discussed.
Collapse
Affiliation(s)
- Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; The Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | - Yuchuan Li
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
10
|
Role of Skeletal Muscle in the Pathogenesis and Management of Type 2 Diabetes: A Special Focus on Asian Indians. J Indian Inst Sci 2023. [DOI: 10.1007/s41745-022-00349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Wang Q, Yu M, Zhang W, Gang Q, Xie Z, Xu J, Zhou C, Wang D, Meng L, Lv H, Jia Z, Deng J, Yuan Y, Wang Z. Subsarcolemmal and cytoplasmic p62 positivity and rimmed vacuoles are distinctive for PLIN4-myopathy. Ann Clin Transl Neurol 2022; 9:1813-1819. [PMID: 36151849 DOI: 10.1002/acn3.51666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
PLIN4-myopathy is a recently identified autosomal dominant muscular disorder caused by the coding 99 bp repeat expansion in PLIN4, presenting with distal or proximal weakness. Here, we report one family and one sporadic case of adult-onset PLIN4-associated limb-girdle weakness, whose diagnoses were achieved by a comprehensive genetic analysis workup. We provided additional evidence that the combination of subsarcolemmal/cytoplasmic ubiquitin/p62 positive deposits and rimmed vacuoles could serve as a strong indicator of PLIN4-myopathy. Moreover, we found novel myopathological features that were ultrastructural subsarcolemmal filamentous materials and membrane-bound granulofilamentous inclusions formed by the co-deposition of disrupted lipid droplets and p62 protein aggregates.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Qiang Gang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jin Xu
- Laboratory of Electron Microscopy, Peking University First Hospital, Beijing, 100034, China
| | - Chao Zhou
- GrandOmics Biosciences, Beijing, 100176, China
| | - Depeng Wang
- GrandOmics Biosciences, Beijing, 100176, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Zhirong Jia
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| |
Collapse
|
12
|
Leitner N, Hlavatý J, Ertl R, Gabner S, Fuchs-Baumgartinger A, Walter I. Lipid droplets and perilipins in canine osteosarcoma. Investigations on tumor tissue, 2D and 3D cell culture models. Vet Res Commun 2022; 46:1175-1193. [PMID: 35834072 DOI: 10.1007/s11259-022-09975-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Lipid droplets were identified as important players in biological processes of various tumor types. With emphasis on lipid droplet-coating proteins (perilipins, PLINs), this study intended to shed light on the presence and formation of lipid droplets in canine osteosarcoma. For this purpose, canine osteosarcoma tissue samples (n = 11) were analyzed via immunohistochemistry and electron microscopy for lipid droplets and lipid droplet-coating proteins (PLINs). Additionally, we used the canine osteosarcoma cell lines D-17 and COS4288 in 2D monolayer and 3D spheroid (cultivated for 7, 14, and 21 days) in vitro models, and further analyzed the samples by means of histochemistry, immunofluorescence, molecular biological techniques (RT-qPCR, Western Blot) and electron microscopical imaging. Lipid droplets, PLIN2, and PLIN3 were detected in osteosarcoma tissue samples as well as in 2D and 3D cultivated D-17 and COS4288 cells. In spheroids, specific distribution patterns of lipid droplets and perilipins were identified, taking into consideration cell line specific zonal apportionment. Upon external lipid supplementation (oleic acid), a rise of lipid droplet amount accompanied with an increase of PLIN2 expression was observed. Detailed electron microscopical analyzes revealed that lipid droplet sizes in tumor tissue were comparable to that of 3D spheroid models. Moreover, the biggest lipid droplets were found in the central zone of the spheroids at all sampling time-points, reaching their maximum size at 21 days. Thus, the 3D spheroids can be considered as a relevant in vitro model for further studies focusing on lipid droplets biology and function in osteosarcoma.
Collapse
Affiliation(s)
- N Leitner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - J Hlavatý
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - R Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - S Gabner
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - A Fuchs-Baumgartinger
- Institute of Pathology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - Ingrid Walter
- Institute of Morphology, Working Group Histology, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria. .,VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, A-1210, Vienna, Austria.
| |
Collapse
|
13
|
Barrett JS, Whytock KL, Strauss JA, Wagenmakers AJM, Shepherd SO. High intramuscular triglyceride turnover rates and the link to insulin sensitivity: influence of obesity, type 2 diabetes and physical activity. Appl Physiol Nutr Metab 2022; 47:343-356. [PMID: 35061523 DOI: 10.1139/apnm-2021-0631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large intramuscular triglyceride (IMTG) stores in sedentary, obese individuals have been linked to insulin resistance, yet well-trained athletes exhibit high IMTG levels whilst maintaining insulin sensitivity. Contrary to previous assumptions, it is now known that IMTG content per se does not result in insulin resistance. Rather, insulin resistance is caused, at least in part, by the presence of high concentrations of harmful lipid metabolites, such as diacylglycerols and ceramides in muscle. Several mechanistic differences between obese sedentary individuals and their highly trained counterparts have been identified, which determine the differential capacity for IMTG synthesis and breakdown in these populations. In this review, we first describe the most up-to-date mechanisms by which a low IMTG turnover rate (both breakdown and synthesis) leads to the accumulation of lipid metabolites and results in skeletal muscle insulin resistance. We then explore current and potential exercise and nutritional strategies that target IMTG turnover in sedentary obese individuals, to improve insulin sensitivity. Overall, improving IMTG turnover should be an important component of successful interventions that aim to prevent the development of insulin resistance in the ever-expanding sedentary, overweight and obese populations. Novelty: A description of the most up-to-date mechanisms regulating turnover of the IMTG pool. An exploration of current and potential exercise/nutritional strategies to target and enhance IMTG turnover in obese individuals. Overall, highlights the importance of improving IMTG turnover to prevent the development of insulin resistance.
Collapse
Affiliation(s)
- J S Barrett
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - K L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - J A Strauss
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - A J M Wagenmakers
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - S O Shepherd
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
14
|
Li CW, Yu K, Shyh-Chang N, Jiang Z, Liu T, Ma S, Luo L, Guang L, Liang K, Ma W, Miao H, Cao W, Liu R, Jiang LJ, Yu SL, Li C, Liu HJ, Xu LY, Liu RJ, Zhang XY, Liu GS. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. J Cachexia Sarcopenia Muscle 2022; 13:781-794. [PMID: 35106971 PMCID: PMC8977978 DOI: 10.1002/jcsm.12901] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/26/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Age-associated obesity and muscle atrophy (sarcopenia) are intimately connected and are reciprocally regulated by adipose tissue and skeletal muscle dysfunction. During ageing, adipose inflammation leads to the redistribution of fat to the intra-abdominal area (visceral fat) and fatty infiltrations in skeletal muscles, resulting in decreased overall strength and functionality. Lipids and their derivatives accumulate both within and between muscle cells, inducing mitochondrial dysfunction, disturbing β-oxidation of fatty acids, and enhancing reactive oxygen species (ROS) production, leading to lipotoxicity and insulin resistance, as well as enhanced secretion of some pro-inflammatory cytokines. In turn, these muscle-secreted cytokines may exacerbate adipose tissue atrophy, support chronic low-grade inflammation, and establish a vicious cycle of local hyperlipidaemia, insulin resistance, and inflammation that spreads systemically, thus promoting the development of sarcopenic obesity (SO). We call this the metabaging cycle. Patients with SO show an increased risk of systemic insulin resistance, systemic inflammation, associated chronic diseases, and the subsequent progression to full-blown sarcopenia and even cachexia. Meanwhile in many cardiometabolic diseases, the ostensibly protective effect of obesity in extremely elderly subjects, also known as the 'obesity paradox', could possibly be explained by our theory that many elderly subjects with normal body mass index might actually harbour SO to various degrees, before it progresses to full-blown severe sarcopenia. Our review outlines current knowledge concerning the possible chain of causation between sarcopenia and obesity, proposes a solution to the obesity paradox, and the role of fat mass in ageing.
Collapse
Affiliation(s)
- Chun-Wei Li
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kang Yu
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zongmin Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Taoyan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shilin Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lanfang Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lu Guang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kun Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenwu Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hefan Miao
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruirui Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ling-Juan Jiang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song-Lin Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Li
- Department of General Surgery, Tianjin Union Medical Center, The Affiliated Hospital of Nankai University, China (Tianjin Union Medical Center, Tianjin, China
| | - Hui-Jun Liu
- Department of nursing & Clinical Nutrition, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Long-Yu Xu
- Department of Sport Physiatry, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong-Ji Liu
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Yuan Zhang
- Department of stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gao-Shan Liu
- Department of Health Education, Shijingshan Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
15
|
Lee-Ødegård S, Olsen T, Norheim F, Drevon CA, Birkeland KI. Potential Mechanisms for How Long-Term Physical Activity May Reduce Insulin Resistance. Metabolites 2022; 12:metabo12030208. [PMID: 35323652 PMCID: PMC8950317 DOI: 10.3390/metabo12030208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Insulin became available for the treatment of patients with diabetes 100 years ago, and soon thereafter it became evident that the biological response to its actions differed markedly between individuals. This prompted extensive research into insulin action and resistance (IR), resulting in the universally agreed fact that IR is a core finding in patients with type 2 diabetes mellitus (T2DM). T2DM is the most prevalent form of diabetes, reaching epidemic proportions worldwide. Physical activity (PA) has the potential of improving IR and is, therefore, a cornerstone in the prevention and treatment of T2DM. Whereas most research has focused on the acute effects of PA, less is known about the effects of long-term PA on IR. Here, we describe a model of potential mechanisms behind reduced IR after long-term PA to guide further mechanistic investigations and to tailor PA interventions in the therapy of T2DM. The development of such interventions requires knowledge of normal glucose metabolism, and we briefly summarize an integrated physiological perspective on IR. We then describe the effects of long-term PA on signaling molecules involved in cellular responses to insulin, tissue-specific functions, and whole-body IR.
Collapse
Affiliation(s)
- Sindre Lee-Ødegård
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
| | - Christian Andre Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
- Vitas Ltd. Analytical Services, Oslo Science Park, 0349 Oslo, Norway
| | - Kåre Inge Birkeland
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
- Correspondence:
| |
Collapse
|
16
|
Energy transfer between the mitochondrial network and lipid droplets in insulin resistant skeletal muscle. CURRENT OPINION IN PHYSIOLOGY 2021; 24:100487. [PMID: 35274067 PMCID: PMC8903156 DOI: 10.1016/j.cophys.2022.100487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria and lipid droplets in the insulin resistant skeletal muscle of type 2 diabetic individuals have both been heavily investigated independently and are characterized by more fragmented, dysfunctional mitochondrial networks and larger lipid droplets compared to skeletal muscle of healthy individuals. Specialized contacts between mitochondrial and lipid droplet membranes are known to decrease in diabetic muscle, though it remains unclear how energy transfer at the remaining mitochondria-lipid droplet contact sites may be altered by type 2 diabetes. The purpose of this review is to highlight recent data on mitochondrial structure and function and lipid droplet dynamics in type 2 diabetic skeletal muscle and to underscore the need for more detailed investigations into the functional nature of mitochondria-lipid droplet interactions in type 2 diabetes.
Collapse
|
17
|
Ilias N, Hamzah H, Ismail IS, Mohidin TBM, Idris MF, Ajat M. An insight on the future therapeutic application potential of Stevia rebaudiana Bertoni for atherosclerosis and cardiovascular diseases. Biomed Pharmacother 2021; 143:112207. [PMID: 34563950 DOI: 10.1016/j.biopha.2021.112207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Stevia rebaudiana Bertoni is a native plant to Paraguay. The extracts have been used as a famous sweetening agent, and the bioactive components derived from stevia possess a broad spectrum of therapeutical potential for various illnesses. Among its medicinal benefits are anti-hypertensive, anti-tumorigenic, anti-diabetic, and anti-hyperlipidemia. Statins (3-hydro-3-methylglutaryl-coenzyme A reductase inhibitor) are a class of drugs used to treat atherosclerosis. Statins are explicitly targeting the HMG-CoA reductase, an enzyme in the rate-limiting step of cholesterol biosynthesis. Despite being widely used in regulating plasma cholesterol levels, the adverse effects of the drug are a significant concern among clinicians and patients. Hence, steviol glycosides derived from stevia have been proposed as an alternative in replacing statins. Diterpene glycosides from stevia, such as stevioside and rebaudioside A have been evaluated for their efficacy in alleviating cholesterol levels. These glycosides are a potential candidate in treating and preventing atherosclerosis provoked by circulating lipid retention in the sub-endothelial lining of the artery. The present review is an effort to integrate the pathogenesis of atherosclerosis, involvement of lipid droplets biogenesis and its associated proteins in atherogenesis, current approaches to treat atherosclerosis, and pharmacological potential of stevia in treating the disease.
Collapse
Affiliation(s)
- Nazhan Ilias
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Malaysia.
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Malaysia.
| | - Intan Safinar Ismail
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Malaysia; Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Malaysia.
| | - Taznim Begam Mohd Mohidin
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Mohd Faiz Idris
- Pusat Bahasa dan Pengajian Umum, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Malaysia; Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Malaysia.
| |
Collapse
|
18
|
Zhao Y, Albrecht E, Li Z, Schregel J, Sciascia QL, Metges CC, Maak S. Distinct Roles of Perilipins in the Intramuscular Deposition of Lipids in Glutamine-Supplemented, Low-, and Normal-Birth-Weight Piglets. Front Vet Sci 2021; 8:633898. [PMID: 34235195 PMCID: PMC8257002 DOI: 10.3389/fvets.2021.633898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Piglets with low birth weight (LBW) usually have reduced muscle mass and increased lipid deposition compared with their normal-birth-weight (NBW) littermates. Supplementation of piglets with amino acids during the first days of life may improve muscle growth and simultaneously alter the intramuscular lipid deposition. The aim of the current study was to investigate the influence of glutamine (Gln) supplementation during the early suckling period on lipid deposition in the longissimus muscle (MLD) and the role of different perilipin (PLIN) family members in this process. Four groups were generated consisting of 72 male LBW piglets and 72 NBW littermates. Piglets were supplemented with either 1 g Gln/kg body weight or an isonitrogenous amount of alanine (Ala) between days post natum (dpn) 1 and 12. Twelve piglets per group were slaughtered at 5, 12, and 26 dpn, and muscle tissue was collected. Perilipins were localized by immunohistochemistry in muscle sections. The mRNA and protein abundances of PLIN family members and related lipases were quantified by quantitative RT-PCR (qPCR) and western blots, respectively. While PLIN1 was localized around lipid droplets in mature and developing adipocytes, PLIN2 was localized at intramyocellular lipid droplets, PLIN3 and 4 at cell membranes of muscle fibers and adipocytes, and PLIN5 in the cytoplasm of undefined cells. The western blot results indicated higher protein abundances of PLIN2, 3, 4, and 5 in LBW piglets (p < 0.05) at 5 dpn compared with their NBW littermates independent of supplementation, while not directly reflecting the mRNA expression levels. The mRNA abundance of PLIN2 was lower while PLIN4 was higher in piglets at 26 dpn in comparison with piglets at 5 dpn (p < 0.01). Relative mRNA expression of LPL and CGI-58 was lowest in piglets at 5 dpn (p < 0.001). However, ATGL mRNA was not influenced by birth weight or supplementation, but the Spearman correlation coefficient analysis revealed close correlations with PLIN2, 4, and 5 mRNA at 5 and 26 dpn (r > 0.5, p < 0.001). The results indicated the importance of birth weight and age for intramuscular lipid deposition and different roles of PLIN family members in this process, but no clear modulating effect of Gln supplementation.
Collapse
Affiliation(s)
- Yaolu Zhao
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Zeyang Li
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Johannes Schregel
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Quentin L Sciascia
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Cornelia C Metges
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
19
|
Zhu L, Hu F, Li C, Zhang C, Hang R, Xu R. Perilipin 4 Protein: an Impending Target for Amyotrophic Lateral Sclerosis. Mol Neurobiol 2021; 58:1723-1737. [PMID: 33242187 DOI: 10.1007/s12035-020-02217-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
The pathogenesis of amyotrophic lateral sclerosis (ALS) might exist some relationships with the abnormal lipidomic metabolisms. Therefore, we observed and analyzed the alteration of perilipin 4 (PLIN 4) distribution in the anterior horns (AH); the central canals (CC) and its surrounding gray matter; the posterior horns (PH); and the anterior, lateral, and posterior funiculus (AF, LF, and PF) of the cervical, thoracic, and lumbar segments, as well as the alteration of PLIN 4 expression in the entire spinal cords at the pre-onset, onset, and progression stages of Tg(SOD1*G93A)1Gur (TG) mice and the same period of wild-type(WT) by fluorescent immunohistochemistry, the Western blot, and the image analysis. Results showed that the PLIN 4 distributions in the spinal AH, CC and its surrounding gray matter, PH, AF, and PF of the cervical, thoracic, and lumbar segments in the TG mice at the pre-onset, onset, and progression stages significantly increased compared with those at the same periods of WT mice; the gray matter was especially significant. No significant changes were detected in the LF. PLIN 4 extensively distributed in the neurons and the proliferation neural cells. The PLIN 4 distributions significantly gradually increased from the pre-onset to onset to progression stages, and significantly correlated with the gradual increase death of neural cells. Total PLIN 4 expression in the spinal cords of TG mice significantly increased from the pre-onset, to onset, and to progression stages compared with that in the WT mice. Our data suggested that the PLIN 4 distribution and expression alterations might participate in the death of neural cells in the pathogenesis of ALS through modulating the lipidomic metabolisms and the neural cell proliferation.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, China
| | - Fan Hu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, China
| | - Caixiang Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, China
| | - Ruiwen Hang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
20
|
Yuan T, Qian H, Yu X, Meng J, Lai CT, Jiang H, Zhao JN, Bao NR. Proteomic analysis reveals rotator cuff injury caused by oxidative stress. Ther Adv Chronic Dis 2021; 12:2040622320987057. [PMID: 33796243 PMCID: PMC7975570 DOI: 10.1177/2040622320987057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background and aims: Rotator cuff tendinopathy is common and is related to pain and dysfunction.
However, the pathological mechanism of rotator cuff injury and shoulder pain
is unclear. Objective: to investigate the pathological mechanism of rotator
cuff injury and shoulder pain, and screen out the marker proteins related to
rotator cuff injury by proteomics. Methods: Subacromial synovium specimens were collected from patients undergoing
shoulder arthroscopic surgery. The experimental group were patients with
rotator cuff repair surgery, and the control group were patients with
habitual dislocation of the shoulder joint. Pathological examination was
performed, and then followed by non-labeled quantitative proteomic
detection. Finally, from analysis of the biological information of the
samples, specific proteins related to rotator cuff injury and shoulder pain
were deduced by functional analysis of differential proteins. Results: All the patients in experimental groups were representative. A large number
of adipocytes and inflammatory cells were found in the pathological sections
of the experimental group; the proteomics analysis screen identified 80
proteins with significant differences, and the analysis of protein function
revealed that S100A11 (p = 0.011), PLIN4
(p = 0.017), HYOU1 (p = 0.002) and
CLIC1 (p = 0.007) were closely related to oxidative stress
and chronic inflammation. Conclusion: Rotator cuff injury is closely related to oxidative stress and chronic
inflammatory response, and the results suggest that the expression of
S100A11, PLIN4, HYOU1 and CLIC1 in the synovium of rotator cuff injury
provides a new marker for the study of its pathological mechanism.
Collapse
Affiliation(s)
- Tao Yuan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hong Qian
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xin Yu
- Department of Orthopedics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jia Meng
- Department of Orthopedics, Jinling Hospital, Nanjing, China
| | - Cheng-Teng Lai
- Department of Orthopedics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hui Jiang
- Department of Orthopedics, Jinling Hospital, Nanjing, China
| | - Jian-Ning Zhao
- Department of Orthopedics, Nanjing Jinling Hospital, 305 Zhongshan East Road, Nanjing 210002, China The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China Department of Orthopedics, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Ni-Rong Bao
- Department of Orthopedics, Nanjing Jinling Hospital, 305 Zhongshan East Road, Nanjing 210002, China The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China Department of Orthopedics, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| |
Collapse
|
21
|
Margeta M. Neuromuscular disease: 2021 update. FREE NEUROPATHOLOGY 2021; 2:3. [PMID: 37284616 PMCID: PMC10209996 DOI: 10.17879/freeneuropathology-2021-3236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 06/08/2023]
Abstract
This review highlights ten important advances in the neuromuscular disease field that were first reported in 2020. The overarching topics include (i) advances in understanding of fundamental neuromuscular biology; (ii) new / emerging diseases; (iii) advances in understanding of disease etiology and pathogenesis; (iv) diagnostic advances; and (v) therapeutic advances. Within this broad framework, the individual disease entities that are discussed in more detail include neuromuscular complications of COVID-19, supervillin-deficient myopathy, 19p13.3-linked distal myopathy, vasculitic neuropathy due to eosinophilic granulomatosis with polyangiitis, spinal muscular atrophy, idiopathic inflammatory myopathies, and transthyretin neuropathy/myopathy. In addition, the review highlights several other advances (such as the revised view of the myofibrillar architecture, new insights into molecular and cellular mechanisms of muscle regeneration, and development of new electron microscopy tools) that will likely have a significant impact on the overall neuromuscular disease field going forward.
Collapse
Affiliation(s)
- Marta Margeta
- Department of Pathology, University of California, San Francisco, CA, USA
| |
Collapse
|
22
|
Seibert JT, Najt CP, Heden TD, Mashek DG, Chow LS. Muscle Lipid Droplets: Cellular Signaling to Exercise Physiology and Beyond. Trends Endocrinol Metab 2020; 31:928-938. [PMID: 32917515 PMCID: PMC7704552 DOI: 10.1016/j.tem.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/09/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
Conventionally viewed as energy storage depots, lipid droplets (LDs) play a central role in muscle lipid metabolism and intracellular signaling, as recognized by recent advances in our biological understanding. Specific subpopulations of muscle LDs, defined by location and associated proteins, are responsible for distinct biological functions. In this review, the traditional view of muscle LDs is examined, and the emerging role of LDs in intracellular signaling is highlighted. The effects of chronic and acute exercise on muscle LD metabolism and signaling is discussed. In conclusion, future directions for muscle LD research are identified. The primary focus will be on human studies, with inclusion of select animal/cellular/non-muscle studies as appropriate, to provide the underlying mechanisms driving the observed findings.
Collapse
Affiliation(s)
- Jacob T Seibert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Charles P Najt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy D Heden
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa S Chow
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Savarese M, Sarparanta J, Vihola A, Jonson PH, Johari M, Rusanen S, Hackman P, Udd B. Panorama of the distal myopathies. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:245-265. [PMID: 33458580 PMCID: PMC7783427 DOI: 10.36185/2532-1900-028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopathy usually caused by focal amyoplasia. Massive parallel sequencing has further expanded the long list of genes associated with a distal myopathy, and contributed identifying as distal myopathy-causative rare variants in genes more often related with other skeletal or cardiac muscle diseases. Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, NOTCH2NLC, LRP12, GIPS1) have been associated with an autosomal dominant form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, GNE) cause an autosomal recessive form; and disease-causing variants in five genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a recessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like form of distal myopathy, has been recently elucidated. Rare pathogenic mutations in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly cause a distal myopathy when combined with a common polymorphism in TIA1. The present review aims at describing the genetic basis of distal myopathy and at summarizing the clinical features of the different forms described so far.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Rusanen
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
24
|
Tobias IS, Galpin AJ. Moving human muscle physiology research forward: an evaluation of fiber type-specific protein research methodologies. Am J Physiol Cell Physiol 2020; 319:C858-C876. [DOI: 10.1152/ajpcell.00107.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human skeletal muscle is a heterogeneous tissue composed of multiple fiber types that express unique contractile and metabolic properties. While analysis of mixed fiber samples predominates and holds value, increasing attention has been directed toward studying proteins segregated by fiber type, a methodological distinction termed “fiber type-specific.” Fiber type-specific protein studies have the advantage of uncovering key molecular effects that are often missed in mixed fiber homogenate studies but also require greater time and resource-intensive methods, particularly when applied to human muscle. This review summarizes and compares current methods used for fiber type-specific protein analysis, highlighting their advantages and disadvantages for human muscle studies, in addition to recent advances in these techniques. These methods can be grouped into three categories based on the initial processing of the tissue: 1) muscle-specific fiber homogenates, 2) cross sections of fiber bundles, and 3) isolated single fibers, with various subtechniques for performing fiber type identification and protein quantification. The relative implementation for each unique methodological approach is analyzed from 83 fiber type-specific studies of proteins in live human muscle found in the literature to date. These studies have investigated several proteins involved in a wide range of cellular functions that are important to muscle tissue. The second half of this review summarizes key findings from this ensemble of fiber type-specific human protein studies. We highlight examples of where this analytical approach has helped to improve understanding of important physiological topics such as insulin sensitivity, muscle hypertrophy, muscle fatigue, and adaptation to different exercise programs.
Collapse
Affiliation(s)
- Irene S. Tobias
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Andrew J. Galpin
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| |
Collapse
|
25
|
Jevons EFP, Gejl KD, Strauss JA, Ørtenblad N, Shepherd SO. Skeletal muscle lipid droplets are resynthesized before being coated with perilipin proteins following prolonged exercise in elite male triathletes. Am J Physiol Endocrinol Metab 2020; 318:E357-E370. [PMID: 31935113 DOI: 10.1152/ajpendo.00399.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intramuscular triglycerides (IMTG) are a key substrate during prolonged exercise, but little is known about the rate of IMTG resynthesis in the postexercise period. We investigated the hypothesis that the distribution of the lipid droplet (LD)-associated perilipin (PLIN) proteins is linked to IMTG storage following exercise. Fourteen elite male triathletes (27 ± 1 yr, 66.5 ± 1.3 mL·kg-1·min-1) completed 4 h of moderate-intensity cycling. During the first 4 h of recovery, subjects received either carbohydrate or H2O, after which both groups received carbohydrate. Muscle biopsies collected pre- and postexercise and 4 and 24 h postexercise were analyzed using confocal immunofluorescence microscopy for fiber type-specific IMTG content and PLIN distribution with LDs. Exercise reduced IMTG content in type I fibers (-53%, P = 0.002), with no change in type IIa fibers. During the first 4 h of recovery, IMTG content increased in type I fibers (P = 0.014), but was not increased more after 24 h, where it was similar to baseline levels in both conditions. During recovery the number of LDs labeled with PLIN2 (70%), PLIN3 (63%), and PLIN5 (62%; all P < 0.05) all increased in type I fibers. Importantly, the increase in LDs labeled with PLIN proteins only occurred at 24 h postexercise. In conclusion, IMTG resynthesis occurs rapidly in type I fibers following prolonged exercise in highly trained individuals. Furthermore, increases in IMTG content following exercise preceded an increase in the number of LDs labeled with PLIN proteins. These data, therefore, suggest that the PLIN proteins do not play a key role in postexercise IMTG resynthesis.
Collapse
Affiliation(s)
- Emily F P Jevons
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Kasper D Gejl
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Juliette A Strauss
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Sam O Shepherd
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
26
|
Rhoads TW, Clark JP, Gustafson GE, Miller KN, Conklin MW, DeMuth TM, Berres ME, Eliceiri KW, Vaughan LK, Lary CW, Beasley TM, Colman RJ, Anderson RM. Molecular and Functional Networks Linked to Sarcopenia Prevention by Caloric Restriction in Rhesus Monkeys. Cell Syst 2020; 10:156-168.e5. [PMID: 31982367 PMCID: PMC7047532 DOI: 10.1016/j.cels.2019.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/03/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
Caloric restriction (CR) improves survival in nonhuman primates and delays the onset of age-related morbidities including sarcopenia, which is characterized by the age-related loss of muscle mass and function. A shift in metabolism anticipates the onset of muscle-aging phenotypes in nonhuman primates, suggesting a potential role for metabolism in the protective effects of CR. Here, we show that CR induced profound changes in muscle composition and the cellular metabolic environment. Bioinformatic analysis linked these adaptations to proteostasis, RNA processing, and lipid synthetic pathways. At the tissue level, CR maintained contractile content and attenuated age-related metabolic shifts among individual fiber types with higher mitochondrial activity, altered redox metabolism, and smaller lipid droplet size. Biometric and metabolic rate data confirm preserved metabolic efficiency in CR animals that correlated with the attenuation of age-related muscle mass and physical activity. These data suggest that CR-induced reprogramming of metabolism plays a role in delayed aging of skeletal muscle in rhesus monkeys.
Collapse
Affiliation(s)
- Timothy W Rhoads
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Josef P Clark
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Grace E Gustafson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Karl N Miller
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthew W Conklin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tyler M DeMuth
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark E Berres
- Biotechnolgoy Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura K Vaughan
- Department of Biostatistics, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - Christine W Lary
- Department of Biostatistics, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - T Mark Beasley
- Department of Biostatistics, University of Alabama-Birmingham, Birmingham, AL 35294, USA; Geriatric Research Education and Clinical Center, Birmingham/Atlanta Veterans Administration Hospital, Birmingham, AL 35297, USA
| | - Ricki J Colman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
27
|
Ruggieri A, Naumenko S, Smith MA, Iannibelli E, Blasevich F, Bragato C, Gibertini S, Barton K, Vorgerd M, Marcus K, Wang P, Maggi L, Mantegazza R, Dowling JJ, Kley RA, Mora M, Minassian BA. Multiomic elucidation of a coding 99-mer repeat-expansion skeletal muscle disease. Acta Neuropathol 2020; 140:231-235. [PMID: 32451610 PMCID: PMC7360652 DOI: 10.1007/s00401-020-02164-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Alessandra Ruggieri
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
- Department of Molecular and Translation Medicine, Unit of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Sergey Naumenko
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, ON Canada
| | - Martin A. Smith
- CHU Sainte-Justine Research Center, Montreal, QC Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC Canada
- St-Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Garvan Institute for Medical Research, Darlinghurst, NSW Australia
| | - Eliana Iannibelli
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Flavia Blasevich
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Cinzia Bragato
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
- PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Sara Gibertini
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Kirston Barton
- Garvan Institute for Medical Research, Darlinghurst, NSW Australia
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Peixiang Wang
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON Canada
| | - Lorenzo Maggi
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - James J. Dowling
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON Canada
| | - Rudolf A. Kley
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology and Clinical Neurophysiology, St. Marien-Hospital Borken, Klinikum Westmuensterland, Borken, Germany
| | - Marina Mora
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Berge A. Minassian
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON Canada
- Division of Neurology Department of Pediatrics, University of Texas Southwestern, Dallas, TX USA
| |
Collapse
|
28
|
Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal key epigenetic differences at developmental genes. Sci Rep 2019; 9:9511. [PMID: 31266983 PMCID: PMC6606599 DOI: 10.1038/s41598-019-45777-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Adipocytes support key metabolic and endocrine functions of adipose tissue. Lipid is stored in two major classes of depots, namely visceral adipose (VA) and subcutaneous adipose (SA) depots. Increased visceral adiposity is associated with adverse health outcomes, whereas the impact of SA tissue is relatively metabolically benign. The precise molecular features associated with the functional differences between the adipose depots are still not well understood. Here, we characterised transcriptomes and methylomes of isolated adipocytes from matched SA and VA tissues of individuals with normal BMI to identify epigenetic differences and their contribution to cell type and depot-specific function. We found that DNA methylomes were notably distinct between different adipocyte depots and were associated with differential gene expression within pathways fundamental to adipocyte function. Most striking differential methylation was found at transcription factor and developmental genes. Our findings highlight the importance of developmental origins in the function of different fat depots.
Collapse
|
29
|
Lund J, Helle SA, Li Y, Løvsletten NG, Stadheim HK, Jensen J, Kase ET, Thoresen GH, Rustan AC. Higher lipid turnover and oxidation in cultured human myotubes from athletic versus sedentary young male subjects. Sci Rep 2018; 8:17549. [PMID: 30510272 PMCID: PMC6277406 DOI: 10.1038/s41598-018-35715-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
In this study we compared fatty acid (FA) metabolism in myotubes established from athletic and sedentary young subjects. Six healthy sedentary (maximal oxygen uptake (VO2max) ≤ 46 ml/kg/min) and six healthy athletic (VO2max > 60 ml/kg/min) young men were included. Myoblasts were cultured and differentiated to myotubes from satellite cells isolated from biopsy of musculus vastus lateralis. FA metabolism was studied in myotubes using [14C]oleic acid. Lipid distribution was assessed by thin layer chromatography, and FA accumulation, lipolysis and re-esterification were measured by scintillation proximity assay. Gene and protein expressions were studied. Myotubes from athletic subjects showed lower FA accumulation, lower incorporation of FA into total lipids, triacylglycerol (TAG), diacylglycerol and cholesteryl ester, higher TAG-related lipolysis and re-esterification, and higher complete oxidation and incomplete β-oxidation of FA compared to myotubes from sedentary subjects. mRNA expression of the mitochondrial electron transport chain complex III gene UQCRB was higher in cells from athletic compared to sedentary. Myotubes established from athletic subjects have higher lipid turnover and oxidation compared to myotubes from sedentary subjects. Our findings suggest that cultured myotubes retain some of the phenotypic traits of their donors.
Collapse
Affiliation(s)
- Jenny Lund
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.
| | - Siw A Helle
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Yuchuan Li
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nils G Løvsletten
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Hans K Stadheim
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Eili T Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Schnell DM, Walton RG, Vekaria HJ, Sullivan PG, Bollinger LM, Peterson CA, Thomas DT. Vitamin D produces a perilipin 2-dependent increase in mitochondrial function in C2C12 myotubes. J Nutr Biochem 2018; 65:83-92. [PMID: 30658160 DOI: 10.1016/j.jnutbio.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 11/10/2018] [Indexed: 02/08/2023]
Abstract
Vitamin D has been connected with increased intramyocellular lipid (IMCL) and has also been shown to increase mitochondrial function and insulin sensitivity. Evidence suggests that perilipin 2 (PLIN2), a perilipin protein upregulated with calcitriol treatment, may be integral to managing increased IMCL capacity and lipid oxidation in skeletal muscle. Therefore, we hypothesized that PLIN2 is required for vitamin D induced IMCL accumulation and increased mitochondrial oxidative function. To address this hypothesis, we treated C2C12 myotubes with 100 nM calcitriol (the active form of vitamin D) and/or PLIN2 siRNA in a four group design and analyzed markers of IMCL accumulation and metabolism using qRT-PCR, cytochemistry, and oxygen consumption assay. Expression of PLIN2, but not PLIN3 or PLIN5 mRNA was increased with calcitriol, and PLIN2 induction was prevented with siRNA knockdown without compensation by other perilipins. PLIN2 knockdown did not appear to prevent lipid accumulation. Calcitriol treatment increased mRNA expression of triglyceride synthesizing genes DGAT1 and DGAT2 and also lipolytic genes ATGL and CGI-58. PLIN2 knockdown decreased the expression of CGI-58 and CPT1, and was required for calcitriol-induced upregulation of DGAT2. Calcitriol increased oxygen consumption rate while PLIN2 knockdown decreased oxygen consumption rate. PLIN2 was required for a calcitriol-induced increase in oxygen consumption driven by mitochondrial complex II. We conclude that calcitriol increases mitochondrial function in myotubes and that this increase is at least in part mediated by PLIN2.
Collapse
Affiliation(s)
| | - R Grace Walton
- Department of Rehabilitation Sciences; Center for Muscle Biology.
| | | | | | | | | | - D Travis Thomas
- Department of Clinical Sciences, University of Kentucky, Lexington, KY 40536.
| |
Collapse
|
31
|
Hiramoto S, Yahata N, Saitoh K, Yoshimura T, Wang Y, Taniyama S, Nikawa T, Tachibana K, Hirasaka K. Dietary supplementation with alkylresorcinols prevents muscle atrophy through a shift of energy supply. J Nutr Biochem 2018; 61:147-154. [PMID: 30236871 DOI: 10.1016/j.jnutbio.2018.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/03/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022]
Abstract
It has been reported that phytoextracts that contain alkylresorcinols (ARs) protect against severe myofibrillar degeneration found in isoproterenol-induced myocardial infarction. In this study, we examined the effect of dietary ARs derived from wheat bran extracts on muscle atrophy in denervated mice. The mice were divided into the following four groups: (1) sham-operated (control) mice fed with normal diet (S-ND), (2) denervated mice fed with normal diet (D-ND), (3) control mice fed with ARs-supplemented diet (S-AR) and (4) denervated mice fed with ARs-supplemented diet (D-AR). The intake of ARs prevented the denervation-induced reduction of the weight of the hind limb muscles and the myofiber size. However, the expression of ubiquitin ligases and autophagy-related genes, which is associated with muscle proteolysis, was slightly higher in D-AR than in D-ND. Moreover, the abundance of the autophagy marker p62 was significantly higher in D-AR than in D-ND. Muscle atrophy has been known to be associated with a disturbed energy metabolism. The expression of pyruvate dehydrogenase kinase 4 (PDK4), which is related to fatty acid metabolism, was decreased in D-ND as compared with that in S-ND. In contrast, dietary supplementation with ARs inhibited the decrease of PDK4 expression caused by denervation. Furthermore, the abnormal expression pattern of genes related to the abundance of lipid droplets-coated proteins that was induced by denervation was improved by ARs. These results raise the possibility that dietary supplementation with ARs modifies the disruption of fatty acid metabolism induced by lipid autophagy, resulting in the prevention of muscle atrophy.
Collapse
Affiliation(s)
- Shigeru Hiramoto
- Healthcare Research Center, Nisshin Pharma Inc., Saitama, Japan 3568511
| | - Nobuhiro Yahata
- Healthcare Research Center, Nisshin Pharma Inc., Saitama, Japan 3568511
| | - Kanae Saitoh
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan 8528521
| | - Tomohiro Yoshimura
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan 8528521
| | - Yao Wang
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan 8528521
| | - Shigeto Taniyama
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan 8528521
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Medical School, Tokushima, Japan 7708503
| | - Katsuyasu Tachibana
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan 8528521
| | - Katsuya Hirasaka
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan 8528521; Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan 8528521.
| |
Collapse
|
32
|
Zhang P, Meng L, Song L, Du J, Du S, Cui W, Liu C, Li F. Roles of Perilipins in Diseases and Cancers. Curr Genomics 2018; 19:247-257. [PMID: 29755288 PMCID: PMC5930447 DOI: 10.2174/1389202918666170915155948] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/03/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Perilipins, an ancient family of lipid droplet-associated proteins, are embedded in a phospho-lipid monolayer of intracellular lipid droplets. The core of lipid droplets is composed of neutral fat, which mainly includes triglyceride and cholesterol ester. Perilipins are closely related to the function of lipid droplets, and they mediate lipid metabolism and storage. Therefore, perilipins play an important role in the development of obesity, diabetes, cancer, hepatic diseases, atherosclerosis, and carcinoma, which are caused by abnormal lipid metabolism. Accumulation of lipid droplets is a common phenomenon in tumor cells. Available data on the pathophysiology of perilipins and the relationship of perilipins with endocrine metabolic diseases and cancers are summarized in this mini-review. The research progress on this family offers novel insights into the therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Pathology and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
| | - Lian Meng
- Department of Pathology and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
| | - Lingxie Song
- Department of Pathology and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
| | - Juan Du
- Department of Pathology and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
| | - Shutong Du
- Department of Pathology and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
| | - Wenwen Cui
- Department of Pathology and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
| | - Chunxia Liu
- Department of Pathology and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
| | - Feng Li
- Department of Pathology and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, China
| |
Collapse
|
33
|
Nakajima A, Kawaguchi F, Uemoto Y, Fukushima M, Yoshida E, Iwamoto E, Akiyama T, Kohama N, Kobayashi E, Honda T, Oyama K, Mannen H, Sasazaki S. A genome-wide association study for fat-related traits computed by image analysis in Japanese Black cattle. Anim Sci J 2018; 89:743-751. [DOI: 10.1111/asj.12987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/30/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Ayaka Nakajima
- Laboratory of Animal Breeding and Genetics; Graduate School of Agricultural Science; Kobe University; Kobe Japan
| | - Fuki Kawaguchi
- Laboratory of Animal Breeding and Genetics; Graduate School of Agricultural Science; Kobe University; Kobe Japan
| | - Yoshinobu Uemoto
- Laboratory of Animal Breeding and Genetics; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Moriyuki Fukushima
- Northern Center of Agricultural Technology; General Technological Center of Hyogo Prefecture for Agriculture, Forest and Fishery; Asago Japan
| | - Emi Yoshida
- Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries; Kasai Japan
| | - Eiji Iwamoto
- Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries; Kasai Japan
| | - Takayuki Akiyama
- Northern Center of Agricultural Technology; General Technological Center of Hyogo Prefecture for Agriculture, Forest and Fishery; Asago Japan
| | - Namiko Kohama
- Northern Center of Agricultural Technology; General Technological Center of Hyogo Prefecture for Agriculture, Forest and Fishery; Asago Japan
| | - Eiji Kobayashi
- Division of Animal Breeding and Reproduction Research; Institute of Livestock and Grassland Science; National Agriculture and Food Research Organization; Tsukuba Japan
| | - Takeshi Honda
- Food Resources Education & Research Center; Kobe University; Kasai Japan
| | - Kenji Oyama
- Food Resources Education & Research Center; Kobe University; Kasai Japan
| | - Hideyuki Mannen
- Laboratory of Animal Breeding and Genetics; Graduate School of Agricultural Science; Kobe University; Kobe Japan
| | - Shinji Sasazaki
- Laboratory of Animal Breeding and Genetics; Graduate School of Agricultural Science; Kobe University; Kobe Japan
| |
Collapse
|
34
|
Hayward GC, Fenech RK, Yang AJ, Baranowski BJ. The role of PLIN protein in healthy lipid storage and lipid droplet expansion. J Physiol 2017; 595:7273-7274. [PMID: 29028113 DOI: 10.1113/jp275346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- G C Hayward
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada, L2S 3A1
| | - R K Fenech
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada, L2S 3A1
| | - A J Yang
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada, L2S 3A1
| | - B J Baranowski
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada, L2S 3A1
| |
Collapse
|
35
|
Lee S, Norheim F, Langleite TM, Noreng HJ, Storås TH, Afman LA, Frost G, Bell JD, Thomas EL, Kolnes KJ, Tangen DS, Stadheim HK, Gilfillan GD, Gulseth HL, Birkeland KI, Jensen J, Drevon CA, Holen T. Effect of energy restriction and physical exercise intervention on phenotypic flexibility as examined by transcriptomics analyses of mRNA from adipose tissue and whole body magnetic resonance imaging. Physiol Rep 2017; 4:4/21/e13019. [PMID: 27821717 PMCID: PMC5112497 DOI: 10.14814/phy2.13019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/09/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022] Open
Abstract
Overweight and obesity lead to changes in adipose tissue such as inflammation and reduced insulin sensitivity. The aim of this study was to assess how altered energy balance by reduced food intake or enhanced physical activity affect these processes. We studied sedentary subjects with overweight/obesity in two intervention studies, each lasting 12 weeks affecting energy balance either by energy restriction (~20% reduced intake of energy from food) in one group, or by enhanced energy expenditure due to physical exercise (combined endurance‐ and strength‐training) in the other group. We monitored mRNA expression by microarray and mRNA sequencing from adipose tissue biopsies. We also measured several plasma parameters as well as fat distribution with magnetic resonance imaging and spectroscopy. Comparison of microarray and mRNA sequencing showed strong correlations, which were also confirmed using RT‐PCR. In the energy restricted subjects (body weight reduced by 5% during a 12 weeks intervention), there were clear signs of enhanced lipolysis as monitored by mRNA in adipose tissue as well as plasma concentration of free‐fatty acids. This increase was strongly related to increased expression of markers for M1‐like macrophages in adipose tissue. In the exercising subjects (glucose infusion rate increased by 29% during a 12‐week intervention), there was a marked reduction in the expression of markers of M2‐like macrophages and T cells, suggesting that physical exercise was especially important for reducing inflammation in adipose tissue with insignificant reduction in total body weight. Our data indicate that energy restriction and physical exercise affect energy‐related pathways as well as inflammatory processes in different ways, probably related to macrophages in adipose tissue.
Collapse
Affiliation(s)
- Sindre Lee
- Department of Nutrition, Institute of Basic Medical Sciences Faculty of Medicine University of Oslo, Oslo, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences Faculty of Medicine University of Oslo, Oslo, Norway.,Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Torgrim M Langleite
- Department of Nutrition, Institute of Basic Medical Sciences Faculty of Medicine University of Oslo, Oslo, Norway
| | - Hans J Noreng
- The Intervention Centre, Oslo University Hospital Oslo, Oslo, Norway
| | - Trygve H Storås
- The Intervention Centre, Oslo University Hospital Oslo, Oslo, Norway
| | - Lydia A Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Gary Frost
- Division of Diabetes, Endocrinology and Metabolism, Dietetics, Imperial College Hammersmith Campus, London, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | - E Louise Thomas
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | - Kristoffer J Kolnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Daniel S Tangen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Hans K Stadheim
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | - Hanne L Gulseth
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of medicine, University of Oslo, Oslo, Norway
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of medicine, University of Oslo, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences Faculty of Medicine University of Oslo, Oslo, Norway
| | - Torgeir Holen
- Department of Nutrition, Institute of Basic Medical Sciences Faculty of Medicine University of Oslo, Oslo, Norway
| | | |
Collapse
|
36
|
Carr SJ, Zahedi RP, Lochmüller H, Roos A. Mass spectrometry-based protein analysis to unravel the tissue pathophysiology in Duchenne muscular dystrophy. Proteomics Clin Appl 2017. [DOI: 10.1002/prca.201700071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stephanie J. Carr
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
| | - René P. Zahedi
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V.; Dortmund Germany
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
| | - Andreas Roos
- John Walton Muscular Dystrophy Research Centre; Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne UK
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V.; Dortmund Germany
| |
Collapse
|
37
|
Shepherd SO, Strauss JA, Wang Q, Dube JJ, Goodpaster B, Mashek DG, Chow LS. Training alters the distribution of perilipin proteins in muscle following acute free fatty acid exposure. J Physiol 2017; 595:5587-5601. [PMID: 28560826 PMCID: PMC5556155 DOI: 10.1113/jp274374] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/17/2017] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS The lipid droplet (LD)-associated perilipin (PLIN) proteins promote intramuscular triglyceride (IMTG) storage, although whether the abundance and association of the PLIN proteins with LDs is related to the diverse lipid storage in muscle between trained and sedentary individuals is unknown. We show that lipid infusion augments IMTG content in type I fibres of both trained and sedentary individuals. Most importantly, despite there being no change in PLIN protein content, lipid infusion did increase the number of LDs connected with PLIN proteins in trained individuals only. We conclude that trained individuals are able to redistribute the pre-existing pool of PLIN proteins to an expanded LD pool during lipid infusion and, via this adaptation, may support the storage of fatty acids in IMTG. ABSTRACT Because the lipid droplet (LD)-associated perilipin (PLIN) proteins promote intramuscular triglyceride (IMTG) storage, we investigated the hypothesis that differential protein content of PLINs and their distribution with LDs may be linked to the diverse lipid storage in muscle between trained and sedentary individuals. Trained (n = 11) and sedentary (n = 10) subjects, matched for age, sex and body mass index, received either a 6 h lipid or glycerol infusion in the setting of a concurrent hyperinsulinaemic-euglycaemic clamp. Sequential muscle biopsies (0, 2 and 6 h) were analysed using confocal immunofluorescence microscopy for fibre type-specific IMTG content and PLIN associations with LDs. In both groups, lipid infusion increased IMTG content in type I fibres (trained: +62%, sedentary: +79%; P < 0.05) but did not affect PLIN protein content. At baseline, PLIN2 (+65%), PLIN3 (+105%) and PLIN5 (+53%; all P < 0.05) protein content was higher in trained compared to sedentary individuals. In trained individuals, lipid infusion increased the number of LDs associated with PLIN2 (+27%), PLIN3 (+73%) and PLIN5 (+40%; all P < 0.05) in type I fibres. By contrast, in sedentary individuals, lipid infusion only increased the number of LDs not associated with PLIN proteins. Acute free fatty acid elevation therefore induces a redistribution of PLIN proteins to an expanded LD pool in trained individuals only and this may be part of the mechanism that enables fatty acids to be stored in IMTG.
Collapse
Affiliation(s)
- S O Shepherd
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - J A Strauss
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Q Wang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - J J Dube
- Department of Biology, Chatham University, Pittsburgh, PA, USA
| | - B Goodpaster
- Translational Research Institute for Metabolism & Diabetes, Florida Hospital, Orlando, FL, USA
| | - D G Mashek
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - L S Chow
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
38
|
Morales PE, Bucarey JL, Espinosa A. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins. J Diabetes Res 2017; 2017:1789395. [PMID: 28676863 PMCID: PMC5476901 DOI: 10.1155/2017/1789395] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is one of the main regulators of carbohydrate and lipid metabolism in our organism, and therefore, it is highly susceptible to changes in glucose and fatty acid (FA) availability. Skeletal muscle is an extremely complex tissue: its metabolic capacity depends on the type of fibers it is made up of and the level of stimulation it undergoes, such as acute or chronic contraction. Obesity is often associated with increased FA levels, which leads to the accumulation of toxic lipid intermediates, oxidative stress, and autophagy in skeletal fibers. This lipotoxicity is one of the most common causes of insulin resistance (IR). In this scenario, the "isolation" of certain lipids in specific cell compartments, through the action of the specific lipid droplet, perilipin (PLIN) family of proteins, is conceived as a lifeguard compensatory strategy. In this review, we summarize the cellular mechanism underlying lipid mobilization and metabolism inside skeletal muscle, focusing on the function of lipid droplets, the PLIN family of proteins, and how these entities are modified in exercise, obesity, and IR conditions.
Collapse
Affiliation(s)
- Pablo Esteban Morales
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jose Luis Bucarey
- CIDIS-AC, Escuela de Medicina, Universidad de Valparaiso, Valparaiso, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- *Alejandra Espinosa:
| |
Collapse
|
39
|
Langleite TM, Jensen J, Norheim F, Gulseth HL, Tangen DS, Kolnes KJ, Heck A, Storås T, Grøthe G, Dahl MA, Kielland A, Holen T, Noreng HJ, Stadheim HK, Bjørnerud A, Johansen EI, Nellemann B, Birkeland KI, Drevon CA. Insulin sensitivity, body composition and adipose depots following 12 w combined endurance and strength training in dysglycemic and normoglycemic sedentary men. Arch Physiol Biochem 2016; 122:167-179. [PMID: 27477619 DOI: 10.1080/13813455.2016.1202985] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONTEXT Insulin resistance and dysglycemia are associated with physical inactivity and adiposity, and may be improved by exercise. OBJECTIVE Investigate the effect of exercise on insulin sensitivity, body composition and adipose depots in sedentary men with (n = 11) or without (n = 11) overweight and dysglycemia. MATERIAL AND METHODS Euglycemic-hyperinsulinemic clamp, ankle-to-neck MRI, MRS, muscle and adipose tissue biopsies before and after 12 weeks combined strength and endurance exercise. RESULTS Insulin sensitivity, VO2max, strength, whole-body and muscle fat content, and abdominal adipose depots were improved without obvious differences between normo- and dysglycemic men. Hepatic fat, waist circumference and subcutaneous adipose tissue were reduced in the dysglycemic group. For both groups plasma adiponectin was reduced, whereas IL-6 was unchanged. Visceral fat was preferentially lost compared with other adipose depots. DISCUSSION AND CONCLUSION Body composition, fat distribution and insulin sensitivity improved following training in sedentary middle-aged men with and without dysglycemia.
Collapse
Affiliation(s)
- Torgrim Mikal Langleite
- a Department of Nutrition , University of Oslo , Oslo , Norway
- b Department of Endocrinology , Morbid Obesity and Preventive Medicine, Oslo University Hospital , Oslo , Norway
| | - Jørgen Jensen
- c Department of Physical Performance , Norwegian School of Sport Sciences , Oslo , Norway
| | - Frode Norheim
- a Department of Nutrition , University of Oslo , Oslo , Norway
| | - Hanne Løvdal Gulseth
- b Department of Endocrinology , Morbid Obesity and Preventive Medicine, Oslo University Hospital , Oslo , Norway
| | - Daniel Steensen Tangen
- c Department of Physical Performance , Norwegian School of Sport Sciences , Oslo , Norway
| | | | - Ansgar Heck
- b Department of Endocrinology , Morbid Obesity and Preventive Medicine, Oslo University Hospital , Oslo , Norway
- d Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway
| | - Tryggve Storås
- e The Intervention Centre, Oslo University Hospital , Oslo , Norway
| | - Guro Grøthe
- c Department of Physical Performance , Norwegian School of Sport Sciences , Oslo , Norway
| | - Marius Adler Dahl
- c Department of Physical Performance , Norwegian School of Sport Sciences , Oslo , Norway
| | - Anders Kielland
- a Department of Nutrition , University of Oslo , Oslo , Norway
| | - Torgeir Holen
- a Department of Nutrition , University of Oslo , Oslo , Norway
| | | | - Hans Kristian Stadheim
- c Department of Physical Performance , Norwegian School of Sport Sciences , Oslo , Norway
| | - Atle Bjørnerud
- e The Intervention Centre, Oslo University Hospital , Oslo , Norway
- g Department of Physics , University of Oslo , Oslo , Norway , and
| | - Egil Ivar Johansen
- c Department of Physical Performance , Norwegian School of Sport Sciences , Oslo , Norway
| | - Birgitte Nellemann
- c Department of Physical Performance , Norwegian School of Sport Sciences , Oslo , Norway
- h Department of Endocrinology and Internal Medicine , Aarhus University Hospital , Aarhus , Denmark
| | - Kåre Inge Birkeland
- b Department of Endocrinology , Morbid Obesity and Preventive Medicine, Oslo University Hospital , Oslo , Norway
- d Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Oslo , Norway
| | | |
Collapse
|
40
|
Hjorth M, Pourteymour S, Görgens SW, Langleite TM, Lee S, Holen T, Gulseth HL, Birkeland KI, Jensen J, Drevon CA, Norheim F. Myostatin in relation to physical activity and dysglycaemia and its effect on energy metabolism in human skeletal muscle cells. Acta Physiol (Oxf) 2016; 217:45-60. [PMID: 26572800 DOI: 10.1111/apha.12631] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/24/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022]
Abstract
AIM Some health benefits of exercise may be explained by an altered secretion of myokines. Because previous focus has been on upregulated myokines, we screened for downregulated myokines and identified myostatin. We studied the expression of myostatin in relation to exercise and dysglycaemia in skeletal muscle, adipose tissue and plasma. We further examined some effects of myostatin on energy metabolism in primary human muscle cells and Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. METHODS Sedentary men with or without dysglycaemia underwent a 45-min acute bicycle test before and after 12 weeks of combined endurance and strength training. Blood samples and biopsies from m. vastus lateralis and adipose tissue were collected. RESULTS Myostatin mRNA expression was reduced in skeletal muscle after acute as well as long-term exercise and was even further downregulated by acute exercise on top of 12-week training. Furthermore, the expression of myostatin at baseline correlated negatively with insulin sensitivity. Myostatin expression in the adipose tissue increased after 12 weeks of training and correlated positively with insulin sensitivity markers. In cultured muscle cells but not in SGBS cells, myostatin promoted an insulin-independent increase in glucose uptake. Furthermore, muscle cells incubated with myostatin had an enhanced rate of glucose oxidation and lactate production. CONCLUSION Myostatin was differentially expressed in the muscle and adipose tissue in relation to physical activity and dysglycaemia. Recombinant myostatin increased the consumption of glucose in human skeletal muscle cells, suggesting a complex regulatory role of myostatin in skeletal muscle homeostasis.
Collapse
Affiliation(s)
- M. Hjorth
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - S. Pourteymour
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - S. W. Görgens
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
| | - T. M. Langleite
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - S. Lee
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - T. Holen
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - H. L. Gulseth
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - K. I. Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - J. Jensen
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| | - C. A. Drevon
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - F. Norheim
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| |
Collapse
|
41
|
Bosma M. Lipid droplet dynamics in skeletal muscle. Exp Cell Res 2015; 340:180-6. [PMID: 26515552 DOI: 10.1016/j.yexcr.2015.10.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
The skeletal muscle is subjected to high mechanical and energetic demands. Lipid droplets are an important source of energy substrates for the working muscle. Muscle cells contain a variety of lipid droplets, which are fundamentally smaller than those found in adipocytes. This translates into a greater lipid droplet surface area serving as the interface for intracellular lipid metabolism. The skeletal muscle has a high plasticity, it is subjected to major remodeling following training and detraining. This coincides with adaptations in lipid droplet characteristics and dynamics. The majority of lipid droplets in skeletal muscle are located in the subsarcolemmal region or in-between the myofibrils, in close vicinity to mitochondria. The vastly organized nature of skeletal muscle fibers limits organelle mobility. The high metabolic rate and substrate turnover in skeletal muscle demands a strict coordination of intramyocellular lipid metabolism and LD dynamics, in which lipid droplet coat proteins play an important role. This review provides insights into the characteristics, diversity and dynamics of skeletal muscle lipid droplets.
Collapse
Affiliation(s)
- Madeleen Bosma
- Department of Cell and Molecular Biology, Karolinska Institutet, P.O. Box 285, SE-171 77 Stockholm, Sweden.
| |
Collapse
|