1
|
Chubanava S, Karavaeva I, Ehrlich AM, Justicia RM, Basse AL, Kulik I, Dalbram E, Ahwazi D, Heaselgrave SR, Trošt K, Stocks B, Hodek O, Rodrigues RN, Havelund JF, Schlabs FL, Larsen S, Yonamine CY, Henriquez-Olguín C, Giustarini D, Rossi R, Gerhart-Hines Z, Moritz T, Zierath JR, Sakamoto K, Jensen TE, Færgeman NJ, Lavery GG, Deshmukh AS, Treebak JT. NAD depletion in skeletal muscle does not compromise muscle function or accelerate aging. Cell Metab 2025:S1550-4131(25)00212-8. [PMID: 40311622 DOI: 10.1016/j.cmet.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/27/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a ubiquitous electron carrier essential for energy metabolism and post-translational modification of numerous regulatory proteins. Dysregulations of NAD metabolism are widely regarded as detrimental to health, with NAD depletion commonly implicated in aging. However, the extent to which cellular NAD concentration can decline without adverse consequences remains unclear. To investigate this, we generated a mouse model in which nicotinamide phosphoribosyltransferase (NAMPT)-mediated NAD+ biosynthesis was disrupted in adult skeletal muscle. The intervention resulted in an 85% reduction in muscle NAD+ abundance while maintaining tissue integrity and functionality, as demonstrated by preserved muscle morphology, contractility, and exercise tolerance. This absence of functional impairments was further supported by intact mitochondrial respiratory capacity and unaltered muscle transcriptomic and proteomic profiles. Furthermore, lifelong NAD depletion did not accelerate muscle aging or impair whole-body metabolism. Collectively, these findings suggest that NAD depletion does not contribute to age-related decline in skeletal muscle function.
Collapse
Affiliation(s)
- Sabina Chubanava
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iuliia Karavaeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roger M Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid L Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Kulik
- Institute of Translational Stem Cell Research, Helmholtz Diabetes Center, Munich, Germany
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Danial Ahwazi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samuel R Heaselgrave
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Kajetan Trošt
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ondřej Hodek
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Raissa N Rodrigues
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper F Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Farina L Schlabs
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Caio Y Yonamine
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Henriquez-Olguín
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Center for Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Section of Integrative Physiology, Department of Molecular Medicine and Surgery and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Jolly JT, Blackburn JS. The PACT Network: PRL, ARL, CNNM, and TRPM Proteins in Magnesium Transport and Disease. Int J Mol Sci 2025; 26:1528. [PMID: 40003994 PMCID: PMC11855589 DOI: 10.3390/ijms26041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Magnesium, the most abundant divalent metal within the cell, is essential for physiological function and critical in cellular signaling. To maintain cellular homeostasis, intracellular magnesium levels are tightly regulated, as dysregulation is linked to numerous diseases, including cancer, diabetes, cardiovascular disorders, and neurological conditions. Over the past two decades, extensive research on magnesium-regulating proteins has provided valuable insight into their pathogenic and therapeutic potential. This review explores an emerging mechanism of magnesium homeostasis involving proteins in the PRL (phosphatase of regenerating liver), ARL (ADP ribosylation factor-like GTPase family), CNNM (cyclin and cystathionine β-synthase domain magnesium transport mediator), and TRPM (transient receptor potential melastatin) families, collectively termed herein as the PACT network. While each PACT protein has been studied within its individual signaling and disease contexts, their interactions suggest a broader regulatory network with therapeutic potential. This review consolidates the current knowledge on the PACT proteins' structure, function, and interactions and identifies research gaps to encourage future investigation. As the field of magnesium homeostasis continues to advance, understanding PACT protein interactions offers new opportunities for basic research and therapeutic development targeting magnesium-related disorders.
Collapse
Affiliation(s)
- Jeffery T. Jolly
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jessica S. Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Comprehensive Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
3
|
Rodriguez E, Peng B, Lane N. Anaesthetics disrupt complex I-linked respiration and reverse the ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149511. [PMID: 39326543 DOI: 10.1016/j.bbabio.2024.149511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The mechanism of volatile general anaesthetics has long been a mystery. Anaesthetics have no structural motifs in common, beyond lipid solubility, yet all exert a similar effect. The fact that the inert gas xenon is an anaesthetic suggests their common mechanism might relate to physical rather than chemical properties. Electron transfer through chiral proteins can induce spin polarization. Recent work suggests that anaesthetics dissipate spin polarization during electron transfer to oxygen, slowing respiration. Here we show that the volatile anaesthetics isoflurane and sevoflurane specifically disrupt complex I-linked respiration in the thoraces of Drosophila melanogaster, with less effect on maximal respiration. Suppression of complex I-linked respiration was greatest with isoflurane. Using high-resolution tissue fluorespirometry, we show that these anaesthetics simultaneously increase mitochondrial membrane potential, implying reversal of the ATP synthase. Inhibition of ATP synthase with oligomycin prevented respiration and increased membrane potential back to the maximal (LEAK state) potential. Magnesium-green fluorescence predicted a collapse in ATP availability following a single anaesthetic dose, consistent with ATP hydrolysis through reversal of the ATP synthase. Raised membrane potential corresponded to a rise in ROS flux, especially with isoflurane. Anaesthetic doses causing respiratory suppression were in the same range as those that induce anaesthesia, although we could not establish tissue concentrations. Our findings show that anaesthetics suppress complex I-linked respiration with concerted downstream effects. But we cannot explain why only mutations in complex I, and not elsewhere in the electron-transfer system, confer hypersensitivity to anaesthetics.
Collapse
Affiliation(s)
- Enrique Rodriguez
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, United Kingdom of Great Britain and Northern Ireland
| | - Bella Peng
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, United Kingdom of Great Britain and Northern Ireland
| | - Nick Lane
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
4
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
5
|
Azevedo RDSD, Falcão KVG, Almeida SMVD, Araújo MC, Silva-Filho RC, Souza Maia MBD, Amaral IPGD, Leite ACR, de Souza Bezerra R. The tissue-specific nature of physiological zebrafish mitochondrial bioenergetics. Mitochondrion 2024; 77:101901. [PMID: 38777222 DOI: 10.1016/j.mito.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Zebrafish are a powerful tool to study a myriad of experimental conditions, including mitochondrial bioenergetics. Considering that mitochondria are different in many aspects depending on the tissue evaluated, in the zebrafish model there is still a lack of this investigation. Especially for juvenile zebrafish. In the present study, we examined whether different tissues from zebrafish juveniles show mitochondrial density- and tissue-specificity comparing brain, liver, heart, and skeletal muscle (SM). The liver and brain complex IV showed the highest O2 consumption of all ETC in all tissues (10x when compared to other respiratory complexes). The liver showed a higher potential for ROS generation. In this way, the brain and liver showed more susceptibility to O2- generation when compared to other tissues. Regarding Ca2+ transport, the brain showed greater capacity for Ca2+ uptake and the liver presented low Ca2+ uptake capacity. The liver and brain were more susceptible to producing NO. The enzymes SOD and Catalase showed high activity in the brain, whereas GPx showed higher activity in the liver and CS in the SM. TEM reveals, as expected, a physiological diverse mitochondrial morphology. The essential differences between zebrafish tissues investigated probably reflect how the mitochondria play a diverse role in systemic homeostasis. This feature may not be limited to normal metabolic functions but also to stress conditions. In summary, mitochondrial bioenergetics in zebrafish juvenile permeabilized tissues showed a tissue-specificity and a useful tool to investigate conditions of redox system imbalance, mainly in the liver and brain.
Collapse
Affiliation(s)
- Rafael David Souto de Azevedo
- Laboratório de Biologia Celular e Molecular, Universidade de Pernambuco - UPE, Campus Garanhuns, Garanhuns, PE, Brazil.
| | - Kivia Vanessa Gomes Falcão
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | | | - Marlyete Chagas Araújo
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | | | | | | | | | - Ranilson de Souza Bezerra
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
6
|
Okoye CN, Koren SA, Wojtovich AP. Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol 2023; 67:102926. [PMID: 37871533 PMCID: PMC10598411 DOI: 10.1016/j.redox.2023.102926] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondria are a main source of cellular energy. Oxidative phosphorylation (OXPHOS) is the major process of aerobic respiration. Enzyme complexes of the electron transport chain (ETC) pump protons to generate a protonmotive force (Δp) that drives OXPHOS. Complex I is an electron entry point into the ETC. Complex I oxidizes nicotinamide adenine dinucleotide (NADH) and transfers electrons to ubiquinone in a reaction coupled with proton pumping. Complex I also produces reactive oxygen species (ROS) under various conditions. The enzymatic activities of complex I can be regulated by metabolic conditions and serves as a regulatory node of the ETC. Complex I ROS plays diverse roles in cell metabolism ranging from physiologic to pathologic conditions. Progress in our understanding indicates that ROS release from complex I serves important signaling functions. Increasing evidence suggests that complex I ROS is important in signaling a mismatch in energy production and demand. In this article, we review the role of ROS from complex I in sensing acute hypoxia.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shon A Koren
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
7
|
Harford AR, Devaux JBL, Hickey AJR. Dynamic defence? Intertidal triplefin species show better maintenance of mitochondrial membrane potential than subtidal species at low oxygen pressures. J Exp Biol 2023; 226:jeb245926. [PMID: 37498237 DOI: 10.1242/jeb.245926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Oxygen is essential for most eukaryotic lifeforms, as it supports mitochondrial oxidative phosphorylation to supply ∼90% of cellular adenosine triphosphate (ATP). Fluctuations in O2 present a major stressor, with hypoxia leading to a cascade of detrimental physiological changes that alter cell operations and ultimately induce death. Nonetheless, some species episodically tolerate near-anoxic environments, and have evolved mechanisms to sustain function even during extended hypoxic periods. While mitochondria are pivotal in central metabolism, their role in hypoxia tolerance remains ill defined. Given the vulnerability of the brain to hypoxia, mitochondrial function was tested in brain homogenates of three closely related triplefin species with varying degrees of hypoxia tolerance (Bellapiscis medius, Forsterygion lapillum and Forsterygion varium). High-resolution respirometry coupled with fluorometric measurements of mitochondrial membrane potential (mtMP) permitted assessment of differences in mitochondrial function and integrity in response to intermittent hypoxia and anoxia. Traditional steady-state measures of respiratory flux and mtMP showed no differences among species. However, in the transition into anoxia, the tolerant species B. medius and F. lapillum maintained mtMP at O2 pressures 7- and 4.4-fold lower, respectively, than that of the hypoxia-sensitive F. varium and exhibited slower rates of membrane depolarisation. The results indicate that dynamic oxic-hypoxic mitochondria transitions underlie hypoxia tolerance in these intertidal fish.
Collapse
Affiliation(s)
- Alice R Harford
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Jules B L Devaux
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Anthony J R Hickey
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
8
|
Skelton ZR, Prinzing TS, Hastings PA, Wegner NC. Laboratory-based measures of temperature preference and metabolic thermal sensitivity provide insight into the habitat utilisation of juvenile California horn shark (Heterodontus francisci) and leopard shark (Triakis semifasciata). JOURNAL OF FISH BIOLOGY 2023; 102:829-843. [PMID: 36625095 DOI: 10.1111/jfb.15307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Laboratory-based studies examining fish physiological and behavioural responses to temperature can provide important insight into species-specific habitat preferences and utilisation, and are especially useful in examining vulnerable life stages that are difficult to study in the wild. This study couples shuttle box behavioural experiments with respirometry trials to determine the temperature preferences and metabolic thermal sensitivity of juvenile California horn shark (Heterodontus francisci) and leopard shark (Triakis semifasciata). As juveniles, these two species often occupy similar estuarine habitats but display contrasting behaviours and activity levels - H. francisci are relatively sedentary, whereas T. semifasciata are more active and mobile. This study shows that juvenile H. francisci and T. semifasciata have comparable thermal preferences and occupy similar temperature ranges, but H. francisci metabolism is more sensitive to acute changes in temperature as expressed through a higher Q10 (H. francisci = 2.58; T. semifasciata = 1.97; temperature range: 12-24°C). Underlying chronic temperature acclimation to both warm (21°C) and cool (15°C) representative seasonal temperatures did not appear to significantly affect these parameters. These results are discussed in the context of field studies examining known distributions, habitat and movement patterns of H. francisci and T. semifasciata to better understand the role of temperature in species-specific behaviour. Juvenile H. francisci likely target thermally stable environments, such as estuaries that are close to their preferred temperature, whereas juvenile T. semifasciata metabolism and behaviour appear less dependent on temperature.
Collapse
Affiliation(s)
- Zachary R Skelton
- Ocean Associates Inc. under contract to Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, USA
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Tanya S Prinzing
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| | - Philip A Hastings
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Nicholas C Wegner
- Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, USA
| |
Collapse
|
9
|
Metcalfe NB, Olsson M. How telomere dynamics are influenced by the balance between mitochondrial efficiency, reactive oxygen species production and DNA damage. Mol Ecol 2022; 31:6040-6052. [PMID: 34435398 DOI: 10.1111/mec.16150] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
It is well known that oxidative stress is a major cause of DNA damage and telomere attrition. Most endogenous reactive oxygen species (ROS) are produced in the mitochondria, producing a link between mitochondrial function, DNA integrity and telomere dynamics. In this review we will describe how ROS production, rates of damage to telomeric DNA and DNA repair are dynamic processes. The rate of ROS production depends on mitochondrial features such as the level of inner membrane uncoupling and the proportion of time that ATP is actively being produced. However, the efficiency of ATP production (the ATP/O ratio) is positively related to the rate of ROS production, so leading to a trade-off between the body's energy requirements and its need to prevent oxidative stress. Telomeric DNA is especially vulnerable to oxidative damage due to features such as its high guanine content; while repair to damaged telomere regions is possible through a range of mechanisms, these can result in more rapid telomere shortening. There is increasing evidence that mitochondrial efficiency varies over time and with environmental context, as do rates of DNA repair. We argue that telomere dynamics can only be understood by appreciating that the optimal solution to the trade-off between energetic efficiency and telomere protection will differ between individuals and will change over time, depending on resource availability, energetic demands and life history strategy.
Collapse
Affiliation(s)
- Neil B Metcalfe
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Quéméneur JB, Danion M, Cabon J, Collet S, Zambonino-Infante JL, Salin K. The relationships between growth rate and mitochondrial metabolism varies over time. Sci Rep 2022; 12:16066. [PMID: 36167968 PMCID: PMC9515119 DOI: 10.1038/s41598-022-20428-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial metabolism varies significantly between individuals of the same species and can influence animal performance, such as growth. However, growth rate is usually determined before the mitochondrial assay. The hypothesis that natural variation in mitochondrial metabolic traits is linked to differences in both previous and upcoming growth remains untested. Using biopsies to collect tissue in a non-lethal manner, we tested this hypothesis in a fish model (Dicentrarchus labrax) by monitoring individual growth rate, measuring mitochondrial metabolic traits in the red muscle, and monitoring the growth of the same individuals after the mitochondrial assay. Individual variation in growth rate was consistent before and after the mitochondrial assay; however, the mitochondrial traits that explained growth variation differed between the growth rates determined before and after the mitochondrial assay. While past growth was correlated with the activity of the cytochrome c oxidase, a measure of mitochondrial density, future growth was linked to mitochondrial proton leak respiration. This is the first report of temporal shift in the relationship between growth rate and mitochondrial metabolic traits, suggesting an among-individual variation in temporal changes in mitochondrial traits. Our results emphasize the need to evaluate whether mitochondrial metabolic traits of individuals can change over time.
Collapse
Affiliation(s)
- Jean-Baptiste Quéméneur
- Ifremer, Laboratory of Environmental Marine Sciences, University Brest, CNRS, IRD, 29280, Plouzané, France
| | - Morgane Danion
- Anses, Ploufragan-Plouzané Niort Laboratory, VIMEP Unit, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Joëlle Cabon
- Anses, Ploufragan-Plouzané Niort Laboratory, VIMEP Unit, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Sophie Collet
- Ifremer, Laboratory of Environmental Marine Sciences, University Brest, CNRS, IRD, 29280, Plouzané, France
| | | | - Karine Salin
- Ifremer, Laboratory of Environmental Marine Sciences, University Brest, CNRS, IRD, 29280, Plouzané, France.
| |
Collapse
|
11
|
Links between host genetics, metabolism, gut microbiome and amoebic gill disease (AGD) in Atlantic salmon. Anim Microbiome 2022; 4:53. [PMID: 36109797 PMCID: PMC9479442 DOI: 10.1186/s42523-022-00203-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Background Rapidly spreading parasitic infections like amoebic gill disease (AGD) are increasingly problematic for Atlantic salmon reared in aquaculture facilities and potentially pose a risk to wild fish species in surrounding waters. Currently, it is not known whether susceptibility to AGD differs between wild and farmed salmon. Wild Atlantic salmon populations are declining and this emerging disease could represent an additional threat to their long-term viability. A better understanding of how AGD affects fish health is therefore relevant for the accurate assessment of the associated risk, both to farming and to the well-being of wild populations. In this study, we assessed the impact of natural exposure to AGD on wild, hybrid and farmed post-smolt Atlantic salmon reared in a sea farm together under common garden conditions. Results Wild fish showed substantially higher mortality levels (64%) than farmed fish (25%), with intermediate levels for hybrid fish (39%) suggesting that AGD susceptibility has an additive genetic basis. Metabolic rate measures representing physiological performance were similar among the genetic groups but were significantly lower in AGD-symptomatic fish than healthy fish. Gut microbial diversity was significantly lower in infected fish. We observed major shifts in gut microbial community composition in response to AGD infections. In symptomatic fish the relative abundance of key taxa Aliivibrio, Marinomonas and Pseudoalteromonas declined, whereas the abundance of Polaribacter and Vibrio increased compared to healthy fish. Conclusions Our results highlight the stress AGD imposes on fish physiology and suggest that low metabolic-rate fish phenotypes may be associated with better infection outcomes. We consider the role increased AGD outbreak events and a warmer future may have in driving secondary bacterial infections and in reducing performance in farmed and wild fish. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00203-x.
Collapse
|
12
|
Davies KL, Smith DJ, El-Bacha T, Wooding PFP, Forhead AJ, Murray AJ, Fowden AL, Camm EJ. Cortisol Regulates Cerebral Mitochondrial Oxidative Phosphorylation and Morphology of the Brain in a Region-Specific Manner in the Ovine Fetus. Biomolecules 2022; 12:768. [PMID: 35740893 PMCID: PMC9220895 DOI: 10.3390/biom12060768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
In adults, glucocorticoids are stress hormones that act, partly, through actions on mitochondrial oxidative phosphorylation (OXPHOS) to increase energy availability. Before birth, glucocorticoids are primarily maturational signals that prepare the fetus for new postnatal challenges. However, the role of the normal prepartum glucocorticoid rise in preparing mitochondria for the increased postnatal energy demands remains largely unknown. This study examined the effect of physiological increases in the fetal cortisol concentration on cerebral mitochondrial OXPHOS capacity near term (~130 days gestation, term ~145 days gestation). Fetal sheep were infused with saline or cortisol for 5 days at ~0.8 of gestation before the mitochondrial content, respiratory rates, abundance of the electron transfer system proteins and OXPHOS efficiency were measured in their cortex and cerebellum. Cerebral morphology was assessed by immunohistochemistry and stereology. Cortisol treatment increased the mitochondrial content, while decreasing Complex I-linked respiration in the cerebellum. There was no effect on the cortical mitochondrial OXPHOS capacity. Cortisol infusion had regional effects on cerebral morphology, with increased myelination in the cerebrum. The findings demonstrate the importance of cortisol in regulating the cerebral mitochondrial OXPHOS capacity prenatally and have implications for infants born preterm or after glucocorticoid overexposure due to pregnancy complications or clinical treatment.
Collapse
Affiliation(s)
- Katie L. Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
| | - Danielle J. Smith
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
| | - Tatiana El-Bacha
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
| | - Peter F. P. Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
| | - Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
| | - Emily J. Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (K.L.D.); (D.J.S.); (T.E.-B.); (P.F.P.W.); (A.J.F.); (A.J.M.)
| |
Collapse
|
13
|
Castellví A, Pequerul R, Barracco V, Juanhuix J, Parés X, Farrés J. Structural and biochemical evidence that ATP inhibits the cancer biomarker human aldehyde dehydrogenase 1A3. Commun Biol 2022; 5:354. [PMID: 35418200 PMCID: PMC9007972 DOI: 10.1038/s42003-022-03311-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/24/2022] [Indexed: 11/15/2022] Open
Abstract
Human aldehyde dehydrogenase (ALDH) participates in the oxidative stress response and retinoid metabolism, being involved in several diseases, including cancer, diabetes and obesity. The ALDH1A3 isoform has recently elicited wide interest because of its potential use as a cancer stem cell biomarker and drug target. We report high-resolution three-dimensional ALDH1A3 structures for the apo-enzyme, the NAD+ complex and a binary complex with ATP. Each subunit of the ALDH1A3-ATP complex contains one ATP molecule bound to the adenosine-binding pocket of the cofactor-binding site. The ATP complex also shows a molecule, putatively identified as a polyethylene glycol aldehyde, covalently bound to the active-site cysteine. This mimics the thioacyl-enzyme catalytic intermediate, which is trapped in a dead enzyme lacking an active cofactor. At physiological concentrations, ATP inhibits the dehydrogenase activity of ALDH1A3 and other isoforms, with a Ki value of 0.48 mM for ALDH1A3, showing a mixed inhibition type against NAD+. ATP also inhibits esterase activity in a concentration-dependent manner. The current ALDH1A3 structures at higher resolution will facilitate the rational design of potent and selective inhibitors. ATP binding to ALDH1A3 enables activity modulation by the energy status of the cell and metabolic reprogramming, which may be relevant in several disease conditions.
Collapse
Affiliation(s)
- Albert Castellví
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
- Alba Synchrotron, carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Vito Barracco
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Judith Juanhuix
- Alba Synchrotron, carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
14
|
Cheng H, Munro D, Pamenter ME. Dynamic calculation of ATP/O ratios measured using Magnesium Green (MgGr)™. MethodsX 2021; 8:101520. [PMID: 34754791 PMCID: PMC8563643 DOI: 10.1016/j.mex.2021.101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
Mitochondria generate aerobic cellular energy (i.e., ATP) through the reduction of oxygen to water via oxidative phosphorylation. The efficiency of this pathway can be measured by the phosphate/oxygen (ATP/O) ratio, which is the amount of ATP produced per oxygen atom reduced. This ratio thus provides a measure of the efficiency of mitochondrial respiration that can be readily compared between species. The magnesium green (MgGr) fluorometric method permits easy measurement of ATP/O ratios from isolated mitochondria but the standard analysis approach employs an endpoint method to calculate ATP/O ratios. Here, we present a modified method of ATP/O calculation that permits dynamic observation of fluorescent measurements of the consumption of O2 (JO2) and the production of ATP (JATP). Specifically, by substituting the slope of a straight line within a given period of time (seconds to minutes) with the slope of a tangent to each time point (per second), it is possible to evaluate JO2, JATP and the ATP/O ratio in a dynamic manner.Provides second-by-second visualization of ATP/O ratios throughout experiments vs. a single measurement. Dynamic visualization allows for easy identification of outlying data and more accurate calculation of mean ATP/O ratios.
Collapse
Affiliation(s)
- Hang Cheng
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Munro
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
15
|
Thermally tolerant intertidal triplefin fish (Tripterygiidae) sustain ATP dynamics better than subtidal species under acute heat stress. Sci Rep 2021; 11:11074. [PMID: 34040122 PMCID: PMC8155050 DOI: 10.1038/s41598-021-90575-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/30/2021] [Indexed: 11/18/2022] Open
Abstract
Temperature is a key factor that affects all levels of organization. Minute shifts away from thermal optima result in detrimental effects that impact growth, reproduction and survival. Metabolic rates of ectotherms are especially sensitive to temperature and for organisms exposed to high acute temperature changes, in particular intertidal species, energetic processes are often negatively impacted. Previous investigations exploring acute heat stress have implicated cardiac mitochondrial function in determining thermal tolerance. The brain, however, is by weight, one of the most metabolically active and arguably the most temperature sensitive organ. It is essentially aerobic and entirely reliant on oxidative phosphorylation to meet energetic demands, and as temperatures rise, mitochondria become less efficient at synthesising the amount of ATP required to meet the increasing demands. This leads to an energetic crisis. Here we used brain homogenate of three closely related triplefin fish species (Bellapiscis medius, Forsterygion lapillum, and Forsterygion varium) and measured respiration and ATP dynamics at three temperatures (15, 25 and 30 °C). We found that the intertidal B. medius and F. lapillum were able to maintain rates of ATP production above rates of ATP hydrolysis at high temperatures, compared to the subtidal F. varium, which showed no difference in rates at 30 °C. These results showed that brain mitochondria became less efficient at temperatures below their respective species thermal limits, and that energetic surplus of ATP synthesis over hydrolysis narrows. In subtidal species synthesis matches hydrolysis, leaving no scope to elevate ATP supply.
Collapse
|
16
|
Targeting the Mild-Hypoxia Driving Force for Metabolic and Muscle Transcriptional Reprogramming of Gilthead Sea Bream ( Sparus aurata) Juveniles. BIOLOGY 2021; 10:biology10050416. [PMID: 34066667 PMCID: PMC8151949 DOI: 10.3390/biology10050416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
Simple Summary Reduced oxygen availability generates a number of adaptive features across all the animal kingdom, and the goal of this study was targeting the mild-hypoxia driving force for metabolic and muscle transcriptional reprogramming of gilthead sea bream juveniles. Attention was focused on blood metabolic and muscle transcriptomic landmarks before and after exhaustive exercise. Our results after mild-hypoxia conditioning highlighted an increased contribution of lipid metabolism to whole energy supply to preserve the aerobic energy production, a better swimming performance regardless of changes in feed intake, as well as reduced protein turnover and improved anaerobic fitness with the restoration of normoxia. Abstract On-growing juveniles of gilthead sea bream were acclimated for 45 days to mild-hypoxia (M-HYP, 40–60% O2 saturation), whereas normoxic fish (85–90% O2 saturation) constituted two different groups, depending on if they were fed to visual satiety (control fish) or pair-fed to M-HYP fish. Following the hypoxia conditioning period, all fish were maintained in normoxia and continued to be fed until visual satiation for 3 weeks. The time course of hypoxia-induced changes was assessed by changes in blood metabolic landmarks and muscle transcriptomics before and after exhaustive exercise in a swim tunnel respirometer. In M-HYP fish, our results highlighted a higher contribution of aerobic metabolism to whole energy supply, shifting towards a higher anaerobic fitness following normoxia restoration. Despite these changes in substrate preference, M-HYP fish shared a persistent improvement in swimming performance with a higher critical speed at exercise exhaustion. The machinery of muscle contraction and protein synthesis and breakdown was also largely altered by mild-hypoxia conditioning, contributing this metabolic re-adjustment to the positive regulation of locomotion and to the catch-up growth response during the normoxia recovery period. Altogether, these results reinforce the presence of large phenotypic plasticity in gilthead sea bream, and highlights mild-hypoxia as a promising prophylactic measure to prepare these fish for predictable stressful events.
Collapse
|
17
|
Thoral E, Roussel D, Chinopoulos C, Teulier L, Salin K. Low oxygen levels can help to prevent the detrimental effect of acute warming on mitochondrial efficiency in fish. Biol Lett 2021; 17:20200759. [PMID: 33563134 PMCID: PMC8086979 DOI: 10.1098/rsbl.2020.0759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/21/2021] [Indexed: 12/23/2022] Open
Abstract
Aerobic metabolism of aquatic ectotherms is highly sensitive to fluctuating climates. Many mitochondrial traits exhibit phenotypic plasticity in response to acute variations in temperature and oxygen availability. These responses are critical for understanding the effects of environmental variations on aquatic ectotherms' performance. Using the European seabass, Dicentrarchus labrax, we determined the effects of acute warming and deoxygenation in vitro on mitochondrial respiratory capacities and mitochondrial efficiency to produce ATP (ATP/O ratio). We show that acute warming reduced ATP/O ratio but deoxygenation marginally raised ATP/O ratio, leading to a compensatory effect of low oxygen availability on mitochondrial ATP/O ratio at high temperature. The acute effect of warming and deoxygenation on mitochondrial efficiency might be related to the leak of protons across the mitochondrial inner membrane, as the mitochondrial respiration required to counteract the proton leak increased with warming and decreased with deoxygenation. Our study underlines the importance of integrating the combined effects of temperature and oxygen availability on mitochondrial metabolism. Predictions on decline in performance of aquatic ectotherms owing to climate change may not be accurate, since these predictions typically look at respiratory capacity and ignore efficiency of ATP production.
Collapse
Affiliation(s)
- Elisa Thoral
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Damien Roussel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| | - Loïc Teulier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Karine Salin
- Université de Brest, Ifremer, CNRS, IRD, Laboratory of Environmental Marine Sciences, Plouzané 29280, France
| |
Collapse
|
18
|
Koch RE, Buchanan KL, Casagrande S, Crino O, Dowling DK, Hill GE, Hood WR, McKenzie M, Mariette MM, Noble DWA, Pavlova A, Seebacher F, Sunnucks P, Udino E, White CR, Salin K, Stier A. Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution. Trends Ecol Evol 2021; 36:321-332. [PMID: 33436278 DOI: 10.1016/j.tree.2020.12.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
Biologists have long appreciated the critical role that energy turnover plays in understanding variation in performance and fitness among individuals. Whole-organism metabolic studies have provided key insights into fundamental ecological and evolutionary processes. However, constraints operating at subcellular levels, such as those operating within the mitochondria, can also play important roles in optimizing metabolism over different energetic demands and time scales. Herein, we explore how mitochondrial aerobic metabolism influences different aspects of organismal performance, such as through changing adenosine triphosphate (ATP) and reactive oxygen species (ROS) production. We consider how such insights have advanced our understanding of the mechanisms underpinning key ecological and evolutionary processes, from variation in life-history traits to adaptation to changing thermal conditions, and we highlight key areas for future research.
Collapse
Affiliation(s)
- Rebecca E Koch
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia.
| | - Katherine L Buchanan
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Stefania Casagrande
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, Seewiesen, Eberhard-Gwinner-Str. Haus 5, 82319, Seewiesen, Germany
| | - Ondi Crino
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Damian K Dowling
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Geoffrey E Hill
- Auburn University, Department of Biological Sciences, Auburn, AL, 36849, USA
| | - Wendy R Hood
- Auburn University, Department of Biological Sciences, Auburn, AL, 36849, USA
| | - Matthew McKenzie
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Mylene M Mariette
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Daniel W A Noble
- The Australian National University, Division of Ecology and Evolution, Research School of Biology, Canberra, ACT, 2600, Australia
| | - Alexandra Pavlova
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Frank Seebacher
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, 2006, Australia
| | - Paul Sunnucks
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Eve Udino
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds, VIC, 3228, Australia
| | - Craig R White
- Monash University, School of Biological Sciences, Clayton, VIC, 3800, Australia
| | - Karine Salin
- Université de Brest, Ifremer, CNRS, IRD, Laboratory of Environmental Marine Sciences, Plouzané, 29280, France
| | - Antoine Stier
- University of Turku, Department of Biology, Turku, Finland; University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, UK
| |
Collapse
|
19
|
Salin K, Mathieu-Resuge M, Graziano N, Dubillot E, Le Grand F, Soudant P, Vagner M. The relationship between membrane fatty acid content and mitochondrial efficiency differs within- and between- omega-3 dietary treatments. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105205. [PMID: 33310641 DOI: 10.1016/j.marenvres.2020.105205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
An important, but underappreciated, consequence of climate change is the reduction in crucial nutrient production at the base of the marine food chain: the long-chain omega-3 highly unsaturated fatty acids (n-3 HUFA). This can have dramatic consequences on consumers, such as fish as they have limited capacity to synthesise n-3 HUFA de novo. The n-3 HUFA, such as docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3), are critical for the structure and function of all biological membranes. There is increasing evidence that fish will be badly affected by reductions in n-3 HUFA dietary availability, however the underlying mechanisms remain obscure. Hypotheses for how mitochondrial function should change with dietary n-3 HUFA availability have generally ignored ATP production, despite its importance to a cell's total energetics capacity, and in turn, whole-animal performance. Here we (i) quantified individual variation in mitochondrial efficiency (ATP/O ratio) of muscle and (ii) examined its relationship with content in EPA and DHA in muscle membrane of a primary consumer fish, the golden grey mullet Chelon auratus, receiving either a high or low n-3 HUFA diet. Mitochondria of fish fed on the low n-3 HUFA diet had higher ATP/O ratio than those of fish maintained on the high n-3 HUFA diet. Yet, mitochondrial efficiency varied up about 2-fold among individuals on the same dietary treatment, resulting in some fish consuming half the oxygen and energy substrate to produce the similar amount of ATP than conspecific on similar diet. This variation in mitochondrial efficiency among individuals from the same diet treatment was related to individual differences in fatty acid composition of the membranes: a high ATP/O ratio was associated with a high content in EPA and DHA in biological membranes. Our results highlight the existence of interindividual differences in mitochondrial efficiency and its potential importance in explaining intraspecific variation in response to food chain changes.
Collapse
Affiliation(s)
- Karine Salin
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France.
| | - Margaux Mathieu-Resuge
- WasserCluster Lunz - Inter-University Centre for Aquatic Ecosystem Research, Dr. Carl Kupelwieser Promenade 5 A-3293 Lunz Am See, Austria
| | - Nicolas Graziano
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France; UMR 7266 LIENSs, 2 Rue Olympe de Gouges 17000 La Rochelle, France
| | | | | | - Philippe Soudant
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Marie Vagner
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France; UMR 7266 LIENSs, 2 Rue Olympe de Gouges 17000 La Rochelle, France
| |
Collapse
|
20
|
Gauba E, Sui S, Tian J, Driskill C, Jia K, Yu C, Rughwani T, Wang Q, Kroener S, Guo L, Du H. Modulation of OSCP mitigates mitochondrial and synaptic deficits in a mouse model of Alzheimer's pathology. Neurobiol Aging 2020; 98:63-77. [PMID: 33254080 DOI: 10.1016/j.neurobiolaging.2020.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 01/22/2023]
Abstract
Synaptic failure underlies cognitive impairment in Alzheimer's disease (AD). Cumulative evidence suggests a strong link between mitochondrial dysfunction and synaptic deficits in AD. We previously found that oligomycin-sensitivity-conferring protein (OSCP) dysfunction produces pronounced neuronal mitochondrial defects in AD brains and a mouse model of AD pathology (5xFAD mice). Here, we prevented OSCP dysfunction by overexpressing OSCP in 5xFAD mouse neurons in vivo (Thy-1 OSCP/5xFAD mice). This approach protected OSCP expression and reduced interaction of amyloid-beta (Aβ) with membrane-bound OSCP. OSCP overexpression also alleviated F1Fo ATP synthase deregulation and preserved mitochondrial function. Moreover, OSCP modulation conferred resistance to Aβ-mediated defects in axonal mitochondrial dynamics and motility. Consistent with preserved neuronal mitochondrial function, OSCP overexpression ameliorated synaptic injury in 5xFAD mice as demonstrated by preserved synaptic density, reduced complement-dependent synapse elimination, and improved synaptic transmission, leading to preserved spatial learning and memory. Taken together, our findings show the consequences of OSCP dysfunction in the development of synaptic stress in AD-related conditions and implicate OSCP modulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Esha Gauba
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Shaomei Sui
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Jing Tian
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Christopher Driskill
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Kun Jia
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Chunxiao Yu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Tripta Rughwani
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Qi Wang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Lan Guo
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA.
| | - Heng Du
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
21
|
Salin K, Villasevil EM, Anderson GJ, Lamarre SG, Melanson CA, McCarthy I, Selman C, Metcalfe NB. Differences in mitochondrial efficiency explain individual variation in growth performance. Proc Biol Sci 2019; 286:20191466. [PMID: 31431161 DOI: 10.1098/rspb.2019.1466] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The physiological causes of intraspecific differences in fitness components such as growth rate are currently a source of debate. It has been suggested that differences in energy metabolism may drive variation in growth, but it remains unclear whether covariation between growth rates and energy metabolism is: (i) a result of certain individuals acquiring and consequently allocating more resources to growth, and/or is (ii) determined by variation in the efficiency with which those resources are transformed into growth. Studies of individually housed animals under standardized nutritional conditions can help shed light on this debate. Here we quantify individual variation in metabolic efficiency in terms of the amount of adenosine triphosphate (ATP) generated per molecule of oxygen consumed by liver and muscle mitochondria and examine its effects, both on the rate of protein synthesis within these tissues and on the rate of whole-body growth of individually fed juvenile brown trout (Salmo trutta) receiving either a high or low food ration. As expected, fish on the high ration on average gained more in body mass and protein content than those maintained on the low ration. Yet, growth performance varied more than 10-fold among individuals on the same ration, resulting in some fish on low rations growing faster than others on the high ration. This variation in growth for a given ration was related to individual differences in mitochondrial properties: a high whole-body growth performance was associated with high mitochondrial efficiency of ATP production in the liver. Our results show for the first time, to our knowledge, that among-individual variation in the efficiency with which substrates are converted into ATP can help explain marked variation in growth performance, independent of food intake. This study highlights the existence of inter-individual differences in mitochondrial efficiency and its potential importance in explaining intraspecific variation in whole-animal performance.
Collapse
Affiliation(s)
- Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Eugenia M Villasevil
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Graeme J Anderson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Simon G Lamarre
- Département de Biologie, Université de Moncton, Moncton, New Brunswick, Canada E1A 3E9
| | - Chloé A Melanson
- Département de Biologie, Université de Moncton, Moncton, New Brunswick, Canada E1A 3E9
| | - Ian McCarthy
- School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
22
|
Martos-Sitcha JA, Simó-Mirabet P, de Las Heras V, Calduch-Giner JÀ, Pérez-Sánchez J. Tissue-Specific Orchestration of Gilthead Sea Bream Resilience to Hypoxia and High Stocking Density. Front Physiol 2019; 10:840. [PMID: 31354511 PMCID: PMC6635561 DOI: 10.3389/fphys.2019.00840] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022] Open
Abstract
Two different O2 levels (normoxia: 75–85% O2 saturation; moderate hypoxia: 42–43% O2 saturation) and stocking densities (LD: 9.5, and HD: 19 kg/m3) were assessed on gilthead sea bream (Sparus aurata) in a 3-week feeding trial. Reduced O2 availability had a negative impact on feed intake and growth rates, which was exacerbated by HD despite of the improvement in feed efficiency. Blood physiological hallmarks disclosed the enhancement in O2-carrying capacity in fish maintained under moderate hypoxia. This feature was related to a hypo-metabolic state to cope with a chronic and widespread environmental O2 reduction, which was accompanied by a differential regulation of circulating cortisol and growth hormone levels. Customized PCR-arrays were used for the simultaneous gene expression profiling of 34–44 selected stress and metabolic markers in liver, white skeletal muscle, heart, and blood cells. The number of differentially expressed genes ranged between 22 and 19 in liver, heart, and white skeletal muscle to 5 in total blood cells. Partial Least-Squares Discriminant Analysis (PLS-DA) explained [R2Y(cum)] and predicted [Q2Y(cum)] up to 95 and 65% of total variance, respectively. The first component (R2Y = 0.2889) gathered fish on the basis of O2 availability, and liver and cardiac genes on the category of energy sensing and oxidative metabolism (cs, hif-1α, pgc1α, pgc1β, sirts 1-2-4-5-6-7), antioxidant defense and tissue repair (prdx5, sod2, mortalin, gpx4, gr, grp-170, and prdx3) and oxidative phosphorylation (nd2, nd5, and coxi) highly contributed to this separation. The second component (R2Y = 0.2927) differentiated normoxic fish at different stocking densities, and the white muscle clearly promoted this separation by a high over-representation of genes related to GH/IGF system (ghr-i, igfbp6b, igfbp5b, insr, igfbp3, and igf-i). The third component (R2Y = 0.2542) discriminated the effect of stocking density in fish exposed to moderate hypoxia by means of hepatic fatty acid desaturases (fads2, scd1a, and scd1b) and muscle markers of fatty acid oxidation (cpt1a). All these findings disclose the different contribution of analyzed tissues (liver ≥ heart > muscle > blood) and specific genes to the hypoxic- and crowding stress-mediated responses. This study will contribute to better explain and understand the different stress resilience of farmed fish across individuals and species.
Collapse
Affiliation(s)
- Juan Antonio Martos-Sitcha
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Verónica de Las Heras
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Josep Àlvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
23
|
Salin K, Villasevil EM, Anderson GJ, Selman C, Chinopoulos C, Metcalfe NB. The RCR and ATP/O Indices Can Give Contradictory Messages about Mitochondrial Efficiency. Integr Comp Biol 2019; 58:486-494. [PMID: 29982616 DOI: 10.1093/icb/icy085] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial efficiency is typically taken to represent an animal's capacity to convert its resources into ATP. However, the term mitochondrial efficiency, as currently used in the literature, can be calculated as either the respiratory control ratio, RCR (ratio of mitochondrial respiration supporting ATP synthesis to that required to offset the proton leak) or as the amount of ATP generated per unit of oxygen consumed, ATP/O ratio. The question of how flexibility in mitochondrial energy properties (i.e., in rates of respiration to support ATP synthesis and offset proton leak, and in the rate of ATP synthesis) affects these indices of mitochondrial efficiency has tended to be overlooked. Furthermore, little is known of whether the RCR and ATP/O ratio vary in parallel, either among individuals or in response to environmental conditions. Using data from brown trout Salmo trutta we show that experimental conditions affect mitochondrial efficiency, but the apparent direction of change depends on the index chosen: a reduction in food availability was associated with an increased RCR (i.e., increased efficiency) but a decreased ATP/O ratio (decreased efficiency) in liver mitochondria. Moreover, there was a negative correlation across individuals held in identical conditions between their RCR and their ATP/O ratio. These results show that the choice of index of mitochondrial efficiency can produce different, even opposing, conclusions about the capacity of the mitochondria to produce ATP. Neither ratio is necessarily a complete measure of efficiency of ATP production in the living animal (RCR because it contains no assessment of ATP production, and ATP/O because it contains no assessment of respiration to offset the proton leak). Consequently, we suggest that a measure of mitochondrial efficiency obtained nearer to conditions where respiration simultaneously offsets the proton leak and produce ATP would be sensitive to changes in both proton leakage and ATP production, and is thus likely to be more representative of the state of the mitochondria in vivo.
Collapse
Affiliation(s)
- Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK.,Ifremer, Unité de Physiologie Fonctionnelle des Organismes Marins-LEMAR UMR 6530, BP70, Plouzané 29280, France
| | - Eugenia M Villasevil
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Graeme J Anderson
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary.,MTA-SE Lendület Neurobiochemistry Research Group, Budapest 1094, Hungary
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
24
|
Salin K, Villasevil EM, Anderson GJ, Auer SK, Selman C, Hartley RC, Mullen W, Chinopoulos C, Metcalfe NB, Williams C. Decreased mitochondrial metabolic requirements in fasting animals carry an oxidative cost. Funct Ecol 2018; 32:2149-2157. [PMID: 30333678 PMCID: PMC6175143 DOI: 10.1111/1365-2435.13125] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/15/2018] [Indexed: 12/18/2022]
Abstract
Many animals experience periods of food shortage in their natural environment. It has been hypothesised that the metabolic responses of animals to naturally-occurring periods of food deprivation may have long-term negative impacts on their subsequent life-history.In particular, reductions in energy requirements in response to fasting may help preserve limited resources but potentially come at a cost of increased oxidative stress. However, little is known about this trade-off since studies of energy metabolism are generally conducted separately from those of oxidative stress.Using a novel approach that combines measurements of mitochondrial function with in vivo levels of hydrogen peroxide (H2O2) in brown trout (Salmo trutta), we show here that fasting induces energy savings in a highly metabolically active organ (the liver) but at the cost of a significant increase in H2O2, an important form of reactive oxygen species (ROS).After a 2-week period of fasting, brown trout reduced their whole-liver mitochondrial respiratory capacities (state 3, state 4 and cytochrome c oxidase activity), mainly due to reductions in liver size (and hence the total mitochondrial content). This was compensated for at the level of the mitochondrion, with an increase in state 3 respiration combined with a decrease in state 4 respiration, suggesting a selective increase in the capacity to produce ATP without a concomitant increase in energy dissipated through proton leakage. However, the reduction in total hepatic metabolic capacity in fasted fish was associated with an almost two-fold increase in in vivo mitochondrial H2O2 levels (as measured by the MitoB probe).The resulting increase in mitochondrial ROS, and hence potential risk of oxidative damage, provides mechanistic insight into the trade-off between the short-term energetic benefits of reducing metabolism in response to fasting and the potential long-term costs to subsequent life-history traits.
Collapse
Affiliation(s)
- Karine Salin
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Eugenia M. Villasevil
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Graeme J. Anderson
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Sonya K. Auer
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | | | - William Mullen
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowGlasgowUK
| | - Christos Chinopoulos
- Department of Medical BiochemistrySemmelweis UniversityBudapestHungary
- MTA‐SE Lendület Neurobiochemistry Research GroupBudapestHungary
| | - Neil B. Metcalfe
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | | |
Collapse
|
25
|
Stier A, Romestaing C, Schull Q, Lefol E, Robin J, Roussel D, Bize P. How to measure mitochondrial function in birds using red blood cells: a case study in the king penguin and perspectives in ecology and evolution. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12724] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine Stier
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Caroline Romestaing
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés CNRS UMR 5023 Université de Lyon Lyon France
| | - Quentin Schull
- Université de Strasbourg CNRS IPHC UMR 7178 F‐67000 Strasbourg France
| | - Emilie Lefol
- Université de Strasbourg CNRS IPHC UMR 7178 F‐67000 Strasbourg France
- Département de biologie Université de Sherbrooke 2500 boul. de l'Université Sherbrooke QC Canada J1K 2R1
| | | | - Damien Roussel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés CNRS UMR 5023 Université de Lyon Lyon France
| | - Pierre Bize
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen UK
| |
Collapse
|
26
|
Abstract
Telocyte (TC) is a new identified interstitial cell type with a small nuclear and one or several long and thin prolongations with enlargements on them. They were found in many mammals including humans, mouse, rats, dogs, and monkeys and play vital roles in many physiological and pathological conditions. The ultrastructure of mitochondria was observed in TCs, and the alterations were found in TCs from inflammatory ureter tissue. MtDNA is associated with mitochondria normal functions and involved in physiological and pathological processes. However, mitochondria and mtDNA in TCs were not investigated deeply. This review will introduce the origin, distribution, morphology, and functions of TCs and the distribution and functions of TC mitochondria in order to improve a better understanding of the potential functions of mtDNA in TCs.
Collapse
|
27
|
Salin K, Villasevil EM, Auer SK, Anderson GJ, Selman C, Metcalfe NB, Chinopoulos C. Simultaneous measurement of mitochondrial respiration and ATP production in tissue homogenates and calculation of effective P/O ratios. Physiol Rep 2016; 4:e13007. [PMID: 27798358 PMCID: PMC5099967 DOI: 10.14814/phy2.13007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/30/2023] Open
Abstract
The use of tissue homogenate has greatly aided the study of the functioning of mitochondria. However, the amount of ATP produced per oxygen molecule consumed, that is, the effective P/O ratio, has never been measured directly in tissue homogenate. Here we combine and refine existing methods previously used in permeabilized cells and isolated mitochondria to simultaneously measure mitochondrial ATP production (JATP) and oxygen consumption (JO2) in tissue homogenate. A major improvement over existing methods is in the control of ATPases that otherwise interfere with the ATP assay: our modified technique facilitates simultaneous measurement of the rates of "uncorrected" ATP synthesis and of ATP hydrolysis, thus minimizing the amount of tissue and time needed. Finally, we develop a novel method of calculating effective P/O ratios which corrects measurements of JATP and JO2 for rates of nonmitochondrial ATP hydrolysis and respiration, respectively. Measurements of JATP and JO2 in liver homogenates from brown trout (Salmo trutta) were highly reproducible, although activity declined once homogenates were 2 h old. We compared mitochondrial properties from fed and food-deprived animals to demonstrate that the method can detect mitochondrial flexibility in P/O ratios in response to nutritional state. This method simplifies studies examining the mitochondrial bioenergetics of tissue homogenates, obviating the need for differential centrifugation or chemical permeabilization and avoiding the use of nonmitochondrial ATPase inhibitors. We conclude that our approach for characterizing effective P/O ratio opens up new possibilities in the study of mitochondrial function in very small samples, where the use of other methods is limited.
Collapse
Affiliation(s)
- Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Eugenia M Villasevil
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Sonya K Auer
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Graeme J Anderson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
- MTA-SE Lendület Neurobiochemistry Research Group, Budapest, Hungary
| |
Collapse
|