1
|
Kaczyńska K, Jampolska M, Wojciechowski P, Sulejczak D, Andrzejewski K, Zając D. Potential of Lactoferrin in the Treatment of Lung Diseases. Pharmaceuticals (Basel) 2023; 16:192. [PMID: 37259341 PMCID: PMC9960651 DOI: 10.3390/ph16020192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 11/07/2023] Open
Abstract
Lactoferrin (LF) is a multifunctional iron-binding glycoprotein that exhibits a variety of properties, such as immunomodulatory, anti-inflammatory, antimicrobial, and anticancer, that can be used to treat numerous diseases. Lung diseases continue to be the leading cause of death and disability worldwide. Many of the therapies currently used to treat these diseases have limited efficacy or are associated with side effects. Therefore, there is a constant pursuit for new drugs and therapies, and LF is frequently considered a therapeutic agent and/or adjunct to drug-based therapies for the treatment of lung diseases. This article focuses on a review of the existing and most up-to-date literature on the contribution of the beneficial effects of LF on the treatment of lung diseases, including asthma, viral infections, cystic fibrosis, or lung cancer, among others. Although in vitro and in vivo studies indicate significant potency of LF in the treatment of the listed diseases, only in the case of respiratory tract infections do human studies seem to confirm them by demonstrating the effectiveness of LF in reducing episodes of illness and shortening the recovery period. For lung cancer, COVID-19 and sepsis, the reports are conflicting, and for other diseases, there is a paucity of human studies conclusively confirming the beneficial effects of LF.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Monika Jampolska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dominika Zając
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
2
|
Lin CC, Chuang KC, Chen SW, Chao YH, Yen CC, Yang SH, Chen W, Chang KH, Chang YK, Chen CM. Lactoferrin Ameliorates Ovalbumin-Induced Asthma in Mice through Reducing Dendritic-Cell-Derived Th2 Cell Responses. Int J Mol Sci 2022; 23:ijms232214185. [PMID: 36430662 PMCID: PMC9696322 DOI: 10.3390/ijms232214185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Asthma is a chronic respiratory disease with symptoms such as expiratory airflow narrowing and airway hyperresponsiveness (AHR). Millions of people suffer from asthma and are at risk of life-threatening conditions. Lactoferrin (LF) is a glycoprotein with multiple physiological functions, including antioxidant, anti-inflammatory, antimicrobial, and antitumoral activities. LF has been shown to function in immunoregulatory activities in ovalbumin (OVA)-induced delayed type hypersensitivity (DTH) in mice. Hence, the purpose of this study was to investigate the roles of LF in AHR and the functions of dendritic cells (DCs) and Th2-related responses in asthma. Twenty 8-week-old male BALB/c mice were divided into normal control (NC), ovalbumin (OVA)-sensitized, and OVA-sensitized with low dose of LF (100 mg/kg) or high dose of LF (300 mg/kg) treatment groups. The mice were challenged by intranasal instillation with 5% OVA on the 21st to 27th day after the start of the sensitization period. The AHR, cytokines in bronchoalveolar lavage fluid, and pulmonary histology of each mouse were measured. Serum OVA-specific IgE and IgG1 and OVA-specific splenocyte responses were further detected. The results showed that LF exhibited protective effects in ameliorating AHR, as well as lung inflammation and damage, in reducing the expression of Th2 cytokines and the secretion of allergen-specific antibodies, in influencing the functions of DCs, and in decreasing the level of Th2 immune responses in a BALB/c mouse model of OVA-induced allergic asthma. Importantly, we demonstrated that LF has practical application in reducing DC-induced Th2 cell responses in asthma. In conclusion, LF exhibits anti-inflammation and immunoregulation activities in OVA-induced allergic asthma. These results suggest that LF may act as a supplement to prevent asthma-induced lung injury and provide an additional agent for reducing asthma severity.
Collapse
Affiliation(s)
- Chi-Chien Lin
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kai-Cheng Chuang
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Shih-Wei Chen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Otolaryngology, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Ya-Hsuan Chao
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Chih-Ching Yen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Internal Medicine, China Medical University Hospital, College of Health Care, China Medical University, Taichung 404, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei Chen
- Division of Pulmonary and Critical Care Medicine, Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Yu-Kang Chang
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, The Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-22856309; Fax: +886-4-22874740
| |
Collapse
|
3
|
Jeon SH, Lee YS, Yeo IJ, Lee HP, Yoon J, Son DJ, Han SB, Hong JT. Inhibition of Chitinase-3-like-1 by K284-6111 Reduces Atopic Skin Inflammation via Repressing Lactoferrin. Immune Netw 2021; 21:e22. [PMID: 34277112 PMCID: PMC8263211 DOI: 10.4110/in.2021.21.e22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Chitinase-3-like-1 (CHI3L1) is known to induce inflammation in the progression of allergic diseases. Previous our studies revealed that 2-({3-[2-(1-cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}sulfanyl)-N-(4-ethylphenyl)butanamide (K284-6111; K284), the CHI3L1 inhibiting compound, has the anti-inflammatory effect on neuroinflammation. In this study, we investigated that K284 treatment could inhibit the development of atopic dermatitis (AD). To identify the effect of K284, we used phthalic anhydride (5% PA)-induced AD animal model and in vitro reconstructed human skin model. We analyzed the expression of AD-related cytokine mediators and NF-κB signaling by Western blotting, ELISA and quantitative real-time PCR. Histological analysis showed that K284 treatment suppressed PA-induced epidermal thickening and infiltration of mast cells. K284 treatment also reduced PA-induced release of inflammatory cytokines. In addition, K284 treatment inhibited the expression of NF-κB activity in PA-treated skin tissues and TNF-α and IFN-γ-treated HaCaT cells. Protein-association network analysis indicated that CHI3L1 is associated with lactoferrin (LTF). LTF was elevated in PA-treated skin tissues and TNF-α and IFN-γ-induced HaCaT cells. However, this expression was reduced by K284 treatment. Knockdown of LTF decreased the expression of inflammatory cytokines in TNF-α and IFN-γ-induced HaCaT cells. Moreover, anti-LTF antibody treatment alleviated AD development in PA-induced AD model. Our data demonstrate that CHI3L1 targeting K284 reduces AD-like skin inflammation and K284 could be a promising therapeutic agent for AD by inhibition of LTF expression.
Collapse
Affiliation(s)
- Seong Hee Jeon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Jaesuk Yoon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
4
|
A case of lactoferrin-induced occupational asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:3600-3602. [PMID: 32835873 DOI: 10.1016/j.jaip.2020.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
|
5
|
Nagaoka K, Ito T, Ogino K, Eguchi E, Fujikura Y. Human lactoferrin induces asthmatic symptoms in NC/Nga mice. Physiol Rep 2018; 5:5/15/e13365. [PMID: 28774951 PMCID: PMC5555891 DOI: 10.14814/phy2.13365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/25/2017] [Accepted: 06/29/2017] [Indexed: 01/04/2023] Open
Abstract
Lactoferrin in commercial supplements is known to exert anti‐viral and anti‐allergic effects. However, this is the first study to evaluate the induction of allergic airway inflammation in NC/Nga mice. Human lactoferrin was administered intraperitoneally with aluminum oxide for sensitization. Five days later, lactoferrin was inoculated intranasally for 5 days, and then on the 12th day, the single inoculation of lactoferrin intranasally was performed as a challenge. On the 13th day, airway hypersensitivity was assessed (AHR), a bronchoalveolar fluid (BALF) cell analysis was conducted, serum IgE and serum lactoferrin‐specific IgG and IgE levels as well as the mRNA expression levels of cytokines and chemokines in the lung were measured, and a histopathological analysis of the lung was performed. Human lactoferrin increased AHR, the number of eosinophils in BALF, serum lactoferrin‐specific IgG levels, and the mRNA levels of IL‐13, eotaxin 1, and eotaxin 2. Moreover, the accumulation of inflammatory cells around the bronchus and the immunohistochemical localization of arginase I and human lactoferrin were detected. Collectively, these results indicate that human lactoferrin induced allergic airway inflammation in mice. Therefore, the commercial use of human lactoferrin in supplements warrants more intensive study.
Collapse
Affiliation(s)
- Kenjiro Nagaoka
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuo Ito
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiki Ogino
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eri Eguchi
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihisa Fujikura
- Department of Molecular Anatomy, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|