1
|
Prado CM, Batsis JA, Donini LM, Gonzalez MC, Siervo M. Sarcopenic obesity in older adults: a clinical overview. Nat Rev Endocrinol 2024; 20:261-277. [PMID: 38321142 DOI: 10.1038/s41574-023-00943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/08/2024]
Abstract
Sarcopenic obesity is characterized by a concurrent decline in muscle mass and function, along with increased adipose tissue. Sarcopenic obesity is a growing concern in older adults owing to significant health consequences, including implications for mortality, comorbidities and risk of developing geriatric syndromes. A 2022 consensus statement established a new definition and diagnostic criteria for sarcopenic obesity. The pathophysiology of this condition involves a complex interplay between muscle, adipose tissue, hormonal changes, inflammation, oxidative stress and lifestyle factors, among others. Sarcopenic obesity is treated with a range of management approaches, such as lifestyle interventions, exercise, nutrition and medical therapies. Emerging therapies that were developed for treating other conditions may be relevant to sarcopenic obesity, including novel pharmacological agents and personalized approaches such as precision medicine. In this Review, we synthesize the current knowledge of the clinical importance of sarcopenic obesity, its assessment and diagnosis, along with current and emerging management strategies.
Collapse
Affiliation(s)
- Carla M Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - John A Batsis
- Division of Geriatric Medicine, School of Medicine, and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lorenzo M Donini
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - M Cristina Gonzalez
- Postgraduate Program in Nutrition and Food, Pelotas, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Mario Siervo
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- Curtin Dementia Centre of Excellence, enAble Institute, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Zhang F, Chen X, Yang M, Shen X, Wang Y, Zhong D, Zeng F, Jin R. Metabolic impairments associated with type 2 diabetes mellitus and the potential effects of exercise therapy: An exploratory randomized trial based on untargeted metabolomics. PLoS One 2024; 19:e0300593. [PMID: 38517904 PMCID: PMC10959348 DOI: 10.1371/journal.pone.0300593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/26/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a common condition that is characterized by metabolic impairments. Exercise therapy has proven effective in improving the physiological and psychological states of patients with T2DM; however, the influence of different exercise modalities on metabolic profiles is not fully understood. This study first aimed to investigate the metabolic changes associated with T2DM among patients and then to evaluate the potential physiological effects of different exercise modalities (Tai Chi and brisk walking) on their metabolic profiles. METHODS This study included 20 T2DM patients and 11 healthy subjects. Patients were randomly allocated to either the Tai Chi or walking group to perform Dijia simplified 24-form Tai Chi or brisk walking (80-100 m/min), with 90 minutes each time, three times per week for 12 weeks, for a total of 36 sessions. The healthy group maintained daily living habits without intervention. Glycemic tests were conducted at the baseline and after 12 weeks. Serum and urine samples were collected for untargeted metabolomic analyses at baseline and 12 weeks to examine the differential metabolic profiles between T2DM and healthy subjects, and the metabolic alterations of T2DM patients before and after exercise therapy. RESULTS Compared to the healthy group, T2DM patients exhibited metabolic disturbances in carbohydrates (fructose, mannose, galactose, glycolysis/gluconeogenesis), lipids (inositol phosphate), and amino acids (arginine, proline, cysteine, methionine, valine, leucine, and isoleucine) metabolism, including 20 differential metabolites in the serum and six in the urine. After exercise, the glycemic results showed insignificant changes. However, patients who practiced Tai Chi showed significant improvements in their post-treatment metabolic profiles compared to baseline, with nine serum and six urine metabolites, including branch-chained amino acids (BCAAs); while those in the walking group had significantly altered nine serum and four urine metabolites concerning steroid hormone biosynthesis and arachidonic acid metabolism compared to baseline. CONCLUSION T2DM patients displayed impaired carbohydrate, lipid, and amino acid metabolism, and exercise therapy improved their metabolic health. Different modalities may act through different pathways. Tai Chi may improve disrupted BCAAs metabolism, whereas brisk walking mainly regulates steroid hormone biosynthesis and arachidonic acid metabolism.
Collapse
Affiliation(s)
- Furong Zhang
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xixi Chen
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingxiao Yang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Xiaoyu Shen
- Second Affiliated Hospital of Chengdu Medical College/Nuclear Industry 416 Hospital, Chengdu, Sichuan, China
| | - Yiliang Wang
- Chongqing University Three Gorges Hospital, Chongqing, China
| | - Dongling Zhong
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Zeng
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture-Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rongjiang Jin
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Abou Sawan S, Hodson N, Tinline-Goodfellow C, West DWD, Malowany JM, Kumbhare D, Moore DR. Incorporation of Dietary Amino Acids Into Myofibrillar and Sarcoplasmic Proteins in Free-Living Adults Is Influenced by Sex, Resistance Exercise, and Training Status. J Nutr 2021; 151:3350-3360. [PMID: 34486662 DOI: 10.1093/jn/nxab261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acute exercise increases the incorporation of dietary amino acids into de novo myofibrillar proteins after a single meal in controlled laboratory studies in males. It is unclear whether this extends to free-living settings or is influenced by training or sex. OBJECTIVES We determined the effects of exercise, training status, and sex on 24-hour free-living dietary phenylalanine incorporation into skeletal muscle proteins. METHODS In a parallel group design, recreationally active males (mean ± SD age, 23 ± 3 years; BMI. 23.4 ± 2.9 kg/m2; n = 10) and females (age 24 ± 5 years; BMI, 23.1 ± 3.9 kg/m2; n = 9) underwent 8 weeks of whole-body resistance exercise 3 times a week. Controlled diets containing 1.6 g/kg-1/d-1 (amino acids modelled after egg), enriched to 10% with [13C6] or [2H5]phenylalanine, were consumed before and after an acute bout of resistance exercise. Fasted muscle biopsies were obtained before [untrained, pre-exercise condition (REST ] and 24 hours after an acute bout of resistance exercise in untrained (UT) and trained (T) states to determine dietary phenylalanine incorporation into myofibrillar (ΔMyo) and sarcoplasmic (ΔSarc) proteins, intracellular mechanistic target of rapamycin (mTOR) colocalization with ulex europaeus agglutinin-1 (UEA-1; capillary marker; immunofluorescence), and amino acid transporter expression (Western blotting). RESULTS The ΔMyo values were ∼62% greater (P < 0.01) in females than males at REST. The ΔMyo values increased above REST by ∼51% during UT and ∼30% in T (both P < 0.01) in males, remained unchanged in females during UT, and were ∼33% lower at T when compared to UT (P = 0.013). Irrespective of sex, ΔMyo and ΔSarc were decreased at T compared to UT (P ≤ 0.026). Resistance training increased mTOR colocalization with UEA-1 (P = 0.004), while L amino acid transporter 1, which was greater in males (P < 0.01), and sodium-coupled neutral amino acid transporter 2 protein expression were not affected by acute exercise (P ≥ 0.33) or training (P ≥ 0.45). CONCLUSIONS The exercise-induced incorporation of dietary phenylalanine into myofibrillar and sarcoplasmic proteins is attenuated after training regardless of sex, suggesting a reduced reliance on dietary amino acids for postexercise skeletal muscle remodeling in the T state.
Collapse
Affiliation(s)
- Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, Toronto, Canada
| | - Julia M Malowany
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Mazzulla M, Hodson N, Lees M, Scaife PJ, Smith K, Atherton PJ, Kumbhare D, Moore DR. LAT1 and SNAT2 Protein Expression and Membrane Localization of LAT1 Are Not Acutely Altered by Dietary Amino Acids or Resistance Exercise Nor Positively Associated with Leucine or Phenylalanine Incorporation in Human Skeletal Muscle. Nutrients 2021; 13:nu13113906. [PMID: 34836160 PMCID: PMC8624011 DOI: 10.3390/nu13113906] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
The influx of essential amino acids into skeletal muscle is primarily mediated by the large neutral amino acid transporter 1 (LAT1), which is dependent on the glutamine gradient generated by the sodium-dependent neutral amino acid transporter 2 (SNAT2). The protein expression and membrane localization of LAT1 may be influenced by amino acid ingestion and/or resistance exercise, although its acute influence on dietary amino acid incorporation into skeletal muscle protein has not been investigated. In a group design, healthy males consumed a mixed carbohydrate (0.75 g·kg-1) crystalline amino acid (0.25 g·kg-1) beverage enriched to 25% and 30% with LAT1 substrates L-[1-13C]leucine (LEU) and L-[ring-2H5]phenylalanine (PHE), respectively, at rest (FED: n = 7, 23 ± 5 y, 77 ± 4 kg) or after a bout of resistance exercise (EXFED: n = 7, 22 ± 2 y, 78 ± 11 kg). Postprandial muscle biopsies were collected at 0, 120, and 300 min to measure transporter protein expression (immunoblot), LAT1 membrane localization (immunofluorescence), and dietary amino acid incorporation into myofibrillar protein (ΔLEU and ΔPHE). Basal LAT1 and SNAT2 protein contents were correlated with each other (r = 0.55, p = 0.04) but their expression did not change across time in FED or EXFED (all, p > 0.05). Membrane localization of LAT1 did not change across time in FED or EXFED whether measured as outer 1.5 µm intensity or membrane-to-fiber ratio (all, p > 0.05). Basal SNAT2 protein expression was not correlated with ΔLEU or ΔPHE (all, p ≥ 0.05) whereas basal LAT1 expression was negatively correlated with ΔPHE in FED (r = -0.76, p = 0.04) and EXFED (r = -0.81, p = 0.03) but not ΔLEU (p > 0.05). Basal LAT1 membrane localization was not correlated with ΔLEU or ΔPHE (all, p > 0.05). Our results suggest that LAT1/SNAT2 protein expression and LAT1 membrane localization are not influenced by acute anabolic stimuli and do not positively influence the incorporation of dietary amino acids for de novo myofibrillar protein synthesis in healthy young males.
Collapse
Affiliation(s)
- Michael Mazzulla
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
| | - Nathan Hodson
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
| | - Matthew Lees
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
| | - Paula J. Scaife
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (P.J.S.); (K.S.); (P.J.A.)
| | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (P.J.S.); (K.S.); (P.J.A.)
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, Centre of Metabolism, Ageing and Physiology, School of Medicine, University of Nottingham, Derby DE22 3DT, UK; (P.J.S.); (K.S.); (P.J.A.)
| | - Dinesh Kumbhare
- Department of Medicine, University of Toronto, Toronto, ON M5S 2C9, Canada;
| | - Daniel R. Moore
- Department of Exercise Sciences, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.M.); (N.H.); (M.L.)
- Correspondence: ; Tel.: +1-(416)-946-4088
| |
Collapse
|
5
|
Moore DR. Protein Requirements for Master Athletes: Just Older Versions of Their Younger Selves. Sports Med 2021; 51:13-30. [PMID: 34515969 PMCID: PMC8566396 DOI: 10.1007/s40279-021-01510-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
It is established that protein requirements are elevated in athletes to support their training and post-exercise recovery and adaptation, especially within skeletal muscle. However, research on the requirements for this macronutrient has been performed almost exclusively in younger athletes, which may complicate their translation to the growing population of Master athletes (i.e. > 35 years old). In contrast to older (> 65 years) untrained adults who typically demonstrate anabolic resistance to dietary protein as a primary mediator of the ‘normal’ age-related loss of muscle mass and strength, Master athletes are generally considered successful models of aging as evidenced by possessing similar body composition, muscle mass, and aerobic fitness as untrained adults more than half their age. The primary physiology changes considered to underpin the anabolic resistance of aging are precipitated or exacerbated by physical inactivity, which has led to higher protein recommendations to stimulate muscle protein synthesis in older untrained compared to younger untrained adults. This review puts forth the argument that Master athletes have similar muscle characteristics, physiological responses to exercise, and protein metabolism as young athletes and, therefore, are unlikely to have protein requirements that are different from their young contemporaries. Recommendations for protein amount, type, and pattern will be discussed for Master athletes to enhance their recovery from and adaptation to resistance and endurance training.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, 100 Devonshire Place, Toronto, ON, M5S 2C9, Canada.
| |
Collapse
|
6
|
Impaired skeletal muscle hypertrophy signaling and amino acid deprivation response in Apoe knockout mice with an unhealthy lipoprotein distribution. Sci Rep 2021; 11:16423. [PMID: 34385572 PMCID: PMC8360952 DOI: 10.1038/s41598-021-96000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
This study explores if unhealthy lipoprotein distribution (LPD) impairs the anabolic and amino acid sensing responses to whey-protein feeding. Thus, if impairment of such anabolic response to protein consumption is seen by the LPD this may negatively affect the skeletal muscle mass. Muscle protein synthesis (MPS) was measured by puromycin labeling in Apolipoprotein E knockout (Apoe KO), characterized by an unhealthy LPD, and wild type mice post-absorptive at 10 and 20 weeks, and post-prandial after whey-protein feeding at 20 weeks. Hypertrophy signaling and amino acid sensing mechanisms were studied and gut microbiome diversity explored. Surprisingly, whey-protein feeding did not affect MPS. p-mTOR and p-4E-BP1 was increased 2 h after whey-protein feeding in both genotypes, but with general lower levels in Apoe KO compared to wild type. At 20 weeks of age, Apoe KO had a greater mRNA-expression for SNAT2, CD98, ATF4 and GCN2 compared to wild type. These responses were not associated with gut microbiota compositional differences. Regardless of LPD status, MPS was similar in Apoe KO and wild type. Surprisingly, whey-protein did not stimulate MPS. However, Apoe KO had lower levels of hypertrophy signaling, was amino acid deprived, and had impaired amino acid sensing mechanisms.
Collapse
|
7
|
Shen F, Zhao Y, Ding W, Liu K, Ren X, Zhang Q, Yu J, Hu Y, Zuo H, Guo M, Jin L, Gong M, Wu W, Gu X, Xu L, Yang F, Lu J. Autonomous climbing: An effective exercise mode with beneficial outcomes of aerobic exercise and resistance training. Life Sci 2020; 265:118786. [PMID: 33221346 DOI: 10.1016/j.lfs.2020.118786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
AIMS To assess the effects of three specific exercise training modes, aerobic exercise (A), resistance training (R) and autonomous climbing (AC), aimed at proposing a cross-training method, on improving the physical, molecular and metabolic characteristics of mice without many side effects. MATERIALS AND METHODS Seven-week-old male mice were randomly divided into four groups: control (C), aerobic exercise (A), resistance training (R), and autonomous climbing (AC) groups. Physical changes in mice were tracked and analysed to explore the similarities and differences of these three exercise modes. Histochemistry, quantitative real-time PCR (RT-PCR), western blot (WB) and metabolomics analysis were performed to identify the underlying relationships among the three training modes. KEY FINDINGS Mice in the AC group showed better body weight control, glucose and energy homeostasis. Molecular markers of myogenesis, hypertrophy, antidegradation and mitochondrial function were highly expressed in the muscle of mice after autonomous climbing. The serum metabolomics landscape and enriched pathway comparison indicated that the aerobic oxidation pathway (pentose phosphate pathway, galactose metabolism and fatty acid degradation) and amino acid metabolism pathway (tyrosine, arginine and proline metabolism) were significantly enriched in group AC, suggesting an increased muscle mitochondrial function and protein balance ability of mice after autonomous climbing. SIGNIFICANCE We propose a new exercise mode, autonomous climbing, as a convenient but effective training method that combines the beneficial effects of aerobic exercise and resistance training.
Collapse
Affiliation(s)
- Fei Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yu Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China; Department of Physical Education, Northwestern Polytechnical University, Xi'an, Shaanxi 710049, PR China
| | - Wubin Ding
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Kailin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Xiangyu Ren
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Qiang Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yepeng Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China; Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Hui Zuo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ling Jin
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Mingkai Gong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China
| | - Wenhao Wu
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Fenglei Yang
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Jian Lu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
8
|
Camargo LDR, Doneda D, Oliveira VR. Whey protein ingestion in elderly diet and the association with physical, performance and clinical outcomes. Exp Gerontol 2020; 137:110936. [PMID: 32289487 DOI: 10.1016/j.exger.2020.110936] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
Abstract
Nutrition is critical to the health of the elderly, since most of them have a deficiency in key nutrient. The use of whey protein may be a food strategy to increase protein intake. The objective of this work was to evaluate the ingestion of whey protein for the elderly and the association with physical performance and clinical outcomes. A systematic review was conducted in order to find papers that shed some light in the correlation between whey protein and the elderly. INCLUSION CRITERIA population: elderly; intervention: use of whey protein when compared to control group; outcome: related to health, nutrition, or quality of life. DATABASE PubMed, with papers published in the last 5 years. SEARCH STRATEGY (elder OR senior OR elderly OR aging OR aged OR old OR older) AND (whey OR "whey protein"). 35 papers were selected of which 22 had a physical performance outcome and 13 had clinical outcomes. Studies indicate that whey protein supplements promote protein synthesis in the elderly, improving muscle performance and aerobic capacity, protecting against sarcopenia and reducing the risk for falls. In the papers studied, the age group considered to be elderly was ≥65 years in 27 papers and ≥60 years in the other 8 papers. Whey protein also appears to contribute to improved health, recovery from disease, prevention of cardiovascular and metabolic risks, and hepatic steatosis complications. Data suggest that whey protein supplements may be promising for the health improvement of the elderly.
Collapse
Affiliation(s)
- Liziane da Rosa Camargo
- Postgraduate Program in Biomedical Geronthology in the Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Divair Doneda
- Nutritionist, Medicine College, Federal University of Rio Grande do Sul
| | - Viviani Ruffo Oliveira
- Nutrition Department, Postgraduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Hannaian SJ, Hodson N, Abou Sawan S, Mazzulla M, Kato H, Matsunaga K, Waskiw-Ford M, Duncan J, Kumbhare DA, Moore DR. Leucine-enriched amino acids maintain peripheral mTOR-Rheb localization independent of myofibrillar protein synthesis and mTORC1 signaling postexercise. J Appl Physiol (1985) 2020; 129:133-143. [PMID: 32525432 DOI: 10.1152/japplphysiol.00241.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Postexercise protein ingestion can elevate rates of myofibrillar protein synthesis (MyoPS), mTORC1 activity, and mTOR translocation/protein-protein interactions. However, it is unclear if leucine-enriched essential amino acids (LEAA) can similarly facilitate intracellular mTOR trafficking in humans after exercise. The purpose of this study was to determine the effect of postexercise LEAA (4 g total EAAs, 1.6 g leucine) on acute MyoPS and mTORC1 translocation and signaling. Recreationally active men performed lower-body resistance exercise (5 × 8-10 leg press and leg extension) to volitional failure. Following exercise participants consumed LEAA (n = 8) or an isocaloric carbohydrate drink (PLA; n = 10). MyoPS was measured over 1.5-4 h of recovery by oral pulse of l-[ring-2H5]-phenylalanine. Phosphorylation of proteins in the mTORC1 pathway were analyzed via immunoblotting and mTORC1-LAMP2/WGA/Rheb colocalization via immunofluorescence microscopy. There was no difference in MyoPS between groups (LEAA = 0.098 ± 0.01%/h; PL = 0.090 ± 0.01%/h; P > 0.05). Exercise increased (P < 0.05) rpS6Ser240/244(LEAA = 35.3-fold; PLA = 20.6-fold), mTORSer2448(LEAA = 1.8-fold; PLA = 1.2-fold) and 4EBP1Thr37/46(LEAA = 1.5-fold; PLA = 1.4-fold) phosphorylation irrespective of nutrition (P > 0.05). LAT1 and SNAT2 protein expression were not affected by exercise or nutrient ingestion. mTOR-LAMP2 colocalization was greater in LEAA preexercise and decreased following exercise and supplement ingestion (P < 0.05), yet was unchanged in PLA. mTOR-WGA (cell periphery marker) and mTOR-Rheb colocalization was greater in LEAA compared with PLA irrespective of time-point (P < 0.05). In conclusion, the postexercise consumption of 4 g of LEAA maintains mTOR in peripheral regions of muscle fibers, in closer proximity to its direct activator Rheb, during prolonged recovery independent of differences in MyoPS or mTORC1 signaling compared with PLA ingestion. This intracellular localization of mTOR may serve to "prime" the kinase for future anabolic stimuli.NEW & NOTEWORTHY This is the first study to investigate whether postexercise leucine-enriched amino acid (LEAA) ingestion elevates mTORC1 translocation and protein-protein interactions in human skeletal muscle. Here, we observed that although LEAA ingestion did not further elevate postexercise MyoPS or mTORC1 signaling compared with placebo, mTORC1 peripheral location and interaction with Rheb were maintained. This may serve to "prime" mTORC1 for subsequent anabolic stimuli.
Collapse
Affiliation(s)
- Sarkis J Hannaian
- Faculty of Kinesiology and Physical Education, Department of Exercise Science, University of Toronto, Toronto, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, Department of Exercise Science, University of Toronto, Toronto, Canada
| | - Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, Department of Exercise Science, University of Toronto, Toronto, Canada
| | - Michael Mazzulla
- Faculty of Kinesiology and Physical Education, Department of Exercise Science, University of Toronto, Toronto, Canada
| | - Hiroyuki Kato
- Technology Development Center, Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Keiko Matsunaga
- Technology Development Center, Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Marcus Waskiw-Ford
- Faculty of Kinesiology and Physical Education, Department of Exercise Science, University of Toronto, Toronto, Canada
| | - Justin Duncan
- Faculty of Kinesiology and Physical Education, Department of Exercise Science, University of Toronto, Toronto, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, Department of Exercise Science, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Zeng N, Prodhan U, D'Souza RF, Ramzan F, Mitchell SM, Sharma P, Knowles SO, Roy NC, Sjödin A, Wagner KH, Milan AM, Cameron-Smith D, Mitchell CJ. Regulation of Amino Acid Transporters and Sensors in Response to a High protein Diet: A Randomized Controlled Trial in Elderly Men. J Nutr Health Aging 2019; 23:354-363. [PMID: 30932134 DOI: 10.1007/s12603-019-1171-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The mammalian target of rapamycin complex 1 (mTORC1) is fundamental for many cellular processes, yet it is often dysregulated with aging. Increased amino acid (AA) availability is correlated with the expression of AA transporters (AAT) and mTORC1 activity. Although many AA sensors and mediators have been proposed to relay the AA signal to mTORC1, it has not yet been determined if chronic dietary intervention affects the expression of AAT, sensors and mediators and their relationships with mTORC1 activity. OBJECTIVE AND DESIGN This study investigated whether the consumption of a diet containing either the current recommended daily allowance (RDA) of protein intake (0.8 g/kg/d) or twice the RDA (2RDA) for ten weeks affected the expression of targets associated with AA transport, sensing and mTORC1 regulation in 26 older men (70-81 years). METHOD Muscle biopsies were collected before and after the intervention under fasting conditions. Diets were controlled by providing fully prepared meals and snacks. Western blot and quantitative polymerase chain reaction were used to measure protein and gene expression respectively. RESULTS Consumption of 2RDA reduced the protein expression of L-type amino acid transporter 1 (LAT1). However, plasma leucine concentration and basal mTORC1 activity were unaltered. The downregulation of LAT1 did not affect the expression of AA sensors and mediators, including leucyl tRNA synthetase (LRS), cytosolic arginine sensor for mTORC1 (CASTOR1), Sestrin2 and Rag proteins. Instead, total ribosomal protein S6 (RPS6) was upregulated with 2RDA. CONCLUSION Ten weeks of 2RDA diet did not affect the fasting mTORC1 signaling, but increased total RPS6 might suggest improved muscular translational capacity to maintain muscular mass.
Collapse
Affiliation(s)
- N Zeng
- Dr. Cameron Mitchell Faculty of Education | School of Kinesiology, The University of British Columbia | Vancouver Campus, 2553 Wesbrook Mall | Vancouver British Columbia | V6T 1Z3 Canada, Phone 604 827 2072| Cell 604 790 3815,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. Transl Gastroenterol Hepatol 2018; 3:47. [PMID: 30148232 PMCID: PMC6088198 DOI: 10.21037/tgh.2018.07.06] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
Branched chain amino acids (BCAAs) are involved in various bioprocess such as protein metabolism, gene expression, insulin resistance and proliferation of hepatocytes. BCAAs have also been reported to suppress the growth of hepatocellular carcinoma (HCC) cells in vitro and to be required for immune cells to perform the function. In advanced cirrhotic patients, it has been clarified that serum concentrations of BCAA are decreased, whereas those of aromatic amino acids (AAAs) are increased. These alterations are thought to be the causes of hepatic encephalopathy (HE), sarcopenia and hepatocarcinogenesis and may be associated with the poor prognosis of patients with these conditions. Administration of BCAA-rich medicines has shown positive results in patients with cirrhosis.
Collapse
Affiliation(s)
- Kazuto Tajiri
- Department of Gastroenterology, Toyama University Hospital, Toyama, Japan
| | | |
Collapse
|
12
|
Agergaard J, Bülow J, Jensen JK, Reitelseder S, Bornø A, Drummond MJ, Schjerling P, Holm L. Effect of light-load resistance exercise on postprandial amino acid transporter expression in elderly men. Physiol Rep 2017; 5:5/18/e13444. [PMID: 28963124 PMCID: PMC5617931 DOI: 10.14814/phy2.13444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 02/07/2023] Open
Abstract
An impaired amino acid sensing is associated with age‐related loss of skeletal muscle mass. We tested whether light‐load resistance exercise (LL‐RE) affects postprandial amino acid transporter (AAT) expression in aging skeletal muscle. Untrained, healthy men (age: +65 years) were subjected to 13 h of supine rest. After 2 1/2 h of rest, unilateral LL‐RE was conducted (leg extensions, 10 sets of 36 repetitions) at 16% 1RM. Thereafter, the subjects were randomized into groups that orally ingested 40 g of whey protein either as hourly drinks (4 g per drink) (PULSE, N = 10) or two boluses (28 g at 0 h and 12 g at 7 h) (BOLUS, N = 10), or hourly isocaloric maltodextrin drinks (placebo, N = 10). Quadriceps muscle biopsies were taken at 0, 3, 7, and 10 h postexercise from both the resting and exercised leg, from which the membrane protein and mRNA expression of select AATs were analyzed by Western Blot and RT‐PCR, respectively. LAT1 and PAT1 protein expression increased in response to LL‐RE in the PULSE group, and SNAT2 and PAT1 protein expression increased in the BOLUS group when plasma BCAA concentration was low. In all three groups, LL‐RE increased LAT1 mRNA expression, whereas a time course decrease in SNAT2 mRNA expression was observed. LL‐RE increased membrane‐associated AAT protein expression and mRNA expression. Altered AAT protein expression was only seen in groups that ingested whey protein, with the greatest effect observed after hourly feeding. This points toward an importance of AATs in the anabolic response following LL‐RE and protein intake.
Collapse
Affiliation(s)
- Jakob Agergaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark .,Center for Healthy Ageing, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Jacob Bülow
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Ageing, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob K Jensen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Ageing, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Reitelseder
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Ageing, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Bornø
- Clinical Metabolomics Core Facility, Rigshospitalet, Copenhagen, Denmark
| | - Micah J Drummond
- Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Ageing, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Holm
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Ageing, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|