1
|
Baumann D, Van Helden D, Evans LC, Vulchanova L, Dayton A, Osborn JW. IL-1R Mediated Activation of Renal Sensory Nerves in DOCA-Salt Hypertension. Hypertension 2024; 81:1811-1821. [PMID: 38841853 PMCID: PMC11254549 DOI: 10.1161/hypertensionaha.123.22620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Clinical trials of renal denervation for the treatment of hypertension have shown a variety of off-target improvements in conditions associated with sympathetic overactivity. This may be due to the ablation of sympathoexcitatory afferent renal nerves, which are overactive under conditions of renal inflammation. Renal IL (interleukin)-1β is elevated in the deoxycorticosterone acetate-salt model of hypertension, and its activity may be responsible for the elevation in afferent renal nerve activity and arterial pressure. METHODS Continuous blood pressure recording of deoxycorticosterone acetate-salt mice with IL-1R (IL-1 receptor) knockout or antagonism was used individually and combined with afferent renal denervation (ARDN) to assess mechanistic overlap. Protein quantification and histological analysis of kidneys were performed to characterize renal inflammation. RESULTS ARDN attenuated deoxycorticosterone acetate-salt hypertension (-20±2-Δmm Hg mean arterial pressure [MAP] relative to control at study end) to a similar degree as total renal denervation (-21±2-Δmm Hg MAP), IL-1R knockout (-16±4-Δmm Hg MAP), or IL-1R antagonism (-20±3-Δmm Hg MAP). The combination of ARDN with knockout (-18±2-Δmm Hg MAP) or antagonism (-19±4-Δmm Hg MAP) did not attenuate hypertension any further than ARDN alone. IL-1R antagonism was found to have an acute depressor effect (-15±3-Δmm Hg MAP, day 10) in animals with intact renal nerves but not those with ARDN. CONCLUSIONS These findings suggest that IL-1R signaling is partially responsible for the elevated afferent renal nerve activity, which stimulates central sympathetic outflow to drive deoxycorticosterone acetate-salt hypertension.
Collapse
Affiliation(s)
- Daniel Baumann
- Graduate Program in Integrative Biology and Physiology (D.B.), University of Minnesota, Minneapolis
- Department of Surgery (D.B., D.V.H., L.C.E., J.W.O.), University of Minnesota, Minneapolis
| | - Dusty Van Helden
- Department of Surgery (D.B., D.V.H., L.C.E., J.W.O.), University of Minnesota, Minneapolis
| | - Louise C Evans
- Department of Surgery (D.B., D.V.H., L.C.E., J.W.O.), University of Minnesota, Minneapolis
| | - Lucy Vulchanova
- Department of Neuroscience (L.V.), University of Minnesota, Minneapolis
| | - Alex Dayton
- Division of Nephrology and Hypertension (A.D.), University of Minnesota, Minneapolis
| | - John W Osborn
- Department of Surgery (D.B., D.V.H., L.C.E., J.W.O.), University of Minnesota, Minneapolis
| |
Collapse
|
2
|
Zhao S, Tang C, Weinberger J, Gao D, Hou S. Sprouting of afferent and efferent inputs to pelvic organs after spinal cord injury. J Neuropathol Exp Neurol 2023; 83:20-29. [PMID: 38102789 PMCID: PMC10746698 DOI: 10.1093/jnen/nlad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Neural plasticity occurs within the central and peripheral nervous systems after spinal cord injury (SCI). Although central alterations have extensively been studied, it is largely unknown whether afferent and efferent fibers in pelvic viscera undergo similar morphological changes. Using a rat spinal cord transection model, we conducted immunohistochemistry to investigate afferent and efferent innervations to the kidney, colon, and bladder. Approximately 3-4 weeks after injury, immunostaining demonstrated that tyrosine hydroxylase (TH)-labeled postganglionic sympathetic fibers and calcitonin gene-related peptide (CGRP)-immunoreactive sensory terminals sprout in the renal pelvis and colon. Morphologically, sprouted afferent or efferent projections showed a disorganized structure. In the bladder, however, denser CGRP-positive primary sensory fibers emerged in rats with SCI, whereas TH-positive sympathetic efferent fibers did not change. Numerous CGRP-positive afferents were observed in the muscle layer and the lamina propria of the bladder following SCI. TH-positive efferent inputs displayed hypertrophy with large diameters, but their innervation patterns were sustained. Collectively, afferent or efferent inputs sprout widely in the pelvic organs after SCI, which may be one of the morphological bases underlying functional adaptation or maladaptation.
Collapse
Affiliation(s)
- Shunyi Zhao
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, USA
- Department of Pharmacology and Physiology, Drexel University College of Medicine, USA
| | - Chuanxi Tang
- Department of Neurobiology and Cell Biology, Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jeremy Weinberger
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, USA
| | - Dianshuai Gao
- Department of Neurobiology and Cell Biology, Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shaoping Hou
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, USA
| |
Collapse
|
3
|
Kharazmi F, Hosseini-Dastgerdi H, Pourshanazari AA, Nematbakhsh M. The denervation or activation of renal sympathetic nerve and renal blood flow. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2023; 28:76. [PMID: 38152073 PMCID: PMC10751519 DOI: 10.4103/jrms.jrms_216_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 12/29/2023]
Abstract
The denervation or activation of the sympathetic nerve in the kidney can affect renal hemodynamics. The sympathetic nervous system regulates the physiological functions of the kidneys. Stimulation of sympathetic efferent nerves affects various parameters related to renal hemodynamics, including sodium excretion, renin secretion, and renal blood flow (RBF). Hence, renal sympathetic fibers may also play an essential role in regulating systemic vascular resistance and controlling blood pressure. In the absence of renal nerves, the hemodynamics response to stimuli is negligible or absent. The effect of renal sympathetic denervation on RBF is dependent on several factors such as interspecies differences, the basic level of nerve activity in the vessels or local density of adrenergic receptor in the vascular bed. The role of renal denervation has been investigated therapeutically in hypertension and related disorders. Hence, the dynamic impact of renal nerves on RBF enables using RBF dynamic criteria as a marker for renal denervation therapy.
Collapse
Affiliation(s)
- Fatemeh Kharazmi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hajaralsadat Hosseini-Dastgerdi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Rodrigues AF, Todiras M, Qadri F, Alenina N, Bader M. Angiotensin deficient FVB/N mice are normotensive. Br J Pharmacol 2023; 180:1843-1861. [PMID: 36740662 DOI: 10.1111/bph.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE All previous rodent models lacking the peptide hormone angiotensin II (Ang II) were hypotensive. A mixed background strain with global deletion of the angiotensinogen gene was backcrossed to the FVB/N background (Agt-KO), a strain preferred for transgenic generation. Surprisingly, the resulting line turned out to be normotensive. Therefore, this study aimed to understand the unique blood pressure regulation of FVB/N mice without angiotensin peptides. EXPERIMENTAL APPROACH Acute and chronic recordings of blood pressure (BP) in freely-moving adult mice were performed to establish baseline BP. The pressure responses to sympatholytic and sympathomimetic as well as a nitric oxide inhibitor and donor compounds were used to quantify the neurogenic tone and endothelial function. The role of the renal nerves on baseline BP maintenance was tested by renal denervation. Finally, further phenotyping was done by gene expression analysis, histology and measurement of metabolites in plasma, urine and tissues. KEY RESULTS Baseline BP in adult FVB/N Agt-KO was unexpectedly unaltered. As compensatory mechanisms Agt-KO presented an increased sympathetic nerve activity and reduced endothelial nitric oxide production. However, FVB/N Agt-KO exhibited the renal morphological and physiological alterations previously found in mice lacking the production of Ang II including polyuria and hydronephrosis. The hypotensive effect of bilateral renal denervation was blunted in Agt-KO compared to wildtype FVB/N mice. CONCLUSION AND IMPLICATIONS We describe a germline Agt-KO line that challenges all previous knowledge on BP regulation in mice with deletion of the classical RAS. This line may represent a model of drug-resistant hypertension because it lacks hypotension.
Collapse
Affiliation(s)
- André Felipe Rodrigues
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Contribution of afferent renal nerve signals to acute and chronic blood pressure regulation in stroke-prone spontaneously hypertensive rats. Hypertens Res 2023; 46:268-279. [PMID: 36369375 DOI: 10.1038/s41440-022-01091-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
The activation of sympathetic nervous system plays a critical role in the development of hypertension. The input from afferent renal nerves may affect central sympathetic outflow; however, its contribution to the development of hypertension remains unclear. We investigated the role of afferent renal nerves in acute and chronic blood pressure regulation using normotensive Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Acute chemical stimulation of afferent renal nerves elicited larger increases in blood pressure and renal sympathetic nerve activity in young 9-week-old SHRSP compared to WKY. Selective afferent renal denervation (ARDN) and conventional total renal denervation (TRDN) ablating both afferent and efferent nerves in young SHRSP revealed that only TRDN, but not ARDN, chronically attenuated blood pressure elevation. ARDN did not affect plasma renin activity or plasma angiotensin II levels, whereas TRDN decreased both. Neither TRDN nor ARDN affected central sympathetic outflow and systemic sympathetic activity determined by neuronal activity in the parvocellular region of hypothalamic paraventricular nucleus and rostral ventrolateral medulla and by plasma and urinary norepinephrine levels, respectively. Renal injury was not apparent in young SHRSP compared with WKY, suggesting that renal afferent input might not be activated in young SHRSP. In conclusion, the chronic input from afferent renal nerves does not contribute to the development of hypertension in SHRSP despite the increased blood pressure response to the acute stimulation of afferent renal nerves. Efferent renal nerves may be involved in the development of hypertension via activation of the renin-angiotensin system in SHRSP.
Collapse
|
6
|
Renal denervation: basic and clinical evidence. Hypertens Res 2022; 45:198-209. [PMID: 34921299 DOI: 10.1038/s41440-021-00827-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/20/2023]
Abstract
Renal nerves have critical roles in regulating blood pressure and fluid volume, and their dysfunction is closely related with cardiovascular diseases. Renal nerves are composed of sympathetic efferent and sensory afferent nerves. Activation of the efferent renal sympathetic nerves induces renin secretion, sodium absorption, and increased renal vascular resistance, which lead to increased blood pressure and fluid retention. Afferent renal sensory nerves, which are densely innervated in the renal pelvic wall, project to the hypothalamic paraventricular nucleus in the brain to modulate sympathetic outflow to the periphery, including the heart, kidneys, and arterioles. The effects of renal denervation on the cardiovascular system are mediated by both efferent denervation and afferent denervation. The first half of this review focuses on basic research using animal models of hypertension and heart failure, and addresses the therapeutic effects of renal denervation for hypertension and heart failure, including underlying mechanisms. The second half of this review focuses on clinical research related to catheter-based renal denervation in patients with hypertension. Randomized sham-controlled trials using second-generation devices, endovascular radiofrequency-based devices and ultrasound-based devices are reviewed and their results are assessed. This review summarizes the basic and clinical evidence of renal denervation to date, and discusses future prospects and potential developments in renal denervation therapy for cardiovascular diseases.
Collapse
|
7
|
Pei HJ, Yang J, Hu FX, Chen YZ, Yang CH. Tribulus terrestris L. protects glomerular endothelial cells via the miR155-H2AC6 interaction network in hypertensive renal injury. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1626. [PMID: 34926670 PMCID: PMC8640897 DOI: 10.21037/atm-21-5641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 01/31/2023]
Abstract
Background Hypertensive renal injury is one of the most lethal complications of hypertension. At present, renin-angiotensin-aldosterone system (RAAS) blockers are considered the best drugs for the treatment of renal injury in hypertension because of their nephroprotective effect of reducing proteinuria, but there are no specific drugs for this purpose, however, clinical trials proved that Chinese medicine has a protective effect on target organs in the treatment of hypertension. Tribulus terrestris L. (TrT), a traditional Chinese medicine (TCM), has potential applications due to its reno-protective and immunomodulatory effects. Methods We investigated the underlying reno-protective mechanism of TrT on Angiotensin II (AngII)-induced hypertensive renal injury in glomerular endothelial cells by integrating the differential expression profiles of micro RNA (miRNA) and messenger RNA (mRNA) to construct a miRNA-mRNA interaction network associated with hypertensive kidney injury, followed by quantitative real-time polymerase chain reaction (qRT-PCR) for validation. Results Seventy-six differentially expressed mRNAs (DEmRNAs) and 1 differentially expressed miRNAs (DEmiRNAs) were identified in the control group and the AngII-induced hypertensive renal injury group, respectively. 110 DEmRNAs and 27 DEmiRNAs were identified in the TrT treatment group and the AngII-induced group, respectively. The core component of the miRNA-mRNA network was miR-155-5p. Our study showed that miR-155-5p expression levels were more decreased in the AngII-induced hypertensive renal injury group than the control group. TrT treatment also significantly upregulated miR-155-5p. Additionally, we found that miR-155-5p expression levels were negatively correlated with H2A clustered histone 6 (H2AC6). Conclusions The results of this study indicate that TrT has a reno-protective effect on AngII-induced hypertensive renal injury by miR-155-5p, which negatively regulates the expression of H2AC6. Our findings offer a new therapeutic strategy and have identified an effective candidate target for the treatment of hypertensive renal injury in clinical settings.
Collapse
Affiliation(s)
- Hui-Juan Pei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang-Xiao Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong-Zhi Chen
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuan-Hua Yang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Perrotta M, Carnevale D. Brain Areas Involved in Modulating the Immune Response Participating in Hypertension and Its Target Organ Damage. Antioxid Redox Signal 2021; 35:1515-1530. [PMID: 34269604 DOI: 10.1089/ars.2021.0142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Hypertension is a multifactorial disease ensuing from the continuous challenge imposed by several risk factors on the cardiovascular system. Classically known pathophysiological alterations associated with hypertension comprise neurogenic mechanisms dysregulating the autonomic nervous system (ANS), vascular dysfunction, and excessive activation of the renin angiotensin system. During the past few years, a considerable number of studies indicated that immune activation and inflammation also have an important role in the onset and maintenance of hypertension. Critical Issues: On these premises, it has been necessary to reconsider the pathophysiological mechanisms underlying hypertension development, taking into account the potential interactions established between classically known determinants of high blood pressure and the immune system. Recent Advances: Interestingly, central nervous system areas controlling cardiovascular functions are enriched with Angiotensin II receptors. Observations showing that these brain areas are crucial for mediating peripheral ANS and immune responses were suggestive of a critical role of neuroimmune interactions in hypertension. In fact, the ANS, characterized by an intricate network of afferent and efferent fibers, represents an intermediate between the brain and peripheral responses that are essential for blood pressure regulation. Future Directions: In this review, we will summarize studies showing how specific brain areas can modulate immune responses that are involved in hypertension. Antioxid. Redox Signal. 35, 1515-1530.
Collapse
Affiliation(s)
- Marialuisa Perrotta
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Daniela Carnevale
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
9
|
Abstract
Dr Irvine Page proposed the Mosaic Theory of Hypertension in the 1940s advocating that hypertension is the result of many factors that interact to raise blood pressure and cause end-organ damage. Over the years, Dr Page modified his paradigm, and new concepts regarding oxidative stress, inflammation, genetics, sodium homeostasis, and the microbiome have arisen that allow further refinements of the Mosaic Theory. A constant feature of this approach to understanding hypertension is that the various nodes are interdependent and that these almost certainly vary between experimental models and between individuals with hypertension. This review discusses these new concepts and provides an introduction to other reviews in this compendium of Circulation Research.
Collapse
Affiliation(s)
- David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center
| | - Thomas M. Coffman
- Cardiovascular and Metabolic Disorders Research Program, Duke-National University of Singapore Medical School
| | | |
Collapse
|
10
|
Yang T, Chakraborty S, Mandal J, Mei X, Joe B. Microbiota and Metabolites as Factors Influencing Blood Pressure Regulation. Compr Physiol 2021; 11:1731-1757. [PMID: 33792901 DOI: 10.1002/cphy.c200009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study of microbes has rapidly expanded in recent years due to a surge in our understanding that humans host a plethora of commensal microbes, which reside in their bodies and depending upon their composition, contribute to either normal physiology or pathophysiology. This article provides a general foundation for learning about host-commensal microbial interactions as an emerging area of research. The article is divided into two sections. The first section is dedicated to introducing commensal microbiota and its known effects on the host. The second section is on metabolites, which are biochemicals that the host and the microbes use for bi-directional communication with each other. Together, the sections review what is known about how microbes interact with the host to impact cardiovascular physiology, especially blood pressure regulation. © 2021 American Physiological Society. Compr Physiol 11:1731-1757, 2021.
Collapse
Affiliation(s)
- Tao Yang
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Saroj Chakraborty
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Juthika Mandal
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Xue Mei
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
11
|
Honetschlagerová Z, Gawrys O, Jíchová Š, Škaroupková P, Kikerlová S, Vaňourková Z, Husková Z, Melenovský V, Kompanowska-Jezierska E, Sadowski J, Kolář F, Novotný J, Hejnová L, Kujal P, Červenka L. Renal Sympathetic Denervation Attenuates Congestive Heart Failure in Angiotensin II-Dependent Hypertension: Studies with Ren-2 Transgenic Hypertensive Rats with Aortocaval Fistula. Kidney Blood Press Res 2021; 46:95-113. [PMID: 33530085 DOI: 10.1159/000513071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 11/14/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We examined if renal denervation (RDN) attenuates the progression of aortocaval fistula (ACF)-induced heart failure or improves renal hemodynamics in Ren-2 transgenic rats (TGR), a model of angiotensin II (ANG II)-dependent hypertension. METHODS Bilateral RDN was performed 1 week after creation of ACF. The animals studied were ACF TGR and sham-operated controls, and both groups were subjected to RDN or sham denervation. In separate groups, renal artery blood flow (RBF) responses were determined to intrarenal ANG II (2 and 8 ng), norepinephrine (NE) (20 and 40 ng) and acetylcholine (Ach) (10 and 40 ng) 3 weeks after ACF creation. RESULTS In nondenervated ACF TGR, the final survival rate was 10 versus 50% in RDN rats. RBF was significantly lower in ACF TGR than in sham-operated TGR (6.2 ± 0.3 vs. 9.7 ± 0.5 mL min-1 g-1, p < 0.05), the levels unaffected by RDN. Both doses of ANG II decreased RBF more in ACF TGR than in sham-operated TGR (-19 ± 3 vs. -9 ± 2% and -47 ± 3 vs. -22 ± 2%, p < 0.05 in both cases). RDN did not alter RBF responses to the lower dose, but increased it to the higher dose of ANG II in sham-operated as well as in ACF TGR. NE comparably decreased RBF in ACF TGR and sham-operated TGR, and RDN increased RBF responsiveness. Intrarenal Ach increased RBF significantly more in ACF TGR than in sham-operated TGR (29 ± 3 vs. 17 ± 3%, p < 0.05), the changes unaffected by RDN. ACF creation induced marked bilateral cardiac hypertrophy and lung congestion, both attenuated by RDN. In sham-operated but not in ACF TGR, RDN significantly decreased mean arterial pressure. CONCLUSION The results show that RDN significantly improved survival rate in ACF TGR; however, this beneficial effect was not associated with improvement of reduced RBF or with attenuation of exaggerated renal vascular responsiveness to ANG II.
Collapse
Affiliation(s)
- Zuzana Honetschlagerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia,
| | - Olga Gawrys
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Šárka Jíchová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Petra Škaroupková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zdeňka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - František Kolář
- Department of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Lucie Hejnová
- Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Petr Kujal
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czechia
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|
12
|
Veiga AC, Milanez MIO, Campos RR, Bergamaschi CT, Nishi EE. The involvement of renal afferents in the maintenance of cardiorenal diseases. Am J Physiol Regul Integr Comp Physiol 2021; 320:R88-R93. [PMID: 33146555 DOI: 10.1152/ajpregu.00225.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Elevated sympathetic vasomotor activity is a common feature of cardiorenal diseases. Therefore, the sympathetic nervous system is an important therapeutic target, particularly the fibers innervating the kidneys. In fact, renal denervation has been applied clinically and shown promising results in patients with hypertension and chronic kidney disease. However, the underlying mechanisms involved in the cardiorenal protection induced by renal denervation have not yet been fully clarified. This mini-review highlights historical and recent aspects related to the role of renal sensory fibers in the control of cardiorenal function under normal conditions and in experimental models of cardiovascular disease. Results have demonstrated that alterations in renal sensory function participate in the maintenance of elevated sympathetic vasomotor activity and cardiorenal changes; as such, renal sensory fibers may be a potential therapeutic target for the treatment of cardiorenal diseases. Although it has not yet been applied in clinical practice, selective afferent renal denervation may be promising, since such an approach maintains efferent activity and can provide more refined control of renal function compared with total renal denervation. However, more studies are needed to understand the mechanisms by which renal afferents partially contribute to such changes, in addition to the need to evaluate the safety and advantages of the approach for application in the clinical practice.
Collapse
Affiliation(s)
- Amanda C Veiga
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Maycon I O Milanez
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Ruy R Campos
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Cassia T Bergamaschi
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Erika E Nishi
- Department of Physiology, Cardiovascular Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
13
|
DeLalio LJ, Sved AF, Stocker SD. Sympathetic Nervous System Contributions to Hypertension: Updates and Therapeutic Relevance. Can J Cardiol 2020; 36:712-720. [PMID: 32389344 DOI: 10.1016/j.cjca.2020.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
The sympathetic nervous system plays a pivotal role in the long-term regulation of arterial blood pressure through the ability of the central nervous system to integrate neurohumoral signals and differentially regulate sympathetic neural input to specific end organs. Part 1 of this review will discuss neural mechanisms of salt-sensitive hypertension, obesity-induced hypertension, and the ability of prior experiences to sensitize autonomic networks. Part 2 of this review focuses on new therapeutic advances to treat resistant hypertension including renal denervation and carotid baroactivation. Both advances lower arterial blood pressure by reducing sympathetic outflow. We discuss potential mechanisms and areas of future investigation to target the sympathetic nervous system.
Collapse
Affiliation(s)
- Leon J DeLalio
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan F Sved
- Department of Neuroscience, University of Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
14
|
Morisawa N, Kitada K, Fujisawa Y, Nakano D, Yamazaki D, Kobuchi S, Li L, Zhang Y, Morikawa T, Konishi Y, Yokoo T, Luft FC, Titze J, Nishiyama A. Renal sympathetic nerve activity regulates cardiovascular energy expenditure in rats fed high salt. Hypertens Res 2020; 43:482-491. [PMID: 31932643 DOI: 10.1038/s41440-019-0389-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/20/2023]
Abstract
We recently reported that a 4% high-salt diet + saline for drinking (HS + saline) leads to a catabolic state, reduced heart rate, and suppression of cardiovascular energy expenditure in mice. We suggested that HS + saline reduces heart rate via the suppression of the sympathetic nervous system to compensate for the high salt intake-induced catabolic state. To test this hypothesis, we directly measured renal sympathetic nerve activity (RSNA) in conscious Sprague-Dawley (SD) rats using a radiotelemetry system. We confirmed that HS + saline induced a catabolic state. HS + saline decreased heart rate, while also reducing RSNA in SD rats. In contrast, Dahl salt-sensitive (DSS) rats exhibited no change in heart rate and increased RSNA during high salt intake. Renal denervation significantly decreased heart rate and attenuated the catabolic state independent of blood pressure in DSS rats fed HS + saline, suggesting that salt-sensitive animals were unable to decrease cardiovascular energy consumption due to abnormal renal sympathetic nerve activation during high salt intake. These findings support the hypothesis that RSNA mediates heart rate during high salt intake in SD rats. However, the insensitivity of heart rate and enhanced RSNA observed in DSS rats may be additional critical diagnostic factors for salt-sensitive hypertension. Renal denervation may benefit salt-sensitive hypertension by reducing its effects on catabolism and cardiovascular energy expenditure.
Collapse
Affiliation(s)
- Norihiko Morisawa
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.,Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan. .,Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
| | - Yoshihide Fujisawa
- Life Science Research Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Daisuke Yamazaki
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.,Division of Nephrology and Hypertension, Osaka City General Hospital, Osaka, Japan
| | - Shuhei Kobuchi
- Division of Pharmacology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan
| | - Lei Li
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yifan Zhang
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Morikawa
- Division of Nephrology and Hypertension, Osaka City General Hospital, Osaka, Japan
| | - Yoshio Konishi
- Division of Nephrology and Hypertension, Osaka City General Hospital, Osaka, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Friedrich C Luft
- Experimental & Clinical Research Center, a joint collaboration between Max-Delbrück Center for Molecular Medicine and Charité Universitätsmedizin, Berlin, Germany
| | - Jens Titze
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.,Division of Nephrology, Duke University Medical Center, Durham, NC, USA.,Division of Nephrology and Hypertension, University Clinic Erlangen, Erlangen, Germany
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
15
|
Abstract
Despite availability of effective drugs for hypertension therapy, significant numbers of hypertensive patients fail to achieve recommended blood pressure levels on ≥3 antihypertensive drugs of different classes. These individuals have a high prevalence of adverse cardiovascular events and are defined as having resistant hypertension (RHT) although nonadherence to prescribed antihypertensive medications is common in patients with apparent RHT. Furthermore, apparent and true RHT often display increased sympathetic activity. Based on these findings, technology was developed to treat RHT by suppressing sympathetic activity with electrical stimulation of the carotid baroreflex and catheter-based renal denervation (RDN). Over the last 15 years, experimental and clinical studies have provided better understanding of the physiological mechanisms that account for blood pressure lowering with baroreflex activation and RDN and, in so doing, have provided insight into which patients in this heterogeneous hypertensive population are most likely to respond favorably to these device-based therapies. Experimental studies have also played a role in modifying device technology after early clinical trials failed to meet key endpoints for safety and efficacy. At the same time, these studies have exposed potential differences between baroreflex activation and RDN and common challenges that will likely impact antihypertensive treatment and clinical outcomes in patients with RHT. In this review, we emphasize physiological studies that provide mechanistic insights into blood pressure lowering with baroreflex activation and RDN in the context of progression of clinical studies, which are now at a critical point in determining their fate in RHT management.
Collapse
Affiliation(s)
- Thomas E Lohmeier
- From the Department of Physiology and Biophysics (T.E.L., J.E.H.), University of Mississippi Medical Center, Jackson
| | - John E Hall
- From the Department of Physiology and Biophysics (T.E.L., J.E.H.), University of Mississippi Medical Center, Jackson.,Mississippi Center for Obesity Research (J.E.H.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
16
|
Soto-Piña AE, Franklin C, Rani CSS, Fernandez E, Cardoso-Peña E, Benítez-Arciniega AD, Gottlieb H, Hinojosa-Laborde C, Strong R. Dexamethasone Causes Hypertension in Rats Even Under Chemical Blockade of Peripheral Sympathetic Nerves. Front Neurosci 2019; 13:1305. [PMID: 31866814 PMCID: PMC6909820 DOI: 10.3389/fnins.2019.01305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/21/2019] [Indexed: 11/19/2022] Open
Abstract
Synthetic glucocorticoids (GCs) are widely used to treat inflammatory conditions. However, chronic use of GCs can lead to hypertension. The cause of this undesired side effect remains unclear. Previously, we developed an in vivo rat model to study the mechanisms underlying hypertension induced by the chronic administration of the potent synthetic GC, dexamethasone (DEX) and found that the catecholamine biosynthetic pathway plays an important role. In the current study, we used this model to investigate the role of the adrenal medulla, renal nerves, and other peripheral sympathetic nerves in DEX-induced hypertension. After 5 days of baseline telemetric recording of mean arterial pressure (MAP) and heart rate (HR), rats were subjected to one of the following treatments: renal denervation (RDNX), adrenal medullectomy (ADMX), 6-hydroxydopamine (6-OHDA, 20 mg/kg, i.p.) to induce chemical sympathectomy, or a combination of ADMX and 6-OHDA. On day 11, the animals received vehicle (VEH) or DEX in drinking water for 7 days, with the latter causing an increase in MAP in control animals. ADMX and RDNX by themselves exacerbated the pressor effect of DEX. In the chemical sympathectomy group, DEX still caused a rise in MAP but the response was lower (ΔMAP of 6-OHDA/DEX < VEH/DEX, p = 0.039). However, when ΔMAP was normalized to day 10, 6-OHDA + DEX did not show any difference from VEH + DEX, certainly not an increase as observed in DEX + ADMX or RDNX groups. This indicates that sympathetic nerves do not modulate the pressor effect of DEX. TH mRNA levels increased in the adrenal medulla in both VEH/DEX (p = 0.009) and 6-OHDA/DEX (p = 0.031) groups. In the 6-OHDA group, DEX also increased plasma levels of norepinephrine (NE) (p = 0.016). Our results suggest that the activation of catecholamine synthetic pathway could be involved in the pressor response to DEX in animals even under chemical sympathectomy with 6-OHDA.
Collapse
Affiliation(s)
| | - Cynthia Franklin
- Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX, United States
| | - C S Sheela Rani
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Elizabeth Fernandez
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Elías Cardoso-Peña
- Unidad de Medicina Familiar 220, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Helmut Gottlieb
- Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX, United States
| | - Carmen Hinojosa-Laborde
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Randy Strong
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, United States
| |
Collapse
|
17
|
Ong J, Kinsman BJ, Sved AF, Rush BM, Tan RJ, Carattino MD, Stocker SD. Renal sensory nerves increase sympathetic nerve activity and blood pressure in 2-kidney 1-clip hypertensive mice. J Neurophysiol 2019; 122:358-367. [PMID: 31091159 DOI: 10.1152/jn.00173.2019] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Renal denervation lowers arterial blood pressure (ABP) in multiple clinical trials and some experimental models of hypertension. These antihypertensive effects have been attributed to the removal of renal afferent nerves. The purpose of the present study was to define the function, anatomy, and contribution of mouse renal sensory neurons to a renal nerve-dependent model of hypertension. First, electrical stimulation of mouse renal afferent nerves produced frequency-dependent increases in ABP that were eliminated by ganglionic blockade. Stimulus-triggered averaging revealed renal afferent stimulation significantly increased splanchnic, renal, and lumbar sympathetic nerve activity (SNA). Second, kidney injection of wheat germ agglutinin into male C57Bl6 mice (12-14 wk; Jackson Laboratories) produced ipsilateral labeling in the T11-L2 dorsal root ganglia. Next, 2-kidney 1-clip (2K1C) hypertension was produced in male C57Bl6 mice (12-14 wk; Jackson Laboratories) by placement of a 0.5-mm length of polytetrafluoroethylene tubing around the left renal artery. 2K1C mice displayed an elevated ABP measured via telemetry and a greater fall in mean ABP to ganglionic blockade at day 14 or 21 vs. day 0. Renal afferent discharge was significantly higher in 2K1C-clipped vs. 2K1C-unclipped or sham kidneys. In addition, 2K1C-clipped vs. 2K1C-unclipped or sham kidneys had lower renal mass and higher mRNA levels of several proinflammatory cytokines. Finally, both ipsilateral renal denervation (10% phenol) or selective denervation of renal afferent nerves (periaxonal application of 33 mM capsaicin) at time of clipping resulted in lower ABP of 2K1C mice at day 14 or 21. These findings suggest mouse renal sensory neurons are activated to increase SNA and ABP in 2K1C hypertension. NEW & NOTEWORTHY This study documents the function, anatomy, and contribution of mouse renal sensory nerves to neurogenic hypertension produced by renal stenosis. Activation of renal afferents increased sympathetic nerve activity and blood pressure. Renal afferent activity was elevated in hypertensive mice, and renal afferent denervation lowered blood pressure. Clinically, patients with renal stenosis have been excluded from clinical trials for renal denervation, but this study highlights the potential therapeutic efficacy to target renal nerves in these patients.
Collapse
Affiliation(s)
- Jason Ong
- Division of Renal-Electrolyte, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,Department of Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Brian J Kinsman
- Division of Renal-Electrolyte, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Alan F Sved
- Department of Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Brittney M Rush
- Division of Renal-Electrolyte, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Roderick J Tan
- Division of Renal-Electrolyte, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Division of Renal-Electrolyte, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sean D Stocker
- Division of Renal-Electrolyte, Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|