1
|
Carvalho TD, Freitas OGAD, Chalela WA, Hossri CAC, Milani M, Buglia S, Falcão AMGM, Costa RVC, Ritt LEF, Pfeiffer MET, Silva OBE, Imada R, Pena JLB, Avanza Júnior AC, Sellera CAC. Brazilian Guideline for Exercise Testing in Children and Adolescents - 2024. Arq Bras Cardiol 2024; 121:e20240525. [PMID: 39292116 PMCID: PMC11495813 DOI: 10.36660/abc.20240525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
CLASSES OF RECOMMENDATION LEVELS OF EVIDENCE
Collapse
Affiliation(s)
- Tales de Carvalho
- Clínica de Prevenção e Reabilitação Cardiosport, Florianópolis, SC - Brasil
- Universidade do Estado de Santa Catarina, Florianópolis, SC - Brasil
| | | | - William Azem Chalela
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo, SP - Brasil
- Sociedade Beneficente de Senhoras do Hospital Sírio-Libanês, São Paulo, SP - Brasil
| | | | - Mauricio Milani
- Universidade de Brasília (UnB), Brasília, DF - Brasil
- Hasselt University, Hasselt - Bélgica
- Jessa Ziekenhuis, Hasselt - Bélgica
| | - Susimeire Buglia
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brasil
| | - Andréa Maria Gomes Marinho Falcão
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo, SP - Brasil
| | | | - Luiz Eduardo Fonteles Ritt
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA - Brasil
- Instituto D'Or de Pesquisa e Ensino, Salvador, BA - Brasil
- Hospital Cárdio Pulmonar, Salvador, BA - Brasil
| | | | | | - Rodrigo Imada
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo, SP - Brasil
- Hospital Sírio-Libanês, São Paulo, SP - Brasil
| | - José Luiz Barros Pena
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, MG - Brasil
- Hospital Felício Rocho, Belo Horizonte, MG - Brasil
| | | | | |
Collapse
|
2
|
Spicer MG, Dennis AT. Perioperative Exercise Testing in Pregnant and Non-Pregnant Women of Reproductive Age: A Systematic Review. J Clin Med 2024; 13:416. [PMID: 38256550 PMCID: PMC10816516 DOI: 10.3390/jcm13020416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Women have classically been excluded from the development of normal data and reference ranges, with pregnant women experiencing further neglect. The incidence of Caesarean section in pregnant women, and of general operative management in young women (both pregnant and non-pregnant), necessitates the formal development of healthy baseline data in these cohorts to optimise their perioperative management. This systematic review assesses the representation of young women in existing reference ranges for several functional exercise tests in common use to facilitate functional assessment in this cohort. METHODS Existing reference range data for the exercise tests the Six Minute Walk Test (6MWT), the Incremental Shuttle Walk Test (ISWT) and Cardiopulmonary Exercise Testing (CPET) in young women of reproductive age were assessed using the MEDLINE (Ovid) database, last searched December 2023. Results were comparatively tabulated but not statistically analysed given underlying variances in data. RESULTS The role of exercise testing in the perioperative period as an assessment tool, as well as its safety during pregnancy, was evaluated using 65 studies which met inclusion criteria. CONCLUSION There is a significant lack of baseline data regarding these tests in this population, especially amongst the pregnant cohort, which limits the application of exercise testing clinically.
Collapse
Affiliation(s)
- Madeleine G. Spicer
- Department of Obstetrics and Gynaecology, Alice Springs Hospital, Alice Springs, NT 0870, Australia
| | - Alicia T. Dennis
- Department of Anaesthesia, Pain and Perioperative Medicine, Joan Kirner Women’s and Children’s Hospital, Western Health, St Albans, VIC 3021, Australia;
- School of Medicine, Faculty of Health, Deakin University, Melbourne, VIC 3125, Australia
- Departments of Critical Care, Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3010, Australia
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Souron R, Carayol M, Martin V, Piponnier E, Duché P, Gruet M. Differences in time to task failure and fatigability between children and young adults: A systematic review and meta-analysis. Front Physiol 2022; 13:1026012. [DOI: 10.3389/fphys.2022.1026012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
The transition from childhood to adulthood is characterized by many physiological processes impacting exercise performance. Performance fatigability and time to task failure are commonly used to capture exercise performance. This review aimed to determine the differences in fatigability and TTF between youth (including both children and adolescents) and young adults, and to evaluate the influence of exercise modalities (i.e., exercise duration and type of exercise) on these differences. Medline, SPORTDiscus and Cochrane Library were searched. Thirty-four studies were included. The meta-analyses revealed that both children (SMD −1.15; p < 0.001) and adolescents (SMD −1.26; p = 0.022) were less fatigable than adults. Additional analysis revealed that children were less fatigable during dynamic exercises (SMD −1.58; p < 0.001) with no differences during isometric ones (SMD –0.46; p = 0.22). Children (SMD 0.89; p = 0.018) but not adolescents (SMD 0.75; p = 0.090) had longer TTF than adults. Additional analyses revealed 1) that children had longer TTF for isometric (SMD 1.25; p < 0.001) but not dynamic exercises (SMD −0.27; p = 0.83), and 2) that TTF differences between children and adults were larger for short- (SMD 1.46; p = 0.028) than long-duration exercises (SMD 0.20; p = 0.64). Children have higher endurance and are less fatigable than adults. These differences are influenced by the exercise modality, suggesting distinct physiological functioning during exercise between children and adults. The low number of studies comparing these outcomes between adolescents versus children and adults prevents robust conclusions and warrants further investigations in adolescent individuals.
Collapse
|
4
|
Brown DE, Sharma S, Jablonski JA, Weltman A. Neural network methods for diagnosing patient conditions from cardiopulmonary exercise testing data. BioData Min 2022; 15:16. [PMID: 35964102 PMCID: PMC9375280 DOI: 10.1186/s13040-022-00299-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cardiopulmonary exercise testing (CPET) provides a reliable and reproducible approach to measuring fitness in patients and diagnosing their health problems. However, the data from CPET consist of multiple time series that require training to interpret. Part of this training teaches the use of flow charts or nested decision trees to interpret the CPET results. This paper investigates the use of two machine learning techniques using neural networks to predict patient health conditions with CPET data in contrast to flow charts. The data for this investigation comes from a small sample of patients with known health problems and who had CPET results. The small size of the sample data also allows us to investigate the use and performance of deep learning neural networks on health care problems with limited amounts of labeled training and testing data. METHODS This paper compares the current standard for interpreting and classifying CPET data, flowcharts, to neural network techniques, autoencoders and convolutional neural networks (CNN). The study also investigated the performance of principal component analysis (PCA) with logistic regression to provide an additional baseline of comparison to the neural network techniques. RESULTS The patients in the sample had two primary diagnoses: heart failure and metabolic syndrome. All model-based testing was done with 5-fold cross-validation and metrics of precision, recall, F1 score, and accuracy. As a baseline for comparison to our models, the highest performing flow chart method achieved an accuracy of 77%. Both PCA regression and CNN achieved an average accuracy of 90% and outperformed the flow chart methods on all metrics. The autoencoder with logistic regression performed the best on each of the metrics and had an average accuracy of 94%. CONCLUSIONS This study suggests that machine learning and neural network techniques, in particular, can provide higher levels of accuracy with CPET data than traditional flowchart methods. Further, the CNN performed well with a small data set showing that these techniques can be designed to perform well on small data problems that are often found in health care and the life sciences. Further testing with larger data sets is needed to continue evaluating the use of machine learning to interpret CPET data.
Collapse
Affiliation(s)
- Donald E. Brown
- School of Data Science, University of Virginia, Charlottesville, VA USA
- Department of Engineering Systems and Environment, University of Virginia, Charlottesville, VA USA
| | - Suchetha Sharma
- School of Data Science, University of Virginia, Charlottesville, VA USA
| | - James A. Jablonski
- Department of Engineering Systems and Environment, University of Virginia, Charlottesville, VA USA
| | - Arthur Weltman
- Department of Kinesiology, University of Virginia, Charlottesville, VA USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
5
|
Bar‐Yoseph R, Radom‐Aizik S, Coronato N, Moradinasab N, Barstow TJ, Stehli A, Brown D, Cooper DM. Heart rate and gas exchange dynamic responses to multiple brief exercise bouts (MBEB) in early- and late-pubertal boys and girls. Physiol Rep 2022; 10:e15397. [PMID: 35923083 PMCID: PMC9349595 DOI: 10.14814/phy2.15397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/24/2022] [Accepted: 07/02/2022] [Indexed: 04/28/2023] Open
Abstract
Natural patterns of physical activity in youth are characterized by brief periods of exercise of varying intensity interspersed with rest. To better understand systemic physiologic response mechanisms in children and adolescents, we examined five responses [heart rate (HR), respiratory rate (RR), oxygen uptake (V̇O2 ), carbon dioxide production (V̇CO2 ), and minute ventilation (V̇E), measured breath-by-breath] to multiple brief exercise bouts (MBEB). Two groups of healthy participants (early pubertal: 17 female, 20 male; late-pubertal: 23 female, 21 male) performed five consecutive 2-min bouts of constant work rate cycle-ergometer exercise interspersed with 1-min of rest during separate sessions of low- or high-intensity (~40% or 80% peak work, respectively). For each 2-min on-transient and 1-min off-transient we calculated the average value of each cardiopulmonary exercise testing (CPET) variable (Y̅). There were significant MBEB changes in 67 of 80 on- and off-transients. Y̅ increased bout-to-bout for all CPET variables, and the magnitude of increase was greater in the high-intensity exercise. We measured the metabolic cost of MBEB, scaled to work performed, for the entire 15 min and found significantly higher V̇O2 , V̇CO2 , and V̇E costs in the early-pubertal participants for both low- and high-intensity MBEB. To reduce breath-by-breath variability in estimation of CPET variable kinetics, we time-interpolated (second-by-second), superimposed, and averaged responses. Reasonable estimates of τ (<20% coefficient of variation) were found only for on-transients of HR and V̇O2 . There was a remarkable reduction in τHR following the first exercise bout in all groups. Natural patterns of physical activity shape cardiorespiratory responses in healthy children and adolescents. Protocols that measure the effect of a previous bout on the kinetics of subsequent bouts may aid in the clinical utility of CPET.
Collapse
Affiliation(s)
- Ronen Bar‐Yoseph
- Pediatric Exercise and Genomics Research CenterUniversity of California at IrvineIrvineCaliforniaUSA
- Pediatric Pulmonary DivisionRuth Children's Hospital, Rambam Health Care CenterHaifaIsrael
| | - Shlomit Radom‐Aizik
- Pediatric Exercise and Genomics Research CenterUniversity of California at IrvineIrvineCaliforniaUSA
| | - Nicholas Coronato
- University of VirginiaCharlottesvilleVirginiaUSA
- United States Military AcademyWest PointNew YorkUSA
| | | | | | - Annamarie Stehli
- Pediatric Exercise and Genomics Research CenterUniversity of California at IrvineIrvineCaliforniaUSA
| | - Don Brown
- University of VirginiaCharlottesvilleVirginiaUSA
| | - Dan M. Cooper
- Pediatric Exercise and Genomics Research CenterUniversity of California at IrvineIrvineCaliforniaUSA
- Department of Pediatrics, Institute for Clinical and Translational Science, and Pediatric Exercise and Genomics Research CenterUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
6
|
Kernizan D, Glass A, D'Aloisio G, Hossain J, Tsuda T. A Combined Analysis of Peak and Submaximal Exercise Parameters in Delineating Underlying Mechanisms of Sex Differences in Healthy Adolescents. Pediatr Cardiol 2022; 43:1122-1130. [PMID: 35107629 DOI: 10.1007/s00246-022-02832-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
Abstract
Peak exercise parameters are considered the gold standard to quantify cardiac reserve in cardiopulmonary exercise testing (CPET). We studied whether submaximal parameters would add additional values in analyzing sex differences in CPET. We reviewed CPET of age-matched healthy male and female adolescents by cycle ergometer. Besides peak parameters, submaximal CPET parameters, including ventilatory anaerobic threshold (VAT), oxygen uptake efficiency slope (OUES), and submaximal slopes of Δoxygen consumption (ΔVO2)/Δwork rate (ΔWR), Δheart rate (ΔHR)/ΔWR, ΔVO2/ΔHR, and Δminute ventilation (ΔVE)/ΔCO2 production (ΔVCO2), were obtained. We studied 35 male and 40 female healthy adolescents. Peak VO2 (pVO2), peak oxygen pulse (pOP), and VAT were significantly lower in females than males (1.9 ± 0.4 vs. 2.5 ± 0.6 L/min; 10 ± 2.0 vs. 13.2 ± 3.5 ml/beat; 1.23 ± 0.3 vs. 1.52 ± 0.5 L/min, respectively, all p < 0.005). Females showed significantly lower pVO2, VAT, and OUES with the same body weight than males, implying higher skeletal muscle mass in males. When simultaneously examining ΔHR/ΔWR and pOP, females showed higher dependency on increases in HR than in stroke volume. Females demonstrated significantly lower pOP with the same levels of ΔVO2/ΔHR, suggesting more limited exercise persistence than males under an anaerobic condition at peak exercise. Oxygen uptake efficiency in relation to peak VE was significantly higher in males. There was no sex difference in either ΔVO2/ΔWR or ΔVE/ΔVCO2. Combinational assessment of peak and submaximal CPET parameters delineates the multiple mechanisms that contribute to the sex differences in exercise performance.
Collapse
Affiliation(s)
- Daphney Kernizan
- Nemours Cardiac Center, Nemours Children's Hospital, Delaware, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | - Austin Glass
- Nemours Cardiac Center, Nemours Children's Hospital, Delaware, 1600 Rockland Road, Wilmington, DE, 19803, USA.,Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, 63103, USA
| | - Gina D'Aloisio
- Nemours Cardiac Center, Nemours Children's Hospital, Delaware, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | - Jobayer Hossain
- Department of Biostatistics, Nemours Children's Hospital, Delaware, Wilmington, DE, 19803, USA
| | - Takeshi Tsuda
- Nemours Cardiac Center, Nemours Children's Hospital, Delaware, 1600 Rockland Road, Wilmington, DE, 19803, USA. .,Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
7
|
Lai N, Fiutem JJ, Pfaff N, Salvadego D, Strainic J. Relating cardiorespiratory responses to work rate during incremental ramp exercise on treadmill in children and adolescents: sex and age differences. Eur J Appl Physiol 2021; 121:2731-2741. [PMID: 34143305 PMCID: PMC8416851 DOI: 10.1007/s00421-021-04741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/08/2021] [Indexed: 11/12/2022]
Abstract
PURPOSE Evaluation of cardiopulmonary exercise testing (CPET) slopes such as [Formula: see text] (cardiac/skeletal muscle function) and [Formula: see text] (O2 delivery/utilization), using treadmill protocols is limited because the difficulties in measuring the total work rate ([Formula: see text]). To overcome this limitation, we proposed a new method in quantifying [Formula: see text] to determine CPET slopes. METHODS CPET's were performed by healthy patients, (n = 674, 9-18 year) 300 female (F) and 374 male (M), using an incremental ramp protocol on a treadmill. For this protocol, a quantitative relationship based on biomechanical principles of human locomotion, was used to quantify the [Formula: see text] of the subject. CPET slopes were determined by linear regression of the data recorded until the gas exchange threshold occurred. RESULTS The method to estimate [Formula: see text] was substantiated by verifying that: [Formula: see text] for treadmill exercise corresponded to an efficiency of muscular work similar to that of cycle ergometer; [Formula: see text] (mL min-1 W-1) was invariant with age and greater in M than F older than 12 years old (13-14 years: 9.6 ± 1.5(F) vs. 10.5 ± 1.8(M); 15-16 years: 9.7 ± 1.7(F) vs. 10.6 ± 2.2(M); 17-18 years: 9.6 ± 1.7(F) vs. 11.0 ± 2.3(M), p < 0.05); similar to cycle ergometer exercise, [Formula: see text] was inversely related to body weight (BW) (r = 0.71) or [Formula: see text] (r = 0.66) and [Formula: see text] was not related to BW (r = - 0.01), but had a weak relationship with [Formula: see text] (r = 0.28). CONCLUSION The proposed approach can be used to estimate [Formula: see text] and quantify CPET slopes derived from incremental ramp protocols at submaximal exercise intensities using the treadmill, like the cycle ergometer, to infer cardiovascular and metabolic function in both healthy and diseased states.
Collapse
Affiliation(s)
- Nicola Lai
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy.
- Departments of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Justin J Fiutem
- Departments of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
- Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Nora Pfaff
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Desy Salvadego
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - James Strainic
- Departments of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
- Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| |
Collapse
|
8
|
Eshuis G, Hock J, Marchie du Sarvaas G, van Duinen H, Neidenbach R, van den Heuvel F, Hillege H, Berger RM, Hager A. Exercise capacity in patients with repaired Tetralogy of Fallot aged 6 to 63 years. Heart 2021; 108:186-193. [PMID: 33990411 DOI: 10.1136/heartjnl-2020-318928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES This study aimed to provide a perspective for the interpretation of exercise capacity (peakVO2) in patients with repaired Tetralogy of Fallot (patients with rTOF) by describing the course of peakVO2 from patients aged 6-63 years. METHODS A retrospective study was performed between September 2001 and December 2016 in the German Heart Centre Munich, Germany, and in the University Medical Centre Groningen, the Netherlands. A total of 1175 cardiopulmonary exercise tests (CPETs) were collected from 586 patients with rTOF, 46% female. Maximal exertion was verified using a respiratory exchange ratio ≥1.00. PeakVO2 was modelled using time-dependent multilevel models for repeated measurements (n=889 in 300 patients), and compared with subject-specific reference values calculated by the models of Bongers et al and Mylius et al. RESULTS: The peakVO2 of patients with rTOF was reduced at all ages. At the age of 6, the peakVO2 was 614 mL/min (70% of predicted (95% CI 67 to 73)). The reduced increase in peakVO2 during adolescence resulted in a significant lower maximum peakVO2 of 1209 mL/min at 25 years (65% predicted, p<0.001). A linear decline after 25 years was observed in patients and references, although patients showed an accelerated decline, with a -0.24% point of predicted (95% CI 0.11 to 0.38) per year without differences between sexes (p=0.263). CONCLUSIONS This study provides a context for peakVO2 across ages in patients with rTOF under contemporary treatment strategies. It showed that the reduction in peakVO2 originates from childhood and declines over time. Sex differences in patients with rTOF were similar to natural existing sex differences.
Collapse
Affiliation(s)
- Graziella Eshuis
- Center of Congenital Heart Disease, Department of Paediatric Cardiology, Beatrix Children's Hospital, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Julia Hock
- Department of Paediatric Cardiology and Congenital Heart Disease, Technical University Munich, German Heart Centre Munich, München, Germany
| | - Gideon Marchie du Sarvaas
- Center of Congenital Heart Disease, Department of Paediatric Cardiology, Beatrix Children's Hospital, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Hiske van Duinen
- Department of Biomedical Sciences of Cells & Systems, Section of Anatomy & Medical Physiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rhoia Neidenbach
- Department of Paediatric Cardiology and Congenital Heart Disease, Technical University Munich, German Heart Centre Munich, München, Germany
| | - Freek van den Heuvel
- Center of Congenital Heart Disease, Department of Paediatric Cardiology, Beatrix Children's Hospital, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Hans Hillege
- Center for Congenital Heart Disease, Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rolf Mf Berger
- Center of Congenital Heart Disease, Department of Paediatric Cardiology, Beatrix Children's Hospital, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Alfred Hager
- Department of Paediatric Cardiology and Congenital Heart Disease, Technical University Munich, German Heart Centre Munich, München, Germany
| |
Collapse
|
9
|
Bar-Yoseph R, Porszasz J, Radom-Aizik S, Stehli A, Law P, Cooper DM. The effect of test modality on dynamic exercise biomarkers in children, adolescents, and young adults. Physiol Rep 2020; 7:e14178. [PMID: 31353834 PMCID: PMC6796805 DOI: 10.14814/phy2.14178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 01/05/2023] Open
Abstract
Cardiopulmonary exercise testing (CPET) modalities, treadmill (TM), and cycle ergometer (CE), influence maximal gas exchange and heart rate (HR) responses. Little is known regarding CPET modality effect on submaximal biomarkers during childhood and adolescence. Ninety‐four healthy participants (7–34 y.o., 53% female) performed TM and CE CPET to address two major gaps: (1) the effect of modality on submaximal CPET biomarkers, and (2) estimation of work rate in TM CPET. Breath‐by‐breath gas exchange enabled calculation of linear regression slopes such as V˙O2/ΔHR and ΔV˙E/ΔV˙CO2. Lean body mass (LBM) was measured with dual X‐ray absorptiometry. We tested a novel TM CPET estimate of work rate based on TM velocity2, incline, and body mass (VIM). Like the linear relationship between V˙O2 and work rate in CE CPET, V˙O2 increased linearly with TM VIM. TM ΔV˙O2/ΔHR was highly correlated with CE (r = 0.92), and each increased substantially with LBM (P < 0.0001 for TM and CE). ΔV˙O2/ΔHR was to a small (~8.7%) but significant extent larger in TM (1.6 mL/min/beat, P = 0.04). In contrast, TM and CE ΔV˙E/ΔV˙CO2 decreased significantly with LBM, supporting earlier observations from CE CPET. For both CE and TM, males had significantly higher ΔV˙O2/ΔHR but lower ΔV˙E/ΔV˙CO2 than females. Novel TM CPET biomarkers such as ΔVIM/ΔHR and ∆V˙O2/ΔVIM paralleled effects of LBM observed in CE CPET. TM and CE CPET submaximal biomarkers are not interchangeable, but similarly reflect maturation during critical periods. CPET analysis that utilizes data actually measured (rather than estimated) may improve the clinical value of TM and CE CPET.
Collapse
Affiliation(s)
- Ronen Bar-Yoseph
- Pediatric Exercise and Genomics Research Center (PERC), Department of Pediatrics, University of California Irvine, Irvine, California
| | - Janos Porszasz
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center (PERC), Department of Pediatrics, University of California Irvine, Irvine, California
| | - Annamarie Stehli
- Pediatric Exercise and Genomics Research Center (PERC), Department of Pediatrics, University of California Irvine, Irvine, California
| | - Pearl Law
- Pediatric Exercise and Genomics Research Center (PERC), Department of Pediatrics, University of California Irvine, Irvine, California
| | - Dan M Cooper
- Pediatric Exercise and Genomics Research Center (PERC), Department of Pediatrics, University of California Irvine, Irvine, California.,University of California Irvine Institute for Clinical and Translational Science, Irvine, California
| |
Collapse
|