1
|
Zhang Y, Jiang X, Wu D, Huang H, Jia G, Zhao G. Sema4D deficiency enhances glucose tolerance through GLUT2 retention in hepatocytes. J Transl Med 2024; 22:864. [PMID: 39334386 PMCID: PMC11429007 DOI: 10.1186/s12967-024-05694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The glucose transporter 2 (GLUT2) is constitutively expressed in pancreatic beta cells and hepatocytes of mice. It is the most important receptor in glucose-stimulated insulin release and hepatic glucose transport. The Sema4D is a signalin receptor on cell membranes. The correlation between Sema4D and GLUT2 has not been reported previously. We investigated whether knockdown of Sema4D could exert a hypoglycemic effect based on the increased GLUT2 expression in Sema4D -/- mice hepatocytes. METHODS The glucose tolerance test and insulin tolerance test in sema4D -/- and sema4D +/+ mice were compared before and after streptozotocin (STZ) injection; the expression of GLUT2 content on the membrane surface of both groups was verified by Western blot. Then, the levels of insulin and C-peptide in the serum of the two groups of mice after STZ injection were measured by ELISA; the differentially expressed mRNAs in the liver of the two groups of mice were analyzed by transcriptomic analysis; then the differences in the expression of GLUT2, glycogen, insulin and glucagon in the two groups of mice were compared by tissue section staining. Finally, metabolomics analysis was performed to analyze the metabolites differentially expressed in the two groups of mice. KEY FINDINGS First, Sema4D -/- male mice exhibited significantly greater glucose tolerance than wild-type mice in a hyperglycemic environment. Secondly, Sema4D -/- mice had more retained GLUT2 in liver membranes after STZ injection according to an immunofluorescence assay. After STZ injection, Sema4D -/- male mice did not exhibit fasting hyperinsulinemia like wild-type mice. Finally, analysis of metabolomic and immunohistochemical data also revealed that Sema4D -/- mice produce hypoglycemic effects by enhancing the pentose phosphate pathway, but not glycogen synthesis. CONCLUSIONS Thus, Sema4D may play an important role in the regulation of glucose homeostasis by affecting GLUT2 synthesis.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Xiaomei Jiang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Dongsong Wu
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Hao Huang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West Second Section, First Ring Road, Chengdu, 610072, China.
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
2
|
Huang Y, Wang J, Mancino V, Pham J, O’Grady C, Li H, Jiang K, Chin D, Poon C, Ho PY, Gyarmati G, Peti-Peterdi J, Hallows KR, Chung EJ. Oral delivery of nanomedicine for genetic kidney disease. PNAS NEXUS 2024; 3:pgae187. [PMID: 38807632 PMCID: PMC11131023 DOI: 10.1093/pnasnexus/pgae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Chronic and genetic kidney diseases such as autosomal dominant polycystic kidney disease (ADPKD) have few therapeutic options, and clinical trials testing small molecule drugs have been unfavorable due to low kidney bioavailability and adverse side effects. Although nanoparticles can be designed to deliver drugs directly to the diseased site, there are no kidney-targeted nanomedicines clinically available, and most FDA-approved nanoparticles are administered intravenously which is not ideal for chronic diseases. To meet these challenges of chronic diseases, we developed a biomaterials-based strategy using chitosan particles (CP) for oral delivery of therapeutic, kidney-targeting peptide amphiphile micelles (KMs). We hypothesized that encapsuling KMs into CP would enhance the bioavailability of KMs upon oral administration given the high stability of chitosan in acidic conditions and mucoadhesive properties enabling absorption within the intestines. To test this, we evaluated the mechanism of KM access to the kidneys via intravital imaging and investigated the KM biodistribution in a porcine model. Next, we loaded KMs carrying the ADPKD drug metformin into CP (KM-CP-met) and measured in vitro therapeutic effect. Upon oral administration in vivo, KM-CP-met showed significantly greater bioavailability and accumulation in the kidneys as compared to KM only or free drug. As such, KM-CP-met treatment in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre which develops the disease over 120 days and mimics the slow development of ADPKD) showed enhanced therapeutic efficacy without affecting safety despite repeated treatment. Herein, we demonstrate the potential of KM-CP as a nanomedicine strategy for oral delivery for the long-term treatment of chronic kidney diseases.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Valeria Mancino
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jessica Pham
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Colette O’Grady
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Hui Li
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kairui Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Deborah Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Pei-Yin Ho
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Georgina Gyarmati
- Department of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Kenneth R Hallows
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Surico PL, Narimatsu A, Forouzanfar K, Singh RB, Shoushtari S, Dana R, Blanco T. Effects of Diabetes Mellitus on Corneal Immune Cell Activation and the Development of Keratopathy. Cells 2024; 13:532. [PMID: 38534376 PMCID: PMC10969384 DOI: 10.3390/cells13060532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent diseases globally, and its prevalence is rapidly increasing. Most patients with a long-term history of DM present with some degree of keratopathy (DK). Despite its high incidence, the underlying inflammatory mechanism of DK has not been elucidated yet. For further insights into the underlying immunopathologic processes, we utilized streptozotocin-induced mice to model type 1 DM (T1D) and B6.Cg-Lepob/J mice to model type 2 DM (T2D). We evaluated the animals for the development of clinical manifestations of DK. Four weeks post-induction, the total frequencies of corneal CD45+CD11b+Ly-6G- myeloid cells, with enhanced gene and protein expression levels for the proinflammatory cytokines TNF-α and IL-1β, were higher in both T1D and T2D animals. Additionally, the frequencies of myeloid cells/mm2 in the sub-basal neural plexus (SBNP) were significantly higher in T1D and T2D compared to non-diabetic mice. DK clinical manifestations were observed four weeks post-induction, including significantly lower tear production, corneal sensitivity, and epitheliopathy. Nerve density in the SBNP and intraepithelial terminal endings per 40x field were lower in both models compared to the normal controls. The findings of this study indicate that DM alters the immune quiescent state of the cornea during disease onset, which may be associated with the progressive development of the clinical manifestations of DK.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tomas Blanco
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (P.L.S.); (A.N.); (K.F.); (R.B.S.); (S.S.); (R.D.)
| |
Collapse
|
4
|
Wang Z, Fu Y, da Silva AA, do Carmo JM, Mouton A, Omoto ACM, Li X, Sears J, Hall JE. Mitochondria-Derived Reactive Oxygen Species Contribute to Synergistic Interaction of Diabetes and Hypertension in Causing Chronic Kidney Injury. Am J Physiol Renal Physiol 2024; 326:F534-F544. [PMID: 38269408 PMCID: PMC11208021 DOI: 10.1152/ajprenal.00320.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Diabetes (DM) and hypertension (HTN) are major risk factors for chronic kidney injury, together accounting for >70% of end-stage renal disease. The combination of DM and HTN significantly accelerates development of renal injury; however, the underlying mechanisms of this synergy are still poorly understood. This study assessed whether mitochondria (MT) dysfunction is essential in developing renal injury in a rat model with combined DM and HTN. Type 1 DM was induced in Wistar rats by streptozotocin (STZ). HTN was induced six weeks later by inter-renal aorta constriction between the renal arteries, so that right kidneys were exposed to HTN while left kidneys were exposed to normotension. Kidneys exposed to DM or HTN alone had only mild glomerular injury and urinary albumin excretion (UAE). In contrast, kidneys exposed to DM plus 8 weeks HTN had significantly increased UAE and glomerular structural damage with reduced glomerular filtration rate. Marked increases in MT-derived reactive oxygen species (ROS) were also observed in right kidneys exposed to HTN+DM. We further tested whether treatment with MT-targeted antioxidant (MitoTEMPO) after the onset of HTN attenuates renal injury in rats with DM+HTN. Results show that kidneys in DM+AC+MitoTEMPO rats had lower UAE, less glomerular damage, and preserved MT function compared to untreated DM+AC rats. Our studies indicate that MT-derived ROS play a major role in promoting kidney dysfunction when DM is combined with HTN. Preserving MT function might be a potential therapeutic approach to halt the development of renal injury when DM coexists with HTN.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yiling Fu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alan Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ana Carolina M Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jaylan Sears
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
5
|
Yu B, Shen K, Li T, Li J, Meng M, Liu W, Tang Q, Zhu T, Wang X, Leung SWS, Shi Y. Glycolytic enzyme PFKFB3 regulates sphingosine 1-phosphate receptor 1 in proangiogenic glomerular endothelial cells under diabetic condition. Am J Physiol Cell Physiol 2023; 325:C1354-C1368. [PMID: 37781737 PMCID: PMC10861147 DOI: 10.1152/ajpcell.00261.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Glomerular angiogenesis is a characteristic feature of diabetic nephropathy (DN). Enhanced glycolysis plays a crucial role in angiogenesis. The present study was designed to investigate the role of glycolysis in glomerular endothelial cells (GECs) in a mouse model of DN. Mouse renal cortex and isolated glomerular cells were collected for single-cell and RNA sequencing. Cultured GECs were exposed to high glucose in the presence (proangiogenic) and absence of a vascular sprouting regimen. MicroRNA-590-3p was delivered by lipofectamine in vivo and in vitro. In the present study, a subgroup of GECs with proangiogenic features was identified in diabetic kidneys by using sequencing analyses. In cultured proangiogenic GECs, high glucose increased glycolysis and phosphofructokinase/fructose bisphosphatase 3 (PFKFB3) protein expression, which were inhibited by overexpressing miRNA-590-3p. Mimics of miRNA-590-3p also increased receptor for sphingosine 1-phosphate (S1pR1) expression, an angiogenesis regulator, in proangiogenic GECs challenged with high glucose. Inhibition of PFKFB3 by pharmacological and genetic approaches upregulated S1pR1 protein in vitro. Mimics of miRNA-590-3p significantly reduced migration and angiogenic potential in proangiogenic GECs challenged with high glucose. Ten-week-old type 2 diabetic mice had elevated urinary albumin levels, reduced renal cortex miRNA-590-3p expression, and disarrangement of glomerular endothelial cell fenestration. Overexpressing miRNA-590-3p via perirenal adipose tissue injection restored endothelial cell fenestration and reduced urinary albumin levels in diabetic mice. Therefore, the present study identifies a subgroup of GECs with proangiogenic features in mice with DN. Local administration of miRNA-590-3p mimics reduces glycolytic rate and upregulates S1pR1 protein expression in proangiogenic GECs. The protective effects of miRNA-590-3p provide therapeutic potential in DN treatment.NEW & NOTEWORTHY Proangiogenetic glomerular endothelial cells (GECs) are activated in diabetic nephropathy. High glucose upregulates glycolytic enzyme phosphofructokinase/fructose bisphosphatase 3 (PFKFB3) in proangiogenetic cells. PFKFB3 protects the glomerular filtration barrier by targeting endothelial S1pR1. MiRNA-590-3p restores endothelial cell function and mitigates diabetic nephropathy.
Collapse
Affiliation(s)
- Baixue Yu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Kaiyuan Shen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Tingting Li
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawei Li
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mei Meng
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wenjie Liu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qunye Tang
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Tongyu Zhu
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
6
|
McCready RG, Gilley KR, Kusumo LE, Hall GM, Vichaya EG. Chronic Stress Exacerbates Hyperglycemia-Induced Affective Symptoms in Male Mice. Neuroimmunomodulation 2023; 30:302-314. [PMID: 37852199 PMCID: PMC10641805 DOI: 10.1159/000534669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
INTRODUCTION Among chronically ill populations, affective disorders remain underdiagnosed and undertreated. A high degree of comorbidity exists between diabetes and affective disorders, particularly depression and anxiety. The mechanisms underlying stress-induced affective dysregulation are likely distinct from those induced by diabetes. A direct comparison between stress- and hyperglycemia-induced affective dysregulation could provide insight into distinct mechanistic targets for depression/anxiety associated with these different conditions. METHODS To this end, the present study used male C57BL/6J mice to compare the independent and combined behavioral and neuroinflammatory effects of two models: (1) unpredictable chronic mild stress and (2) pharmacologically induced hyperglycemia. RESULTS Streptozotocin-induced hyperglycemia was associated with a set of behavioral changes reflective of the neurovegetative symptoms of depression (i.e., reduced open field activity, reduced grooming, increased immobility in the forced swim task, and decreased marble burying), increased hippocampal Bdnf and Tnf expression, and elevations in frontal cortex Il1b expression. Our chronic stress protocol produced alterations in anxiety-like behavior and decreased frontal cortex Il1b expression. DISCUSSION While the combination of chronic stress and hyperglycemia produced limited additive effects, their combination exacerbated total symptom burden. Overall, the data indicate that stress and hyperglycemia induce different symptom profiles via distinct mechanisms.
Collapse
Affiliation(s)
- Riley G McCready
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Kayla R Gilley
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Laura E Kusumo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Grace M Hall
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Elisabeth G Vichaya
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| |
Collapse
|
7
|
Trink J, Nmecha IK, Zhang D, MacDonald M, Gao B, Krepinsky JC. Both sexes develop DKD in the CD1 uninephrectomized streptozotocin mouse model. Sci Rep 2023; 13:16635. [PMID: 37789041 PMCID: PMC10547794 DOI: 10.1038/s41598-023-42670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Diabetic kidney disease (DKD) is characterized by a progressive increase in albuminuria and typical pathologic features. Recent studies have shown that sex is an important factor to consider in the pathogenesis of DKD. Presently, the hallmarks of this disease have primarily been studied in male rodent models. Here we explored the influence of sex in a murine model of DKD. CD1 mice underwent a right nephrectomy followed by intraperitoneal injection with 200 mg/kg streptozotocin to induce type 1 diabetes. Due to a high mortality rate, females required a reduction in streptozotocin to 150 mg/kg. Mice were followed for 12 weeks. Both sexes developed comparable hyperglycemia, while albuminuria and glomerular volume were increased to a greater degree in females and kidney hypertrophy was only seen in females. Males had a greater increase in blood pressure and glomerular basement membrane thickening, and a greater decrease in endpoint weight. Serum TGFβ1 levels were increased only in females. However, both sexes showed a similar increase in induction of kidney fibrosis. T cell and macrophage infiltration were also increased in both sexes. While some differences were observed, overall, both sexes developed clinical and pathologic characteristics of early DKD. Future studies evaluating therapeutic interventions can thus be assessed in both sexes of this DKD model.
Collapse
Affiliation(s)
- Jackie Trink
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Ifeanyi Kennedy Nmecha
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Dan Zhang
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Melissa MacDonald
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Bo Gao
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada
| | - Joan C Krepinsky
- Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
8
|
Rai V, Agrawal DK. Male or female sex: considerations and translational aspects in diabetic foot ulcer research using rodent models. Mol Cell Biochem 2022. [PMID: 36574098 DOI: 10.1007/s11010-022-04642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Anti-diabetic effect of hesperidin on palmitate (PA)-treated HepG2 cells and high fat diet-induced obese mice. Food Res Int 2022; 162:112059. [DOI: 10.1016/j.foodres.2022.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/17/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
|
10
|
Rodríguez-Castelán J, Delgado-González E, Varela-Floriano V, Anguiano B, Aceves C. Molecular Iodine Supplement Prevents Streptozotocin-Induced Pancreatic Alterations in Mice. Nutrients 2022; 14:nu14030715. [PMID: 35277074 PMCID: PMC8840345 DOI: 10.3390/nu14030715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatitis has been implicated in the development and progression of type 2 diabetes and cancer. The pancreas uptakes molecular iodine (I2), which has anti-inflammatory and antioxidant effects. The present work analyzes whether oral I2 supplementation prevents the pancreatic alterations promoted by low doses of streptozotocin (STZ). CD1 mice (12 weeks old) were divided into the following groups: control; STZ (20 mg/kg/day, i.p. for five days); I2 (0.2 mg/Kg/day in drinking water for 15 days); and combined (STZ + I2). Inflammation (Masson’s trichrome and periodic acid–Schiff stain), hyperglycemia, decreased β-cells and increased α-cells in pancreas were observed in male and female animals with STZ. These animals also showed pancreatic increases in immune cells and inflammation markers as tumor necrosis factor-alpha, transforming growth factor-beta and inducible nitric oxide synthase with a higher amount of activated pancreatic stellate cells (PSCs). The I2 supplement prevented the harmful effect of STZ, maintaining normal pancreatic morphometry and functions. The elevation of the nuclear factor erythroid-2 (Nrf2) and peroxisome proliferator-activated receptor type gamma (PPARγ) contents was associated with the preservation of normal glycemia and lipoperoxidation. In conclusion, a moderated supplement of I2 prevents the deleterious effects of STZ in the pancreas, possibly through antioxidant and antifibrotic mechanisms including Nrf2 and PPARγ activation.
Collapse
|
11
|
Mitchell T, De Miguel C, Gohar EY. Sex differences in redox homeostasis in renal disease. Redox Biol 2020; 31:101489. [PMID: 32197946 PMCID: PMC7212488 DOI: 10.1016/j.redox.2020.101489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 03/01/2020] [Indexed: 02/08/2023] Open
Abstract
Sex differences in redox signaling in the kidney present new challenges and opportunities for understanding the physiology and pathophysiology of the kidney. This review will focus on reactive oxygen species, immune-related signaling pathways and endothelin-1 as potential mediators of sex-differences in redox homeostasis in the kidney. Additionally, this review will highlight male-female differences in redox signaling in several major cardiovascular and renal disorders namely acute kidney injury, diabetic nephropathy, kidney stone disease and salt-sensitive hypertension. Furthermore, we will discuss the contribution of redox signaling in the pathogenesis of postmenopausal hypertension and preeclampsia.
Collapse
Affiliation(s)
- Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carmen De Miguel
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eman Y Gohar
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|