1
|
Gao V, Chlebowicz J, Gaskin K, Briano JA, Komer LE, Pineda A, Jhalani S, Ahmad S, Uwaifo E, Black LS, Haller JE, Przedborski S, Lane DA, Zhang S, Sharma M, Burré J. Synaptic vesicle-omics in mice captures signatures of aging and synucleinopathy. Nat Commun 2025; 16:4079. [PMID: 40312501 PMCID: PMC12046008 DOI: 10.1038/s41467-025-59441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 04/23/2025] [Indexed: 05/03/2025] Open
Abstract
Neurotransmitter release occurs through exocytosis of synaptic vesicles. α-Synuclein's function and dysfunction in Parkinson's disease and other synucleinopathies is thought to be tightly linked to synaptic vesicle binding. Age is the biggest risk factor for synucleinopathy, and ~15% of synaptic vesicle proteins have been linked to central nervous system diseases. Yet, age- and disease-induced changes in synaptic vesicles remain unexplored. Via systematic analysis of synaptic vesicles at the ultrastructural, protein, and lipid levels, we reveal specific changes in synaptic vesicle populations, proteins, and lipids over age in wild-type mice and in α-synuclein knockout mice with and without expression of human α-synuclein. Strikingly, we find several previously undescribed synaptic changes in mice lacking α-synuclein, suggesting that loss of α-synuclein function contributes to synaptic dysfunction. These findings not only provide insights into synaptic vesicle biology and disease mechanisms in synucleinopathy, but also serve as a baseline for further mechanistic exploration of age- and disease-related alterations in synaptic vesicles.
Collapse
Affiliation(s)
- Virginia Gao
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Julita Chlebowicz
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Karlton Gaskin
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Juan A Briano
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Lauren E Komer
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - André Pineda
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Shrey Jhalani
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Saad Ahmad
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Eseosa Uwaifo
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Luca S Black
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jillian E Haller
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Serge Przedborski
- Departments of Neurology, Pathology & Cell Biology and Neuroscience, Columbia University, New York, NY, 10032, USA
| | - Diane A Lane
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Manu Sharma
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jacqueline Burré
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
2
|
Goes FS, Collado-Torres L, Zandi PP, Huuki-Myers L, Tao R, Jaffe AE, Pertea G, Shin JH, Weinberger DR, Kleinman JE, Hyde TM. Large-scale transcriptomic analyses of major depressive disorder reveal convergent dysregulation of synaptic pathways in excitatory neurons. Nat Commun 2025; 16:3981. [PMID: 40295477 PMCID: PMC12037741 DOI: 10.1038/s41467-025-59115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Major Depressive Disorder (MDD) is a common, complex disorder that is a leading cause of disability worldwide and a significant risk factor for suicide. In this study, we have performed the largest molecular analysis of MDD in postmortem human brains (846 samples across 458 individuals) in the subgenual Anterior Cingulate Cortex (sACC) and the Amygdala, two regions central to mood regulation and the pathophysiology of MDD. We found extensive expression differences, particularly at the level of specific transcripts, with prominent enrichment for genes associated with the vesicular functioning, the postsynaptic density, GTPase signaling, and gene splicing. We find associated transcriptional features in 107 of 243 genome-wide significant loci for MDD and, through integrative analyses, highlight convergence of genetic risk, gene expression, and network-based analyses on dysregulated glutamatergic signaling and synaptic vesicular functioning. Together, these results provide an initial mechanistic understanding of MDD and highlight potential targets for novel drug discovery.
Collapse
Affiliation(s)
- Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Stanley and Elizabeth Star Precision Medicine Center of Excellence in Mood Disorders, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Leonardo Collado-Torres
- The Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Stanley and Elizabeth Star Precision Medicine Center of Excellence in Mood Disorders, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Ran Tao
- The Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Andrew E Jaffe
- The Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Geo Pertea
- The Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Joo Heon Shin
- The Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Daniel R Weinberger
- The Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Department of Psychiatry and Behavioral Sciences, Stanley and Elizabeth Star Precision Medicine Center of Excellence in Mood Disorders, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Zeng B, Bendl J, Deng C, Lee D, Misir R, Reach SM, Kleopoulos SP, Auluck P, Marenco S, Lewis DA, Haroutunian V, Ahituv N, Fullard JF, Hoffman GE, Roussos P. Genetic regulation of cell type-specific chromatin accessibility shapes brain disease etiology. Science 2024; 384:eadh4265. [PMID: 38781378 DOI: 10.1126/science.adh4265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/20/2023] [Indexed: 05/25/2024]
Abstract
Nucleotide variants in cell type-specific gene regulatory elements in the human brain are risk factors for human disease. We measured chromatin accessibility in 1932 aliquots of sorted neurons and non-neurons from 616 human postmortem brains and identified 34,539 open chromatin regions with chromatin accessibility quantitative trait loci (caQTLs). Only 10.4% of caQTLs are shared between neurons and non-neurons, which supports cell type-specific genetic regulation of the brain regulome. Incorporating allele-specific chromatin accessibility improves statistical fine-mapping and refines molecular mechanisms that underlie disease risk. Using massively parallel reporter assays in induced excitatory neurons, we screened 19,893 brain QTLs and identified the functional impact of 476 regulatory variants. Combined, this comprehensive resource captures variation in the human brain regulome and provides insights into disease etiology.
Collapse
Affiliation(s)
- Biao Zeng
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chengyu Deng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth Misir
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah M Reach
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven P Kleopoulos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pavan Auluck
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, MD 20892, USA
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health-Intramural Research Program, Bethesda, MD 20892, USA
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| |
Collapse
|
4
|
Wang X, Yu D, Wang H, Lei Z, Zhai Y, Sun M, Chen S, Yin P. Rab3 and synaptotagmin proteins in the regulation of vesicle fusion and neurotransmitter release. Life Sci 2022; 309:120995. [PMID: 36167148 DOI: 10.1016/j.lfs.2022.120995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
Abstract
Ca2+-triggered neurotransmitter release involves complex regulatory mechanisms, including a series of protein-protein interactions. Three proteins, synaptobrevin (VAMP), synaptosomal-associated protein of 25kDa (SNAP-25) and syntaxin, constitute the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complex that plays key roles in controlling vesicle fusion and exocytosis. Many other proteins participate in the regulation of the processes via direct and/or indirect interaction with the SNARE complex. Although much effort has been made, the regulatory mechanism for exocytosis is still not completely clear. Accumulated evidence indicates that the small GTPase Rab3 and synaptotagmin proteins play important regulatory roles during vesicle fusion and neurotransmitter release. This review outlines our present understanding of the two regulatory proteins, with the focus on the interaction of Rab3 with synaptotagmin in the regulatory process.
Collapse
Affiliation(s)
- Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Dianmei Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Minlu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
5
|
Bellucci A, Longhena F, Spillantini MG. The Role of Rab Proteins in Parkinson's Disease Synaptopathy. Biomedicines 2022; 10:biomedicines10081941. [PMID: 36009486 PMCID: PMC9406004 DOI: 10.3390/biomedicines10081941] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/29/2022] Open
Abstract
In patients affected by Parkinson's disease (PD), the most common neurodegenerative movement disorder, the brain is characterized by the loss of dopaminergic neurons in the nigrostriatal system, leading to dyshomeostasis of the basal ganglia network activity that is linked to motility dysfunction. PD mostly arises as an age-associated sporadic disease, but several genetic forms also exist. Compelling evidence supports that synaptic damage and dysfunction characterize the very early phases of either sporadic or genetic forms of PD and that this early PD synaptopathy drives retrograde terminal-to-cell body degeneration, culminating in neuronal loss. The Ras-associated binding protein (Rab) family of small GTPases, which is involved in the maintenance of neuronal vesicular trafficking, synaptic architecture and function in the central nervous system, has recently emerged among the major players in PD synaptopathy. In this manuscript, we provide an overview of the main findings supporting the involvement of Rabs in either sporadic or genetic PD pathophysiology, and we highlight how Rab alterations participate in the onset of early synaptic damage and dysfunction.
Collapse
Affiliation(s)
- Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-0303-717-380
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge CB2 0AH, UK
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge CB2 0AH, UK
| |
Collapse
|
6
|
Identifying causal genes for depression via integration of the proteome and transcriptome from brain and blood. Mol Psychiatry 2022; 27:2849-2857. [PMID: 35296807 DOI: 10.1038/s41380-022-01507-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWASs) have identified numerous risk genes for depression. Nevertheless, genes crucial for understanding the molecular mechanisms of depression and effective antidepressant drug targets are largely unknown. Addressing this, we aimed to highlight potentially causal genes by systematically integrating the brain and blood protein and expression quantitative trait loci (QTL) data with a depression GWAS dataset via a statistical framework including Mendelian randomization (MR), Bayesian colocalization, and Steiger filtering analysis. In summary, we identified three candidate genes (TMEM106B, RAB27B, and GMPPB) based on brain data and two genes (TMEM106B and NEGR1) based on blood data with consistent robust evidence at both the protein and transcriptional levels. Furthermore, the protein-protein interaction (PPI) network provided new insights into the interaction between brain and blood in depression. Collectively, four genes (TMEM106B, RAB27B, GMPPB, and NEGR1) affect depression by influencing protein and gene expression level, which could guide future researches on candidate genes investigations in animal studies as well as prioritize antidepressant drug targets.
Collapse
|
7
|
Gunturkun MH, Wang T, Chitre AS, Garcia Martinez A, Holl K, St. Pierre C, Bimschleger H, Gao J, Cheng R, Polesskaya O, Solberg Woods LC, Palmer AA, Chen H. Genome-Wide Association Study on Three Behaviors Tested in an Open Field in Heterogeneous Stock Rats Identifies Multiple Loci Implicated in Psychiatric Disorders. Front Psychiatry 2022; 13:790566. [PMID: 35237186 PMCID: PMC8882588 DOI: 10.3389/fpsyt.2022.790566] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/18/2022] [Indexed: 12/05/2022] Open
Abstract
Many personality traits are influenced by genetic factors. Rodents models provide an efficient system for analyzing genetic contribution to these traits. Using 1,246 adolescent heterogeneous stock (HS) male and female rats, we conducted a genome-wide association study (GWAS) of behaviors measured in an open field, including locomotion, novel object interaction, and social interaction. We identified 30 genome-wide significant quantitative trait loci (QTL). Using multiple criteria, including the presence of high impact genomic variants and co-localization of cis-eQTL, we identified 17 candidate genes (Adarb2, Ankrd26, Cacna1c, Cacng4, Clock, Ctu2, Cyp26b1, Dnah9, Gda, Grxcr1, Eva1a, Fam114a1, Kcnj9, Mlf2, Rab27b, Sec11a, and Ube2h) for these traits. Many of these genes have been implicated by human GWAS of various psychiatric or drug abuse related traits. In addition, there are other candidate genes that likely represent novel findings that can be the catalyst for future molecular and genetic insights into human psychiatric diseases. Together, these findings provide strong support for the use of the HS population to study psychiatric disorders.
Collapse
Affiliation(s)
- Mustafa Hakan Gunturkun
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Apurva S. Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Katie Holl
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Celine St. Pierre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Hannah Bimschleger
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Jianjun Gao
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Riyan Cheng
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Oksana Polesskaya
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
8
|
Arias-Hervert ER, Xu N, Njus M, Murphy GG, Hou Y, Williams JA, Lentz SI, Ernst SA, Stuenkel EL. Actions of Rab27B-GTPase on mammalian central excitatory synaptic transmission. Physiol Rep 2021; 8:e14428. [PMID: 32358861 PMCID: PMC7195558 DOI: 10.14814/phy2.14428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Members of the Rab3 gene family are considered central to membrane trafficking of synaptic vesicles at mammalian central excitatory synapses. Recent evidence, however, indicates that the Rab27B-GTPase, which is highly homologous to the Rab3 family, is also enriched on SV membranes and co-localize with Rab3A and Synaptotagmin at presynaptic terminals. While functional roles of Rab3A have been well-established, little functional information exists on the role of Rab27B in synaptic transmission. Here we report on functional effects of Rab27B at SC-CA1 and DG-MF hippocampal synapses. The data establish distinct functional actions of Rab27B and demonstrate functions of Rab27B that differ between SC-CA1 and DG-MF synapses. Rab27B knockout reduced frequency facilitation compared to wild-type (WT) controls at the DG/MF-CA3 synaptic region, while increasing facilitation at the SC-CA1 synaptic region. Remarkably, Rab27B KO resulted in a complete elimination of LTP at the MF-CA3 synapse with no effect at the SC-CA1 synapse. These actions are similar to those previously reported for Rab3A KO. Specificity of action on LTP to Rab27B was confirmed as LTP was rescued in response to lentiviral infection and expression of human Rab27B, but not to GFP, in the DG in the Rab27B KO mice. Notably, the effect of Rab27B KO on MF-CA3 LTP occurred in spite of continued expression of Rab3A in the Rab27B KO. Overall, the results provide a novel perspective in suggesting that Rab27B and Rab3A act synergistically, perhaps via sequential effector recruitment or signaling for presynaptic LTP expression in this hippocampal synaptic region.
Collapse
Affiliation(s)
- Erwin R Arias-Hervert
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, USA
| | - Nicole Xu
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, USA
| | - Meredith Njus
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, USA
| | - Geoff G Murphy
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, USA.,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yanan Hou
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, USA
| | - John A Williams
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, USA.,Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Stephen I Lentz
- Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Stephen A Ernst
- Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Edward L Stuenkel
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|