1
|
Zhang Y, Choi EL, Hayashi Y. Cellular and molecular mechanisms underlying aging-related gastric neuromuscular dysfunction. J Smooth Muscle Res 2025; 61:43-50. [PMID: 40204454 PMCID: PMC11996696 DOI: 10.1540/jsmr.61.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/03/2025] [Indexed: 04/11/2025] Open
Abstract
Aging is linked to a gradual decline in the gastric motor function, contributing to reduced food intake, and its association with frailty and sarcopenia. A key cellular change in the gastric neuromuscular apparatus is the loss of interstitial cells of Cajal (ICC), pacemaker cells of the gut. The ICC function as pacemakers that generate electrical slow waves and mediate enteric neurotransmission, playing a critical role in gastric motility. Aging-related ICC depletion leads to impaired gastric compliance and reduced slow wave activity, which contributes to early satiety and reduced food intake. Recent studies have elucidated the molecular and epigenetic mechanisms underlying aging-related ICC decline, highlighting the roles of ICC stem/precursor cells (ICC-SCs), transformation-related protein 53 (TRP53), extracellular signal-regulated kinase (ERK), and insulin-like growth factor 1 (IGF1) pathways, and epigenetic regulation mediated by the histone methyltransferase enhancer of zeste 2 (EZH2). By synthesizing the current findings, this review aims to provide a comprehensive understanding of the mechanisms driving ICC decline and to explore potential therapeutic strategies for preserving gastric motility in aging populations. Future research should aim to translate these discoveries into clinical applications to improve the gastric motor function and overall health in the aging population. Identifying effective interventions targeting ICC maintenance may ultimately help to alleviate age-related gastric motor dysfunction and its associated health burdens, including frailty, malnutrition, and impaired quality of life.
Collapse
Affiliation(s)
- Yuebo Zhang
- Enteric NeuroScience Program and Department of Physiology and
Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Egan L. Choi
- Enteric NeuroScience Program and Department of Physiology and
Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Yujiro Hayashi
- Enteric NeuroScience Program and Department of Physiology and
Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Hinssen F, Mensink M, Huppertz T, van der Wielen N. Impact of aging on the digestive system related to protein digestion in vivo. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39601792 DOI: 10.1080/10408398.2024.2433598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
For the current aging population, protein is an important macronutrient to counteract the development of sarcopenia. Protein digestion is influenced by the capacity of the digestive system. The current evidence is reviewed about the impact of aging on the human digestive system and related to protein digestion in vivo. Aging changes the digestive organs which impacts protein digestion. Dentition decreases and mastication changes, potentially affecting particle size reduction. Stomach gastric acidity is unchanged, gastric emptying is delayed, while total transit time remains unchanged. Production of enzymes by the pancreas is decreased, but any changes in the small intestine remain unresolved. Animal studies showed decreased fecal protein digestion in older compared to young animals. Human studies showed decreased postprandial peripheral plasma appearance of ingested amino acids and increased splanchnic extraction. The findings suggest that the deteriorating digestive system with aging results in decreased protein digestion. Interpretation of the results should be taken with caution because of interindividual differences in the aging process, and because studies on protein digestion in aging humans are scarce. More information is needed on healthy aging and its relation to the digestive tract and protein digestion, several methods including in vitro experiments are valuable in this perspective.
Collapse
Affiliation(s)
- Fenna Hinssen
- Department of Human Nutrition and Health, Nutritional Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Marco Mensink
- Department of Human Nutrition and Health, Nutritional Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Thom Huppertz
- FrieslandCampina, Amersfoort, The Netherlands
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Nikkie van der Wielen
- Department of Human Nutrition and Health, Nutritional Biology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Animal Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Zhang YX, Zhang YJ, Li M, Tian JX, Tong XL. Common Pathophysiological Mechanisms and Treatment of Diabetic Gastroparesis. J Neurogastroenterol Motil 2024; 30:143-155. [PMID: 38576367 PMCID: PMC10999838 DOI: 10.5056/jnm23100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 04/06/2024] Open
Abstract
Diabetic gastroparesis (DGP) is a common complication of diabetes mellitus, marked by gastrointestinal motility disorder, a delayed gastric emptying present in the absence of mechanical obstruction. Clinical manifestations include postprandial fullness and epigastric discomfort, bloating, nausea, and vomiting. DGP may significantly affect the quality of life and productivity of patients. Research on the relationship between gastrointestinal dynamics and DGP has received much attention because of the increasing prevalence of DGP. Gastrointestinal motility disorders are closely related to a variety of factors including the absence and destruction of interstitial cells of Cajal, abnormalities in the neuro-endocrine system and hormone levels. Therefore, this study will review recent literature on the mechanisms of DGP and gastrointestinal motility disorders as well as the development of prokinetic treatment of gastrointestinal motility disorders in order to give future research directions and identify treatment strategies for DGP.
Collapse
Affiliation(s)
- Yu-Xin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan-Jiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Xing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Lin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Tsymbalyuk OV, Davydovska TL, Naumenko AM, Voiteshenko IS, Veselsky SP, Nyporko AY, Pidhaietska AY, Kozolup MS, Skryshevsky VA. Mechanisms of regulation of motility of the gastrointestinal tract and the hepatobiliary system under the chronic action of nanocolloids. Sci Rep 2023; 13:3823. [PMID: 36882506 PMCID: PMC9992515 DOI: 10.1038/s41598-023-30958-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Modern cutting edge technologies of chemical synthesis enable the production of unique nanostructures with excess energy and high reactivity. Uncontrolled use of such materials in the food industry and pharmacology entail a risk for the development of a nanotoxicity crisis. Using the methods of tensometry, mechanokinetic analysis, biochemical methods, and bioinformatics, the current study showed that chronic (for six months) intragastrical burdening of rats with aqueous nanocolloids (AN) ZnO and TiO2 caused violations of the pacemaker-dependent mechanisms of regulation of spontaneous and neurotransmitter-induced contractions of the gastrointestinal tract (GIT) smooth muscles (SMs), and transformed the contraction efficiency indices (AU, in Alexandria units). Under the same conditions, the fundamental principle of distribution of physiologically relevant differences in the numeric values of the mechanokinetic parameters of spontaneous SM contractions between different parts of GIT is violated, which can potentially cause its pathological changes. Using molecular docking, typical bonds in the interfaces of the interaction of these nanomaterials with myosin II, a component of the contractile apparatus of smooth muscle cells (SMC) were investigated. In this connection, the study addressed the question of possible competitive relations between ZnO and TiO2 nanoparticles and actin molecules for binding sites on the myosin II actin-interaction interface. In addition, using biochemical methods, it was shown that chronic long-term exposure to nanocolloids causes changes in the primary active ion transport systems of cell plasma membranes, the activity of marker liver enzymes and disrupts the blood plasma lipid profile, which indicates the hepatotoxic effect of these nanocolloids.
Collapse
Affiliation(s)
- Olga V Tsymbalyuk
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Tamara L Davydovska
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Anna M Naumenko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Ivan S Voiteshenko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Stanislav P Veselsky
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Alex Y Nyporko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Anastasiia Y Pidhaietska
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine
| | - Mariya S Kozolup
- Department of Foreign Languages for Sciences, Ivan Franko National University of Lviv, 41 Doroshenko St., Lviv, 79000, Ukraine
| | - Valeriy A Skryshevsky
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv, 01033, Ukraine. .,Corporation Science Park, Taras Shevchenko University of Kyiv, 60, Volodymyrska Str., Kyiv, 01033, Ukraine.
| |
Collapse
|
5
|
Ebara R, Ishida S, Miyagawa T, Imai Y. Effects of peristaltic amplitude and frequency on gastric emptying and mixing: a simulation study. J R Soc Interface 2023; 20:20220780. [PMID: 36596453 PMCID: PMC9810435 DOI: 10.1098/rsif.2022.0780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
The amplitude and frequency of peristaltic contractions are two major parameters for assessing gastric motility. However, it is not fully understood how these parameters affect the important functions of the stomach, such as gastric mixing and emptying. This study aimed to quantify the effects of peristaltic amplitude and frequency on gastric mixing and emptying using computational fluid dynamics simulation of gastric flow with an anatomically realistic model of the stomach. Our results suggest that both the increase and decrease in peristaltic amplitude have a significant impact on mixing strength and emptying rate. For example, when the peristaltic amplitude was 1.2 times higher than normal, the emptying rate was 2.7 times faster, whereas when the amplitude was half, the emptying rate was 4.2 times slower. Moreover, the emptying rate increased more than proportionally with the peristaltic frequency. The nearest contraction wave to the pylorus and the subsequent waves promoted gastric emptying. These results suggest the importance of maintaining parameters within normal ranges to achieve healthy gastric function.
Collapse
Affiliation(s)
- Rika Ebara
- Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Shunichi Ishida
- Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Taimei Miyagawa
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Japan
| | - Yohsuke Imai
- Graduate School of Engineering, Kobe University, Kobe, Japan
| |
Collapse
|
6
|
Kurnik-Łucka M, Latacz G, Goryl J, Aleksandrovych V, Gil K. Salsolinol Protects SH-SY5Y Cells Against MPP + Damage and Increases Enteric S100-Immunoreactivity in Wistar Rats. Neurochem Res 2022; 48:1347-1359. [PMID: 36449199 PMCID: PMC10066146 DOI: 10.1007/s11064-022-03835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
A dopamine derivative, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, known as salsolinol (SAL), has increasingly gained attention since its first detection in the urine of Parkinson's disease patients treated with levodopa, and has been proposed as a possible neurotoxic contributor to the disease. Yet, so far, the neurobiological role of SAL remains unclear. Thus, the main aims of our study were to compare the neurotoxic potential of SAL with MPP+ (1-methyl-4-phenylpyridinium ion) in vitro, and to examine intestinal and metabolic alterations following intraperitoneal SAL administration in vivo. In vitro, SH-SY5Y neuroblastoma cell line was monitored following MPP+ and SAL treatment. In vivo, Wistar rats were subjected to SAL administration by either osmotic intraperitoneal mini-pumps or a single intraperitoneal injection, and after two weeks, biochemical and morphological parameters were assessed. SH-SY5Y cells treated with MPP+ (1000 μM) and SAL (50 µM) showed increase in cell viability and fluorescence intensity in comparison with the cells treated with MPP+ alone. In vivo, we predominantly observed decreased collagen content in the submucosal layer, decreased neuronal density with comparable ganglionic area in the jejunal myenteric plexus, and increased glial S100 expression in both enteric plexuses, yet with no obvious signs of inflammation. Besides, glucose and triglycerides levels were lower after single SAL-treatment (200 mg/kg), and low- to high-density lipoprotein (LDL/HDL) ratio and aspartate to alanine aminotransferases (AST/ALT) ratio levels were higher after continuous SAL-treatment (200 mg/kg in total over 2 weeks). Low doses of SAL were non-toxic and exhibited pronounced neuroprotective properties against MPP+ in SH-SY5Y cell line, which supports the use of SAL as a reference compound for in vitro studies. In vivo results give insight into our understanding of gastrointestinal remodeling following intraperitoneal SAL administration, and might represent morphological correlates of a microglial-related enteric neurodegeneration and dopaminergic dysregulation.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Krakow, Poland.
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow, Poland
| | - Joanna Goryl
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow, Poland
| | - Veronika Aleksandrovych
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Krakow, Poland
| |
Collapse
|
7
|
Huang ZP, Wang K, Qiu H, He JW, Kong LW, Bai M, Cheng YX. Distribution of interstitial cells of Cajal in the Esophagus and change in distribution after thoracic trauma. J Mol Histol 2022; 53:589-598. [PMID: 35661289 DOI: 10.1007/s10735-022-10074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/14/2022] [Indexed: 11/28/2022]
Abstract
Interstitial cells of Cajal (ICCs) function as pacemaker cells in the gastrointestinal tract. Acute thoracic trauma is a common and lethal cause of death due to physical trauma caused by traffic accidents. This study aimed to explore the distribution of esophageal ICCs and distribution changes observed after acute thoracic trauma. Thirty rabbits were randomly divided into a control group and two study groups. The control group animals underwent an esophagectomy. All animals in the study groups underwent right chest puncture using the Hopkinson bar technique. The study groups were subjected to esophagectomy 24 and 72 h after chest puncture. Distribution, morphology, and density of esophageal ICCs were detected using transmission electron microscopy, toluidine blue staining, and immunohistochemistry. Apoptosis of esophageal ICCs was evaluated using the terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling assay. Western blotting and reverse transcription polymerase chain reaction were used to detect changes in the SCF/c-kit signaling pathway. Esophageal ICCs distribution and SCF/c-kit signal pathway decreased from the upper part to the lower part in both physiological state and after thoracic trauma. In contrast, death of ICCs increased from the upper part to the lower part, both in physiological and injured state (P < 0.05). After thoracic trauma, increased ICCs and decreased death of ICCs in all parts of the esophagus (P < 0.05) were observed. The observed distribution and changes in esophageal ICCs would have an impact on motility and motility disorders of the esophagus.
Collapse
Affiliation(s)
- Zhen-Peng Huang
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, China
- College of Clinical Medicine, Xi'an Medical University, Xi'an, Shannxi, China
| | - Hu Qiu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jia-Wei He
- School of Public Health, Xi'an Medical University, Xi'an, Shannxi, China
| | - Ling-Wang Kong
- School of Public Health, Xi'an Medical University, Xi'an, Shannxi, China
| | - Meng Bai
- College of Clinical Medicine, Xi'an Medical University, Xi'an, Shannxi, China
| | - Yi-Xin Cheng
- College of Clinical Medicine, Xi'an Medical University, Xi'an, Shannxi, China
| |
Collapse
|
8
|
Analysis of Regional Variations of the Interstitial Cells of Cajal in the Murine Distal Stomach Informed by Confocal Imaging and Machine Learning Methods. Cell Mol Bioeng 2022; 15:193-205. [PMID: 35401841 PMCID: PMC8938532 DOI: 10.1007/s12195-021-00716-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/24/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction The network of Interstitial Cells of Cajal (ICC) plays a plethora of key roles in maintaining, coordinating, and regulating the contractions of the gastrointestinal (GI) smooth muscles. Several GI functional motility disorders have been associated with ICC degradation. This study extended a previously reported 2D morphological analysis and applied it to 3D spatial quantification of three different types of ICC networks in the distal stomach guided by confocal imaging and machine learning methods. The characterization of the complex changes in spatial structure of the ICC network architecture contributes to our understanding of the roles that different types of ICC may play in post-prandial physiology, pathogenesis, and/or amelioration of GI dsymotility- bridging structure and function. Methods A validated classification method using Trainable Weka Segmentation was applied to segment the ICC from a confocal dataset of the gastric antrum of a transgenic mouse, followed by structural analysis of the segmented images. Results The machine learning model performance was compared to manually segmented subfields, achieving an area under the receiver-operating characteristic (AUROC) of 0.973 and 0.995 for myenteric ICC (ICC-MP; n = 6) and intramuscular ICC (ICC-IM; n = 17). The myenteric layer in the distal antrum increased in thickness (from 14.5 to 34 μm) towards the lesser curvature, whereas the thickness decreased towards the lesser curvature in the proximal antrum (17.7 to 9 μm). There was an increase in ICC-MP volume from proximal to distal antrum (406,960 ± 140,040 vs. 559,990 ± 281,000 μm3; p = 0.000145). The % of ICC volume was similar for ICC-LM and for ICC-CM between proximal (3.6 ± 2.3% vs. 3.1 ± 1.2%; p = 0.185) and distal antrum (3.2 ± 3.9% vs. 2.5 ± 2.8%; p = 0.309). The average % volume of ICC-MP was significantly higher than ICC-IM at all points throughout sample (p < 0.0001). Conclusions The segmentation and analysis methods provide a high-throughput framework of investigating the structural changes in extended ICC networks and their associated physiological functions in animal models.
Collapse
|
9
|
Ahmed MA, Venugopal S, Jung R. Engaging biological oscillators through second messenger pathways permits emergence of a robust gastric slow-wave during peristalsis. PLoS Comput Biol 2021; 17:e1009644. [PMID: 34871315 PMCID: PMC8675931 DOI: 10.1371/journal.pcbi.1009644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/16/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022] Open
Abstract
Peristalsis, the coordinated contraction—relaxation of the muscles of the stomach is important for normal gastric motility and is impaired in motility disorders. Coordinated electrical depolarizations that originate and propagate within a network of interconnected layers of interstitial cells of Cajal (ICC) and smooth muscle (SM) cells of the stomach wall as a slow-wave, underly peristalsis. Normally, the gastric slow-wave oscillates with a single period and uniform rostrocaudal lag, exhibiting network entrainment. Understanding of the integrative role of neurotransmission and intercellular coupling in the propagation of an entrained gastric slow-wave, important for understanding motility disorders, however, remains incomplete. Using a computational framework constituted of a novel gastric motility network (GMN) model we address the hypothesis that engaging biological oscillators (i.e., ICCs) by constitutive gap junction coupling mechanisms and enteric neural innervation activated signals can confer a robust entrained gastric slow-wave. We demonstrate that while a decreasing enteric neural innervation gradient that modulates the intracellular IP3 concentration in the ICCs can guide the aboral slow-wave propagation essential for peristalsis, engaging ICCs by recruiting the exchange of second messengers (inositol trisphosphate (IP3) and Ca2+) ensures a robust entrained longitudinal slow-wave, even in the presence of biological variability in electrical coupling strengths. Our GMN with the distinct intercellular coupling in conjunction with the intracellular feedback pathways and a rostrocaudal enteric neural innervation gradient allows gastric slow waves to oscillate with a moderate range of frequencies and to propagate with a broad range of velocities, thus preventing decoupling observed in motility disorders. Overall, the findings provide a mechanistic explanation for the emergence of decoupled slow waves associated with motility impairments of the stomach, offer directions for future experiments and theoretical work, and can potentially aid in the design of new interventional pharmacological and neuromodulation device treatments for addressing gastric motility disorders. The coordinated contraction and relaxation of the muscles of the stomach, known as peristalsis is important for normal gastric motility and primarily governed by electrical depolarizations that originate and propagate within a network of interconnected layers of interstitial cells of Cajal (ICCs) and smooth muscle cells of the stomach wall as a slow-wave. Under normal conditions, a gastric slow-wave oscillates with a single period and uniform rostrocaudal lag, exhibiting network entrainment. However, the understanding of intrinsic and extrinsic mechanisms that ensure propagation of a robust entrained slow-wave remains incomplete. Here, using a computational framework, we show that in conjunction with an enteric neural innervation gradient along the rostrocaudal ICC chain, and intercellular electrical coupling, the intercellular exchange of inositol trisphosphate between ICCs prevents decoupling by extending the longitudinal entrainment range along the stomach wall, even when variability in intercellular coupling exists. The findings from our study indicate ways that ensure the rostrocaudal spread of a robust gastric slow-wave and provide a mechanistic explanation for the emergence of decoupled slow waves associated with motility impairments of the stomach.
Collapse
Affiliation(s)
- Md Ashfaq Ahmed
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States of America
| | - Sharmila Venugopal
- Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (SV); (RJ)
| | - Ranu Jung
- Department of Biomedical Engineering, Florida International University, Miami, Florida, United States of America
- * E-mail: (SV); (RJ)
| |
Collapse
|
10
|
Chan CHA, Aghababaie Z, Paskaranandavadivel N, Avci R, Cheng LK, Angeli-Gordon TR. Localized gastric distension disrupts slow-wave entrainment leading to temporary ectopic propagation: a high-resolution electrical mapping study. Am J Physiol Gastrointest Liver Physiol 2021; 321:G656-G667. [PMID: 34612062 DOI: 10.1152/ajpgi.00219.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric distension is known to affect normal slow-wave activity and gastric function, but links between slow-wave dysrhythmias and stomach function are poorly understood. Low-resolution mapping is unable to capture complex spatial properties of gastric dysrhythmias, necessitating the use of high-resolution mapping techniques. Characterizing the nature of these dysrhythmias has implications in the understanding of postprandial function and the development of new mapping devices. In this two-phase study, we developed and implemented a protocol for measuring electrophysiological responses to gastric distension in porcine experiments. In vivo, serosal high-resolution electrical mapping (256 electrodes; 36 cm2) was performed in anaesthetized pigs (n = 11), and slow-wave pattern, velocity, frequency, and amplitude were quantified before, during, and after intragastric distension. Phase I experiments (n = 6) focused on developing and refining the distension mapping methods using a surgically inserted intragastric balloon, with a variety of balloon types and distension protocols. Phase II experiments (n = 5) used barostat-controlled 500-mL isovolumetric distensions of an endoscopically introduced intragastric balloon. Dysrhythmias were consistently induced in all five gastric distensions, using refined distension protocols. Dysrhythmias appeared 23 s (SD = 5 s) after the distension and lasted 129 s (SD = 72 s), which consisted of ectopic propagation originating from the greater curvature in the region of distension. In summary, our results suggest that distension disrupts gastric entrainment, inducing temporary ectopic slow-wave propagation. These results may influence the understanding of the postprandial stomach and electrophysiological effects of gastric interventions.NEW & NOTEWORTHY This study presents the discovery of temporary dysrhythmic ectopic pacemakers in the distal stomach caused by localized gastric distension. Distension-induced dysrhythmias are an interesting physiological phenomenon that can inform the design of new interventional and electrophysiological protocols for both research and the clinic. The observation of distension-induced dysrhythmias also contributes to our understanding of stretch-sensitivity in the gut and may play an important role in normal and abnormal postprandial physiology.
Collapse
Affiliation(s)
| | - Zahra Aghababaie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Niranchan Paskaranandavadivel
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, Vanderbilt University, Nashville, Tennessee
| | - Timothy R Angeli-Gordon
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
O'Grady G, Gharibans AA, Du P, Huizinga JD. The gastric conduction system in health and disease: a translational review. Am J Physiol Gastrointest Liver Physiol 2021; 321:G527-G542. [PMID: 34549598 DOI: 10.1152/ajpgi.00065.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric peristalsis is critically dependent on an underlying electrical conduction system. Recent years have witnessed substantial progress in clarifying the operations of this system, including its pacemaking units, its cellular architecture, and slow-wave propagation patterns. Advanced techniques have been developed for assessing its functions at high spatiotemporal resolutions. This review synthesizes and evaluates this progress, with a focus on human and translational physiology. A current conception of the initiation and conduction of slow-wave activity in the human stomach is provided first, followed by a detailed discussion of its organization at the cellular and tissue level. Particular emphasis is then given to how gastric electrical disorders may contribute to disease states. Gastric dysfunction continues to grow in their prevalence and impact, and while gastric dysrhythmia is established as a clear and pervasive feature in several major gastric disorders, its role in explaining pathophysiology and informing therapy is still emerging. New insights from high-resolution gastric mapping are evaluated, together with historical data from electrogastrography, and the physiological relevance of emerging biomarkers from body surface mapping such as retrograde propagating slow waves. Knowledge gaps requiring further physiological research are highlighted.
Collapse
Affiliation(s)
- Gregory O'Grady
- Department of Surgery, The University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Armen A Gharibans
- Department of Surgery, The University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jan D Huizinga
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Nitric Oxide: From Gastric Motility to Gastric Dysmotility. Int J Mol Sci 2021; 22:ijms22189990. [PMID: 34576155 PMCID: PMC8470306 DOI: 10.3390/ijms22189990] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
It is known that nitric oxide (NO) plays a key physiological role in the control of gastrointestinal (GI) motor phenomena. In this respect, NO is considered as the main non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmitter responsible for smooth muscle relaxation. Moreover, many substances (including hormones) have been reported to modulate NO production leading to changes in motor responses, further underlying the importance of this molecule in the control of GI motility. An impaired NO production/release has indeed been reported to be implicated in some GI dysmotility. In this article we wanted to focus on the influence of NO on gastric motility by summarizing knowledge regarding its role in both physiological and pathological conditions. The main role of NO on regulating gastric smooth muscle motor responses, with particular reference to NO synthases expression and signaling pathways, is discussed. A deeper knowledge of nitrergic mechanisms is important for a better understanding of their involvement in gastric pathophysiological conditions of hypo- or hyper-motility states and for future therapeutic approaches. A possible role of substances which, by interfering with NO production, could prove useful in managing such motor disorders has been advanced.
Collapse
|
13
|
Samaranayake UMJE, Mathangasinghe Y, Liyanage UA, de Silva MVC, Samarasinghe MC, Abeygunasekera S, Lamahewage AK, Malalasekera AP. Variations in the Density and Distribution of Cajal Like Cells Associated With the Pathogenesis of Ureteropelvic Junction Obstruction: A Systematic Review and Meta-Analysis. Front Surg 2021; 8:721143. [PMID: 34395513 PMCID: PMC8355516 DOI: 10.3389/fsurg.2021.721143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction: Cajal like cells (CLCs) in the upper urinary tract have an ability to generate coordinated spontaneous action potentials and are hypothesized to help propel urine from renal pelvis into the ureter. The objective of this review was to describe the variations in the density and distribution of CLCs associated with ureteropelvic junction obstruction (UPJO). Materials and Methods: Studies comparing the density and distribution of CLCs in the human upper urinary tract in patients with UPJO and healthy controls were included in this systematic review. We searched online electronic databases; Ovid MEDLINE, Scopus, PubMed and Cochrane reviews for the studies published before October 31, 2020. A meta-analysis was conducted to compare the density of CLCs at the ureteropelvic junction (UPJ) in patients with UPJO and matched controls. Results: We included 20 and seven studies in the qualitative and quantitative synthesis, respectively. In majority (55%) CLCs were located between the muscle layers of the upper urinary tract. The CLC density in the UPJ gradually increased with aging in both healthy subjects and patients with UPJO. The pooled analysis revealed that the density of CLCs at the UPJ was significantly low in patients with UPJO compared to the controls (SMD = -3.00, 95% CI = -3.89 to -2.11, p < 0.01). Conclusions: The reduction in CLC density at the UPJ in patients with UPJO suggests a contribution from CLCs in the pathogenesis of UPJO. Since age positively correlates with CLC density, it is imperative to carefully match age when conducting case control studies comparing the CLC density and distribution. Protocol Registration Number: CRD42020219882.
Collapse
Affiliation(s)
- U. M. J. E. Samaranayake
- Department of Anatomy, Faculty of Medicine, Sabaragamuwa University of Sri Lanka, Ratnapura, Sri Lanka
- Department of Anatomy, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Y. Mathangasinghe
- Department of Anatomy, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Proteostasis and Neurodegeneration Laboratory, Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - U. A. Liyanage
- Department of Anatomy, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - M. V. C. de Silva
- Department of Pathology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - M. C. Samarasinghe
- Department of Surgery, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | | | - A. P. Malalasekera
- Department of Anatomy, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
14
|
Lin P, Li B, Ye J, Shang F, Zhao H, Xie J, Yu X. Curcumin relieves mice gastric emptying dysfunction induced by L-arginine and atropine through interstitial cells of Cajal. Exp Ther Med 2021; 21:548. [PMID: 33850520 DOI: 10.3892/etm.2021.9980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Curcumin is natural polyphenol from Curcuma longa rhizomes with several biological properties. Our previous studies demonstrated that curcumin inhibited functional gastric emptying disorders induced by L-arginine, the precursor of nitric oxide (NO), and atropine, an acetylcholine receptor (AChR) blocker. However, the mechanism of action of curcumin remains unclear. In the present study, mouse models of functional gastric emptying disorders induced by L-arginine and atropine were used to examine changes in interstitial cells of Cajal (ICC) and NO- and ACh-mediated regulation of gastrointestinal motility. Curcumin pre-treatment ameliorated the gastric emptying rate in mice treated with L-arginine or atropine (P<0.01). NO content and NO synthase activity significantly increased in the stomachs of L-arginine-treated mice, compared with controls (P<0.01). Acetylcholinesterase activity (P<0.01) and mRNA expression (P<0.01), as well as AChR mRNA levels (P<0.05) significantly decreased following atropine treatment. Moreover, in both models, the levels of c-kit, anoctamin 1 and connexin 43 significantly decreased in the stomach (P<0.01). Conversely, curcumin pre-treatment inhibited the changes induced by L-arginine and atropine (P<0.01 or P<0.05). By affecting the production of exogenous NO, the effects of Ach-AchR and the biomarkers of ICC, curcumin relieves the gastric emptying dysfunction in mice.
Collapse
Affiliation(s)
- Peng Lin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Baitao Li
- Department of Biotechnology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Junli Ye
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Fangfang Shang
- Department of Pathology, Navy 971 Hospital of The People's Liberation Army, Qingdao, Shandong 266000, P.R. China
| | - Hui Zhao
- Department of Pathology, Navy 971 Hospital of The People's Liberation Army, Qingdao, Shandong 266000, P.R. China
| | - Jing Xie
- Laboratory of Human Microscopic Structure, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Xiaoling Yu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| |
Collapse
|