1
|
Nielsen BU, Mathiesen IHM, Møller R, Krogh-Madsen R, Katzenstein TL, Pressler T, Shaw JAM, Ritz C, Rickels MR, Stefanovski D, Almdal TP, Faurholt-Jepsen D. Characterization of impaired beta and alpha cell function in response to an oral glucose challenge in cystic fibrosis: a cross-sectional study. Front Endocrinol (Lausanne) 2023; 14:1249876. [PMID: 37720541 PMCID: PMC10501799 DOI: 10.3389/fendo.2023.1249876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Aims The purpose of the study was to further elucidate the pathophysiology of cystic fibrosis (CF)-related diabetes (CFRD) and potential drivers of hypoglycaemia. Hence, we aimed to describe and compare beta cell function (insulin and proinsulin) and alpha cell function (glucagon) in relation to glucose tolerance in adults with CF and to study whether hypoglycaemia following oral glucose challenge may represent an early sign of islet cell impairment. Methods Adults with CF (≥18 years) were included in a cross-sectional study using an extended (-10, -1, 10, 20, 30, 45, 60, 90, 120, 150, and 180 min) or a standard (-1, 30, 60, and 120 min) oral glucose tolerance test (OGTT). Participants were classified according to glucose tolerance status and hypoglycaemia was defined as 3-hour glucose <3.9 mmol/L in those with normal glucose tolerance (NGT) and early glucose intolerance (EGI). Results Among 93 participants, 67 underwent an extended OGTT. In addition to worsening in insulin secretion, the progression to CFRD was associated with signs of beta cell stress, as the fasting proinsulin-to-insulin ratio incrementally increased (p-value for trend=0.013). The maximum proinsulin level (pmol/L) was positively associated with the nadir glucagon, as nadir glucagon increased 6.2% (95% confidence interval: 1.4-11.3%) for each unit increase in proinsulin. Those with hypoglycaemia had higher 60-min glucose, 120-min C-peptide, and 180-min glucagon levels (27.8% [11.3-46.7%], 42.9% [5.9-92.85%], and 80.3% [14.9-182.9%], respectively) and unaltered proinsulin-to-insulin ratio compared to those without hypoglycaemia. Conclusions The maximum proinsulin concentration was positively associated with nadir glucagon during the OGTT, suggesting that beta cell stress is associated with abnormal alpha cell function in adults with CF. In addition, hypoglycaemia seemed to be explained by a temporal mismatch between glucose and insulin levels rather than by an impaired glucagon response.
Collapse
Affiliation(s)
- Bibi Uhre Nielsen
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Inger Hee Mabuza Mathiesen
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rikke Møller
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rikke Krogh-Madsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Terese Lea Katzenstein
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tacjana Pressler
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - James A. M. Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christian Ritz
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Darko Stefanovski
- Department of Clinical Studies - New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, United States
| | - Thomas Peter Almdal
- Department of Endocrinology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Daniel Faurholt-Jepsen
- Cystic Fibrosis Centre Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Thomas MC, Coughlan MT, Cooper ME. The postprandial actions of GLP-1 receptor agonists: The missing link for cardiovascular and kidney protection in type 2 diabetes. Cell Metab 2023; 35:253-273. [PMID: 36754019 DOI: 10.1016/j.cmet.2023.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Recent clinical trials in people with type 2 diabetes have demonstrated beneficial actions on heart and kidney outcomes following treatment with GLP-1RAs. In part, these actions are consistent with improved glucose control and significant weight loss. But GLP-1RAs may also have additive benefits by improving postprandial dysmetabolism. In diabetes, dysregulated postprandial nutrient excursions trigger inflammation, oxidative stress, endothelial dysfunction, thrombogenicity, and endotoxemia; alter hormone levels; and modulate cardiac output and regional blood and lymphatic flow. In this perspective, we explore the actions of GLP-1RAs on the postprandial state and their potential role in end-organ benefits observed in recent trials.
Collapse
Affiliation(s)
- Merlin C Thomas
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia; Department of Biochemistry, Monash University, Melbourne, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University Parkville Campus, 381 Royal Parade, Parkville, 3052 VIC, Australia
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia.
| |
Collapse
|
3
|
Westholm E, Wendt A, Eliasson L. Islet Function in the Pathogenesis of Cystic Fibrosis-Related Diabetes Mellitus. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2021; 14:11795514211031204. [PMID: 34345195 PMCID: PMC8280842 DOI: 10.1177/11795514211031204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis-related diabetes mellitus (CFRD) is the most common non-pulmonary
co-morbidity in cystic fibrosis (CF). CF is caused by mutations in the cystic
fibrosis transmembrane conductance regulator gene (CFTR), which
leads to aberrant luminal fluid secretions in organs such as the lungs and
pancreas. How dysfunctional CFTR leads to CFRD is still under debate. Both
intrinsic effects of dysfunctional CFTR in hormone secreting cells of the islets
and effects of exocrine damage have been proposed. In the current review, we
discuss these non-mutually exclusive hypotheses with a special focus on how
dysfunctional CFTR in endocrine cells may contribute to an altered glucose
homeostasis. We outline the proposed role of CFTR in the molecular pathways of
β-cell insulin secretion and α-cell glucagon secretion, and touch upon the
importance of the exocrine pancreas and intra-pancreatic crosstalk for proper
islet function.
Collapse
Affiliation(s)
- Efraim Westholm
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Anna Wendt
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| |
Collapse
|
4
|
Wikarek T, Kocełak P, Owczarek AJ, Chudek J, Olszanecka-Glinianowicz M. Effect of Dietary Macronutrients on Postprandial Glucagon and Insulin Release in Obese and Normal-Weight Women. Int J Endocrinol 2020; 2020:4603682. [PMID: 32411223 PMCID: PMC7210536 DOI: 10.1155/2020/4603682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to assess the effect of dietary macronutrients on circulating glucagon and insulin levels in obese and normal-weight women. Potentially, the impaired release of glucagon may proceed abnormal glucose metabolism in obese patients ahead of overt diabetes. In 20 insulin-sensitive women (11 obese and 9 normal-weight), plasma concentrations of insulin and glucagon levels were assessed before and after 3 different macronutrient test meals. AUCtotal insulin in the obese group was increased after protein and carbohydrates compared to fatty test meal consumption (3981 ± 2171 and 4869 ± 2784 vs. 2349 ± 1004 μIU∗h/m, p < 0.05, respectively), but without a difference between protein and carbohydrates ingestion. However, in the normal-weight group, AUCtotal insulin was increased after carbohydrates compared to fatty test meal ingestion (3929 ± 1719 vs. 2231 ± 509 μIU∗h/ml, p < 0.05) and similar after carbohydrate and protein as well as after fatty and protein test meals (3929 ± 1719 vs. 2231 ± 509 vs. 3046 ± 1406 μIU∗h/ml, respectively). However, AUCtotal insulin was significantly increased in obese compared to normal-weight women only after carbohydrate test meal ingestion (4869 ± 2784 vs. 3929 ± 1719 μIU∗h/ml, p < 0.05). AUCtotal glucagon was similar after carbohydrate, protein, and fatty test meals ingestion in obese and normal-weight women (921 ± 356 vs. 957 ± 368 vs. 926 ± 262 ng∗h/ml and 1196 ± 14 vs. 1360 ± 662 vs. 1792 ± 1176 ng∗h/ml, respectively). AUCtotal glucagon was significantly lower in obese than normal-weight women after a fatty meal (926 ± 262 vs. 1792 ± 1176 ng∗h/ml, p < 0.01). Postprandial glucagon secretion is not related to the macronutrient composition of the meal in normal-weight women since postprandial glucagon concentrations were stable and did not change after carbohydrate, protein, and fatty test meals. Lower glucagon secretion was observed in obese subjects after fatty meal consumption when compared to normal-weight subjects. Postprandial insulin profile was significantly higher after carbohydrate than fatty test meal intake in the obese group and did not differ between obese and normal-weight groups after carbohydrate, protein, and fatty test meals consumption. Impaired glucagon secretion after fatty meat suggests early pancreatic alpha-cell dysfunction, after a carbohydrate meal is a compensatory mechanism.
Collapse
Affiliation(s)
- Tomasz Wikarek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, Katowice, Poland
- Department of Gynecology and Obstetrics, Medical Faculty in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Piotr Kocełak
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Aleksander J. Owczarek
- Department of Statistics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Jerzy Chudek
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, Katowice, Poland
- Department of Internal Medicine and Oncological Chemotherapy, Medical Faculty in Katowice, The Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, Katowice, Poland
| |
Collapse
|
5
|
Hosokawa Y, Kozawa J, Nishizawa H, Kawamori D, Maeda N, Otsuki M, Matsuoka TA, Iwahashi H, Shimomura I. Positive correlation between fasting plasma glucagon and serum C-peptide in Japanese patients with diabetes. Heliyon 2019; 5:e01715. [PMID: 31193194 PMCID: PMC6520599 DOI: 10.1016/j.heliyon.2019.e01715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/26/2019] [Accepted: 05/09/2019] [Indexed: 11/27/2022] Open
Abstract
Aims Glucagon plays pivotal roles in systemic glucose homeostasis mainly by promoting hepatic glucose output. Using a sandwich enzyme-linked immunosorbent assay (ELISA), we evaluated fasting plasma glucagon levels in hospitalized patients with type 1 or type 2 diabetes, and assessed the relationships between glucagon levels and various clinical parameters. Methods We enrolled adult Japanese diabetes patients admitted to Osaka University Medical Hospital for glycemic control between July 2017 and May 2018 in this study. After patients had fasted for 12 h, blood samples were obtained and plasma glucagon levels were measured using a sandwich ELISA. Results Total 107 patients participated in the study. The mean fasting plasma glucagon level of patients with acute onset type 1 diabetes was significantly lower than that of patients with type 2 diabetes (p < 0.05). Plasma glucagon levels were not significantly correlated with plasma glucose levels in patients with type 1 diabetes or in patients with type 2 diabetes. Multiple regression analysis indicated that fasting glucagon levels were independently and significantly correlated with fasting serum C-peptide levels in patients with type 2 diabetes. Conclusions Our results suggest that insulin and glucagon secretion are balanced in the fasting state in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Yoshiya Hosokawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Junji Kozawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Dan Kawamori
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Medical Education Center, Faculty of Medicine, Osaka University, Suita, Osaka Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Michio Otsuki
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Taka-Aki Matsuoka
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiromi Iwahashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Abstract
Pancreatic alpha cells are generally considered the only source of glucagon secretion in humans. In the 1970s several groups investigating totally pancreatectomised animals reported that glucagon-like immunoreactive material could be detected in the gastrointestinal tract and reopened the question of an extrapancreatic source of glucagon proposed in 1948 when a hyperglycaemic substance was found in the gastrointestinal tract of dogs and rabbits. Nevertheless, over the years, controversy about the existence of extrapancreatic glucagon has flourished as it proved difficult to accurately measure fully processed 29-amino acid glucagon. Recent advances in analytical methods have increased sensitivity and specificity of glucagon assays and, furthermore, technical advances in mass spectrometry-based proteomics have made the detection of low-abundant peptides, such as glucagon, in human plasma more accurate. Here we review new data on extrapancreatic glucagon secretion in the context of historical data and recent analytical breakthroughs. Furthermore, the source, regulation and potential physiological role of extrapancreatic glucagon are discussed and ongoing challenges and knowledge-gaps are outlined.
Collapse
Affiliation(s)
- Asger Lund
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark; Department of Medicine, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Filip K Knop
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Nguyen NQ, Debreceni TL, Burgess JE, Bellon M, Wishart J, Standfield S, Malbert CH, Horowitz M. Impact of gastric emptying and small intestinal transit on blood glucose, intestinal hormones, glucose absorption in the morbidly obese. Int J Obes (Lond) 2018; 42:1556-1564. [PMID: 29453463 DOI: 10.1038/s41366-018-0012-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023]
Abstract
This study evaluated gastric emptying (GE) and small intestinal (SI) transit in people with morbid obesity and their relationships to glycaemia, incretin hormones, and glucose absorption METHODS: GE and caecal arrival time (CAT) of a mixed meal were assessed in 22 morbidly obese (50.2 ± 2.5 years; 13 F:9 M; BMI: 48.6 ± 1.8 kg/m2) and 10 lean (38.6 ± 8.4 years; 5 F:5 M; BMI: 23.9 ± 0.7 kg/m2) subjects, using scintigraphy. Blood glucose, plasma 3-O-methylglucose, insulin, glucagon, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) were measured. Insulin sensitivity and resistance were also quantified RESULTS: When compared with lean subjects, GE (t50: 60.7 ± 6.5 vs. 41.1 ± 7.3 min; P = 0.04) and CAT (221.5 ± 9.8 vs. 148.0 ± 7.1 min; P = 0.001) of solids were prolonged in morbid obesity. Postprandial rises in GIP (P = 0.001), insulin (P = 0.02), glucose (P = 0.03) and 3-O-methylglucose (P = 0.001) were less. Whereas GLP-1 increased at 45 mins post-prandially in lean subjects, there was no increase in the obese (P = 0.04). Both fasting (P = 0.045) and postprandial (P = 0.012) plasma glucagon concentrations were higher in the obese CONCLUSIONS: GE and SI transit are slower in the morbidly obese, and associated with reductions in postprandial glucose absorption, and glycaemic excursions, as well as plasma GIP and GLP-1.
Collapse
Affiliation(s)
- Nam Q Nguyen
- Department of Gastroenterology and Hepatology, Level 7, Royal Adelaide Hospital, North Terrace, Adelaide, SA, 5000, Australia.
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Level 6 Eleanor Harrold Building, North Terrace, Adelaide, SA, 5000, Australia.
| | - Tamara L Debreceni
- Department of Gastroenterology and Hepatology, Level 7, Royal Adelaide Hospital, North Terrace, Adelaide, SA, 5000, Australia
| | - Jenna E Burgess
- Department of Gastroenterology and Hepatology, Level 7, Royal Adelaide Hospital, North Terrace, Adelaide, SA, 5000, Australia
| | - Max Bellon
- Nuclear Medicine, PET and Bone Densitometry, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Judith Wishart
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Level 6 Eleanor Harrold Building, North Terrace, Adelaide, SA, 5000, Australia
| | - Scott Standfield
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Level 6 Eleanor Harrold Building, North Terrace, Adelaide, SA, 5000, Australia
| | | | - Michael Horowitz
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Level 6 Eleanor Harrold Building, North Terrace, Adelaide, SA, 5000, Australia
| |
Collapse
|
8
|
Kristinsson H, Sargsyan E, Manell H, Smith DM, Göpel SO, Bergsten P. Basal hypersecretion of glucagon and insulin from palmitate-exposed human islets depends on FFAR1 but not decreased somatostatin secretion. Sci Rep 2017; 7:4657. [PMID: 28680093 PMCID: PMC5498543 DOI: 10.1038/s41598-017-04730-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
In obesity fasting levels of both glucagon and insulin are elevated. In these subjects fasting levels of the free fatty acid palmitate are raised. We have demonstrated that palmitate enhances glucose-stimulated insulin secretion from isolated human islets via free fatty acid receptor 1 (FFAR1/GPR40). Since FFAR1 is also present on glucagon-secreting alpha-cells, we hypothesized that palmitate simultaneously stimulates secretion of glucagon and insulin at fasting glucose concentrations. In addition, we hypothesized that concomitant hypersecretion of glucagon and insulin was also contributed by reduced somatostatin secretion. We found basal glucagon, insulin and somatostatin secretion and respiration from human islets, to be enhanced during palmitate treatment at normoglycemia. Secretion of all hormones and mitochondrial respiration were lowered when FFAR1 or fatty acid β-oxidation was inhibited. The findings were confirmed in the human beta-cell line EndoC-βH1. We conclude that fatty acids enhance both glucagon and insulin secretion at fasting glucose concentrations and that FFAR1 and enhanced mitochondrial metabolism but not lowered somatostatin secretion are crucial in this effect. The ability of chronically elevated palmitate levels to simultaneously increase basal secretion of glucagon and insulin positions elevated levels of fatty acids as potential triggering factors for the development of obesity and impaired glucose control.
Collapse
Affiliation(s)
- H Kristinsson
- Department of Medical Cell Biology, Uppsala University, BMC, Husargatan 3, Uppsala, Sweden.
| | - E Sargsyan
- Department of Medical Cell Biology, Uppsala University, BMC, Husargatan 3, Uppsala, Sweden
| | - H Manell
- Department of Medical Cell Biology, Uppsala University, BMC, Husargatan 3, Uppsala, Sweden
| | - D M Smith
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - S O Göpel
- AstraZeneca R&D Gothenburg, CVMD Bioscience, Gothenburg, Sweden
| | - P Bergsten
- Department of Medical Cell Biology, Uppsala University, BMC, Husargatan 3, Uppsala, Sweden
| |
Collapse
|
9
|
Evans MR, Wei S, Posner BA, Unger RH, Roth MG. An AlphaScreen Assay for the Discovery of Synthetic Chemical Inhibitors of Glucagon Production. JOURNAL OF BIOMOLECULAR SCREENING 2016; 21:325-32. [PMID: 26676097 PMCID: PMC5226228 DOI: 10.1177/1087057115622201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/23/2015] [Indexed: 11/15/2022]
Abstract
Glucose homeostasis is primarily controlled by two opposing hormones, insulin and glucagon, and diabetes results when insulin fails to inhibit glucagon action. Recent efforts to control glucagon in diabetes have focused on antagonizing the glucagon receptor, which is effective in lowering blood glucose levels but leads to hyperglucogonemia in rodents. An alternative strategy would be to control glucagon production with small molecules. In pursuit of this goal, we developed a homogeneous AlphaScreen assay for measuring glucagon in cell culture media and used this in a high-throughput screen to discover synthetic compounds that inhibited glucagon secretion from an alpha cell-like cell line. Some of these compounds inhibited transcription of the glucagon gene.
Collapse
Affiliation(s)
- Matthew R Evans
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shuguang Wei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roger H Unger
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA Department of Medical Service, Veteran's Administration North Texas Health Care System, Dallas, TX, USA
| | - Michael G Roth
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Matsuo T, Miyagawa JI, Kusunoki Y, Miuchi M, Ikawa T, Akagami T, Tokuda M, Katsuno T, Kushida A, Inagaki T, Namba M. Postabsorptive hyperglucagonemia in patients with type 2 diabetes mellitus analyzed with a novel enzyme-linked immunosorbent assay. J Diabetes Investig 2015; 7:324-31. [PMID: 27330717 PMCID: PMC4847885 DOI: 10.1111/jdi.12400] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/29/2015] [Accepted: 07/09/2015] [Indexed: 01/11/2023] Open
Abstract
Aims/introduction The aims of the present study were to investigate the performance of a novel sandwich enzyme‐linked immunosorbent assay (ELISA) for measuring glucagon (1–29) with monoclonal antibodies against both the C‐ and N‐terminal regions of glucagon (1–29), and to analyze the differences in plasma levels and responses of glucagon (1–29) to oral glucose loading in normal glucose tolerance (NGT) subjects and patients with type 2 diabetes mellitus. Materials and Methods The cross‐reactivity against proglucagon fragments using the ELISA kit and two types of conventional radioimmunoassay (RIA) kits was evaluated. A 75‐g oral glucose tolerance test was carried out with NGT subjects and patients with type 2 diabetes mellitus, and the glucagon (1–29) concentration was measured using three types of kit. Results The ELISA kit clearly had the lowest cross‐reactivity against miniglucagon (19–29) and glicentin (1–61). The oral glucose tolerance test was carried out with 30 NGT and 17 patients with type 2 diabetes mellitus. The glucagon (1–29) levels measured by the ELISA kit after glucose loading were significantly higher at all time‐points in the type 2 diabetes mellitus group than in the NGT group. However, the glucagon (1–29) levels measured by one RIA kit were significantly higher in the NGT group, and those measured with the other RIA kit were approximately the same among the groups. Conclusions The novel sandwich ELISA accurately determines plasma glucagon (1–29) concentrations with much less cross‐reactivity against other proglucagon fragments than conventional RIA kits.
Collapse
Affiliation(s)
- Toshihiro Matsuo
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Jun-Ichiro Miyagawa
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Yoshiki Kusunoki
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Masayuki Miuchi
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Takashi Ikawa
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Takafumi Akagami
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Masaru Tokuda
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Tomoyuki Katsuno
- Division of Innovative Diabetes Treatment Hyogo College of Medicine Nishinomiya Hyogo Japan
| | | | | | - Mitsuyoshi Namba
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| |
Collapse
|
11
|
Glucagon receptor antibody completely suppresses type 1 diabetes phenotype without insulin by disrupting a novel diabetogenic pathway. Proc Natl Acad Sci U S A 2015; 112:2503-8. [PMID: 25675519 DOI: 10.1073/pnas.1424934112] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Insulin monotherapy can neither maintain normoglycemia in type 1 diabetes (T1D) nor prevent the long-term damage indicated by elevated glycation products in blood, such as glycated hemoglobin (HbA1c). Here we find that hyperglycemia, when unaccompanied by an acute increase in insulin, enhances itself by paradoxically stimulating hyperglucagonemia. Raising glucose from 5 to 25 mM without insulin enhanced glucagon secretion ∼two- to fivefold in InR1-G9 α cells and ∼18-fold in perfused pancreata from insulin-deficient rats with T1D. Mice with T1D receiving insulin treatment paradoxically exhibited threefold higher plasma glucagon during hyperglycemic surges than during normoglycemic intervals. Blockade of glucagon action with mAb Ac, a glucagon receptor (GCGR) antagonizing antibody, maintained glucose below 100 mg/dL and HbA1c levels below 4% in insulin-deficient mice with T1D. In rodents with T1D, hyperglycemia stimulates glucagon secretion, up-regulating phosphoenolpyruvate carboxykinase and enhancing hyperglycemia. GCGR antagonism in mice with T1D normalizes glucose and HbA1c, even without insulin.
Collapse
|
12
|
Lin YF, Shen WD. Pancreatic signal pathways potentially used as targets for treatment of diabetes. Shijie Huaren Xiaohua Zazhi 2014; 22:3600-3607. [DOI: 10.11569/wcjd.v22.i24.3600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pancreas is the main place where pathological changes of diabetes occur, and inflammation and oxidative stress can interfere with various cell signaling pathways, causing pancreatic lesions and diabetes. Therefore, the pancreas is an important target for the treatment of diabetes. This paper will discuss pancreatic signaling pathways potentially used as targets for the treatment of diabetes in terms of promotion of insulin secretion, inhibition of glucagon secretion, and suppression of islet beta cell apoptosis. The research of these signaling pathways is important for elucidating the pathogenesis of diabetes and developing more safe and effective new drugs. ATP sensitive potassium channel and glucagon like peptide-1 (GLP-1) receptor signaling pathways are associated with insulin secretion and have been widely used as therapeutic targets. The signaling pathway mediated by G protein coupled receptors is a hot spot of diabetes research in recent years, and other signaling pathways are being studied.
Collapse
|