1
|
Miya A, Nakamura A, Nomoto H, Kameda H, Atsumi T. Positive association between the proinsulin-to-C-peptide ratio and prolonged hyperglycemic time in type 2 diabetes. Endocr J 2024; 71:403-408. [PMID: 38403638 DOI: 10.1507/endocrj.ej23-0525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
The proinsulin-to-C-peptide (PI:C) ratio is an index applied during the early stage of pancreatic β-cell dysfunction. The aim of this study was to identify the characteristics associated with the PI:C ratio to discuss pancreatic β-cell dysfunction progression during the natural course of type 2 diabetes and its relationship with glycemic management. This multicenter, prospective observational study included 272 outpatients with type 2 diabetes. Continuous glucose monitoring was performed and fasting blood samples were collected and analyzed. We identified the clinical factors associated with the PI:C ratio by multiple regression analysis. The mean age of the cohort was 68.0 years, mean hemoglobin A1c 7.1% (54 mmol/mol), and mean body mass index 24.9 kg/m2. Multiple regression analysis showed that a prolonged time above the target glucose range (>180 mg/dL) and high body mass index contributed to a high PI:C ratio. However, no associations were found between the PI:C ratio and glucose variability indices. These findings suggested that the PI:C ratio is positively associated with a prolonged hyperglycemic time in type 2 diabetes, whereas its relationship with glucose variability remains unclear.
Collapse
Affiliation(s)
- Aika Miya
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Hiroshi Nomoto
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Hiraku Kameda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
2
|
Zhao Y, Wang QY, Zeng LT, Wang JJ, Liu Z, Fan GQ, Li J, Cai JP. Long-Term High-Fat High-Fructose Diet Induces Type 2 Diabetes in Rats through Oxidative Stress. Nutrients 2022; 14:nu14112181. [PMID: 35683981 PMCID: PMC9182436 DOI: 10.3390/nu14112181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/25/2022] Open
Abstract
Long-term consumption of a Western diet is a major cause of type 2 diabetes mellitus (T2DM). However, the effects of diet on pancreatic structure and function remain unclear. Rats fed a high-fat, high-fructose (HFHF) diet were compared with rats fed a normal diet for 3 and 18 months. Plasma biochemical parameters and inflammatory factors were used to reflect metabolic profile and inflammatory status. The rats developed metabolic disorders, and the size of the islets in the pancreas increased after 3 months of HFHF treatment but decreased and became irregular after 18 months. Fasting insulin, C-peptide, proinsulin, and intact proinsulin levels were significantly higher in the HFHF group than those in the age-matched controls. Plasmatic oxidative parameters and nucleic acid oxidation markers (8-oxo-Gsn and 8-oxo-dGsn) became elevated before inflammatory factors, suggesting that the HFHF diet increased the degree of oxidative stress before affecting inflammation. Single-cell RNA sequencing also verified that the transcriptional level of oxidoreductase changed differently in islet subpopulations with aging and long-term HFHF diet. We demonstrated that long-term HFHF diet and aging-associated structural and transcriptomic changes that underlie pancreatic islet functional decay is a possible underlying mechanism of T2DM, and our study could provide new insights to prevent the development of diet-induced T2DM.
Collapse
Affiliation(s)
- Yue Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China; (Y.Z.); (Q.-Y.W.); (Z.L.); (G.-Q.F.); (J.L.)
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Qing-Yu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China; (Y.Z.); (Q.-Y.W.); (Z.L.); (G.-Q.F.); (J.L.)
| | - Lv-Tao Zeng
- Peking University Fifth School of Clinical Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China;
| | - Jing-Jing Wang
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450066, China;
| | - Zhen Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China; (Y.Z.); (Q.-Y.W.); (Z.L.); (G.-Q.F.); (J.L.)
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Guo-Qing Fan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China; (Y.Z.); (Q.-Y.W.); (Z.L.); (G.-Q.F.); (J.L.)
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Jin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China; (Y.Z.); (Q.-Y.W.); (Z.L.); (G.-Q.F.); (J.L.)
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China; (Y.Z.); (Q.-Y.W.); (Z.L.); (G.-Q.F.); (J.L.)
- Graduate School of Peking Union Medical College, Beijing 100730, China
- Correspondence: ; Tel.: +86-010-58115080
| |
Collapse
|
3
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
4
|
Wei X, Zhu D, Feng C, Chen G, Mao X, Wang Q, Wang J, Liu C. Inhibition of peptidyl-prolyl cis-trans isomerase B mediates cyclosporin A-induced apoptosis of islet β cells. Exp Ther Med 2018; 16:3959-3964. [PMID: 30344674 PMCID: PMC6176207 DOI: 10.3892/etm.2018.6706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Cyclosporin A (CsA) is widely used as an immunosuppressor in the context of organ transplantation or autoimmune disorders. Recent studies have revealed the detrimental effects of CsA on insulin resistance and pancreatic β cell failure; however, the molecular mechanisms are unknown. The present study sought to confirm the associations between CsA and β cell failure, and to investigate the roles of proinsulin folding and endoplasmic reticulum (ER) stress in CsA-induced β cell failure. The viability of MIN6 cells treated with CsA was evaluated with MTT assay. Expression levels of insulin, peptidyl-prolyl cis-trans isomerase B (PPIB), cleaved caspase-3, phospho-protein kinase R (PKR)-like endoplasmic reticulum kinase (p-PERK), PKR-like endoplasmic reticulum kinase (PERK), binding immunoglobulin protein (BIP), and C/EBP homologous protein (CHOP) were detected via reducing western blot assay. Non-reducing western blot analysis was performed to examine the expression of misfolded proinsulin peptides. The proliferation of MIN6 cells was not inhibited by CsA at concentrations <1 µmol/l. CsA treatment resulted in the decreased expression of insulin and PPIB; however, it also increased the phosphorylation of PERK, and upregulated the expression of PERK, BIP, CHOP and cleaved caspase-3. The results indicated that CsA could induce pancreatic β cell dysfunction and the potential mechanism underlying this phenomenon may be PPIB-associated proinsulin misfolding, which in turn induces ER stress in β cells.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Dan Zhu
- Department of Endocrinology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu 225200, P.R. China
| | - Chenchen Feng
- Central Laboratory, Jiangsu Province Blood Center, Nanjing, Jiangsu 210042, P.R. China
| | - Guofang Chen
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Xiaodong Mao
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Qifeng Wang
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Jie Wang
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Chao Liu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| |
Collapse
|
5
|
Yoshino H, Kawakami K, Yoshino G, Hirose T. Age-related changes of proinsulin processing in diabetic and non-diabetic Japanese individuals. Geriatr Gerontol Int 2018; 18:1046-1050. [PMID: 29665183 DOI: 10.1111/ggi.13303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 12/01/2022]
Abstract
AIM The present study was carried out to examine whether the insulin secretory mechanism deteriorates during the aging process using the new intact proinsulin assay system in non-diabetic and diabetic individuals. METHODS A total of 172 participants were separated into four groups according to their age (<64 years and >65 years) and an association of type 2 diabetes; that is, 46 older diabetics (mean age 74.5 ± 6.2 years, glycated hemoglobin [National Glycohemoglobin Standardization Program] 7.5 ± 1.3%), 27 older non-diabetics (mean age 76.9 ± 7.5 years), 48 middle-aged diabetics (mean age 50.8 ± 10.4, glycated hemoglobin 7.8 ± 1.5%) and 51 middle aged non-diabetics (mean age 46.6 ± 13.0 years) participants were enrolled. RESULTS The proinsulin/insulin (PI/I) ratio of the diabetic group was higher than that of the non-diabetic group in the older group (0.19 ± 0.12 vs 0.11 ± 0.06, P = 0.002). In the middle-aged groups, the PI/I ratio of the diabetic group was higher than that of the non-diabetic group (0.16 ± 0.15 vs 0.09 ± 0.09, P = 0.003). Simple regression analysis showed that male sex (95% CI 0.02-0.01, P = 0.004), age (95% CI 0.00-0.002, P = 0.03), lower body mass index (95% CI -0.06 to 0.00, P = 0.02) and the presence of diabetes mellitus (95% CI 0.04-0.012, P < 0.0001) were significantly associated with the increase in the PI/I ratio. Multivariate regression analysis showed that male sex and age were the independent factors determining the increase in the PI/I ratio in the non-diabetic group. After adjusted for body mass index, the PI/I ratio correlated significantly with age only in the non-diabetic group (r = 0.5, P = 0.004). CONCLUSIONS The proinsulin processing system might deteriorate not only in diabetics, but also in non-diabetic Japanese individuals with age. Also, sex-related hormones can be protective for the proinsulin processing system. Geriatr Gerontol Int 2018; 18: 1046-1050.
Collapse
Affiliation(s)
- Hiroshi Yoshino
- Diabetes Center, Shin-Suma Hospital, Kobe, Japan.,Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | | | - Gen Yoshino
- Diabetes Center, Shin-Suma Hospital, Kobe, Japan
| | - Takahisa Hirose
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Røder ME. Hyperproinsulinemia in obesity and in type 2 diabetes and its relation to cardiovascular disease. Expert Rev Endocrinol Metab 2017; 12:227-239. [PMID: 30058886 DOI: 10.1080/17446651.2017.1331735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Disproportionately elevated fasting levels of proinsulin immunoreactive material (PIM)relative to insulin immunoreactivity (IRI) are a well-established abnormality in type 2 diabetes. Thesignificance of this abnormality has been investigated and discussed in several studies. Areas covered: The present review focuses on the role of proinsulin and its conversion intermediates inthe development of type 2 diabetes, obesity and insulin resistance, and the potential role as a marker ofcardiovascular risk, including the most important studies in this field. Expert commentary: The composition of plasma PIM is heterogeneous comprising des(31,32)-proinsulin,intact proinsulin and small amounts of des(64,65)-proinsulin. Disproportionate hyperproinsulinemiaseems to occur early in the development and before the diagnosis of type 2 diabetes, and seemsassociated to disease progression. Obesity and insulin resistance does not influence fasting PIM/IRI levels in type 2 diabetes. Fasting PIM/IRI levels in type 2 diabetes are closely associated with the degree of impairment in insulin secretory capacity. Different type 2 diabetes alleles have been described associated with elevated PIM/IRI levels. Recent data suggests that proinsulin and its conversion intermediates may have a role as markers of increased risk of cardiovascular disease in glucose intolerance and type 2 diabetes.
Collapse
Affiliation(s)
- Michael E Røder
- a Center for Diabetes Research , Gentofte Hospital , Hellerup , Denmark
| |
Collapse
|
7
|
Jansson ET, Comi TJ, Rubakhin SS, Sweedler JV. Single Cell Peptide Heterogeneity of Rat Islets of Langerhans. ACS Chem Biol 2016; 11:2588-95. [PMID: 27414158 DOI: 10.1021/acschembio.6b00602] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Measuring the chemical composition of individual cells in mammalian organs can provide critical insights toward understanding the mechanisms leading to their normal and pathological function. In this work, single cell heterogeneity of islets of Langerhans is characterized with high throughput by microscopy-guided single cell matrix-assisted laser desorption/ionization mass spectrometry. Two levels of chemical heterogeneity were observed from the analysis of more than 3000 individual cells. Within a single islet, cellular heterogeneity was evident from the exclusive expression of the canonical biomarkers glucagon, insulin, pancreatic polypeptide (PP), and somatostatin within α-, β-, γ-, and δ-cells, respectively. We localized the neuropeptide WE-14, a known cell-to-cell signaling molecule, to individual δ-cells. Moreover, several unreported endogenous peptides generated by dibasic site cleavages of PP were detected within individual γ-cells. Of these, PP(27-36) was previously shown to activate the human Y4 receptor, suggesting it has a signaling role in vivo. Heterogeneity in cell composition was also observed between islets as evidenced by a 50-fold larger α-cell population in islets of the dorsal pancreas compared to the ventral-derived pancreatic islets. Finally, PP(27-36) was more abundant in γ-cells from the ventral region of the pancreas, indicating differences in the extent of PP-prohormone processing in the two regions of the pancreas.
Collapse
Affiliation(s)
- Erik T. Jansson
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Troy J. Comi
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S. Rubakhin
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Imai S, Takahashi T, Naito S, Yamauchi A, Okada C, Notsu Y, Sakikawa I, Hatanaka M, Iwasaki T, Morita A, Fujii I, Yamane S. Development of a novel immunoassay specific for mouse intact proinsulin. Anal Biochem 2015; 484:91-8. [DOI: 10.1016/j.ab.2015.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 11/16/2022]
|
9
|
Vangipurapu J, Stančáková A, Kuulasmaa T, Kuusisto J, Laakso M. Both fasting and glucose-stimulated proinsulin levels predict hyperglycemia and incident type 2 diabetes: a population-based study of 9,396 Finnish men. PLoS One 2015; 10:e0124028. [PMID: 25853252 PMCID: PMC4390238 DOI: 10.1371/journal.pone.0124028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/09/2015] [Indexed: 01/11/2023] Open
Abstract
Background Hyperproinsulinemia is an indicator of β-cell dysfunction, and fasting proinsulin levels are elevated in patients with hyperglycemia. It is not known whether proinsulin levels after a glucose load are better predictors of hyperglycemia and type 2 diabetes than fasting proinsulin. Methods Participants were 9,396 Finnish men (mean±SD, age 57.3±7.1 years, BMI 27.0±4.0 kg/m2) of the population-based METabolic Syndrome In Men Study who were non-diabetic at the recruitment, and who participated in a 6-year follow-up study. Proinsulin and insulin levels were measured in the fasting state and 30 and 120 min after an oral glucose load. Area under the curve (AUC) and proinsulin to insulin ratios were calculated. Results Fasting proinsulin, proinsulin at 30 min and proinsulin AUC during the first 30 min of an oral glucose tolerance test significantly predicted both the worsening of hyperglycemia and type 2 diabetes after adjustment for confounding factors. Further adjustment for insulin sensitivity (Matsuda index) or insulin secretion (Disposition index) weakened these associations. Insulin sensitivity had a major impact on these associations. Conclusion Our results suggest that proinsulin in the fasting state and after an oral glucose load similarly predict the worsening of hyperglycemia and conversion to type 2 diabetes.
Collapse
Affiliation(s)
- Jagadish Vangipurapu
- Faculty of Health Sciences, Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Alena Stančáková
- Faculty of Health Sciences, Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Teemu Kuulasmaa
- Faculty of Health Sciences, Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna Kuusisto
- Faculty of Health Sciences, Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Faculty of Health Sciences, Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
10
|
Katsuta H, Ozawa S, Suzuki K, Takahashi K, Tanaka T, Sumitani Y, Nishida S, Kondo T, Hosaka T, Inukai K, Ishida H. The association between impaired proinsulin processing and type 2 diabetes mellitus in non-obese Japanese individuals. Endocr J 2015; 62:485-92. [PMID: 25892189 DOI: 10.1507/endocrj.ej14-0611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We aimed to examine the association between impaired proinsulin processing in pancreatic beta cells and type 2 diabetes mellitus in non-obese Japanese patients. Participants were divided into groups for normal glucose tolerance, prediabetes, and type 2 diabetes based on the oral glucose tolerance test (OGTT). Activities of prohormone convertase (PC) 1/3 and PC2 in fasting states were estimated. Multiple regression analysis was undertaken to ascertain if alteration of the activities of these enzymes contributes to the development of impaired glucose tolerance by comparison with HOMA-β and the oral disposition index (DI(O)). Overall, 452 subjects were included. PC1/3 activity tended to decrease in type 2 diabetes compared with normal glucose tolerance. PC2 activity showed no difference among the three groups. Decreased estimated PC1/3 activity was significantly associated with type 2 diabetes after adjustment for sex, age, creatinine, triglycerides, HOMA-β and DI(O). Odds ratios (95% CI) of PC1/3, HOMA-β, and DI(O) were 2.16 (1.12-4.19), 3.44 (1.82-6.52) and 14.60 (7.87-27.11), respectively. Furthermore, decreased PC1/3(≤1.7) combined with decreased HOMA-β (≤30) had a sensitivity of 73% and specificity of 62%. Decreased PC1/3 activity may be a useful measurement of beta-cell function alongside decreased HOMA-β or DI(O). A combined decrease in estimated fasting PC1/3 activity and HOMA-β measurement led to suspicion of type 2 diabetes in the non-obese Japanese population studied.
Collapse
Affiliation(s)
- Hidenori Katsuta
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|