1
|
Dong H, Wang S, Hu C, Wang M, Zhou T, Zhou Y. Neuroprotective Effects of Intermittent Fasting in the Aging Brain. ANNALS OF NUTRITION & METABOLISM 2024; 80:175-185. [PMID: 38631305 DOI: 10.1159/000538782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND A major risk factor for neurodegenerative disorders is old age. Nutritional interventions that delay aging, such as calorie restriction (CR) and intermittent fasting (IF), as well as pharmaceuticals that affect the pathways linking nutrition and aging processes, have been developed in recent decades and have been shown to alleviate the effects of aging on the brain. SUMMARY CR is accomplished by alternating periods of ad libitum feeding and fasting. In animal models, IF has been shown to increase lifespan and slow the progression and severity of age-related pathologies such as cardiovascular and neurodegenerative diseases and cancer. According to recent research, dietary changes can help older people with dementia retain brain function. However, the mechanisms underlying the neuroprotective effect of IF on the aging brain and related questions in this area of study (i.e., the potential of IF to treat neurodegenerative disorders) remain to be examined. KEY MESSAGES This review addresses the hypothesis that IF may have translational potential in protecting the aged brain while summarizing the research supporting the putative neuroprotective mechanisms of IF in animal models. Additionally, given the emerging understanding of the connection between aging and dementia, our investigations may offer a fresh perspective on the use of dietary interventions for enhancing brain function and preventing dementia in elderly individuals. Finally, the absence of guidelines regarding the application of IF in patients hampers its broad utilization in clinical practice, and further studies are needed to improve our knowledge of the long-term effects of IF on dementia before it can be widely prescribed. In conclusion, IF may be an ancillary intervention for preserving memory and cognition in elderly individuals.
Collapse
Affiliation(s)
- Hao Dong
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chenji Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhou
- Department of Pharmaceutical and Medical Equipment, Ba Yi Orthopedic Hospital, Chengdu, China
| | - Yue Zhou
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
2
|
Roberts LD, Hornsby AK, Thomas A, Sassi M, Kinzett A, Hsiao N, David BR, Good M, Wells T, Davies JS. The 5:2 diet does not increase adult hippocampal neurogenesis or enhance spatial memory in mice. EMBO Rep 2023; 24:e57269. [PMID: 37987211 DOI: 10.15252/embr.202357269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
New neurones are generated throughout life in the mammalian brain in a process known as adult hippocampal neurogenesis (AHN). Since this phenomenon grants a high degree of neuroplasticity influencing learning and memory, identifying factors that regulate AHN may be important for ameliorating age-related cognitive decline. Calorie restriction (CR) has been shown to enhance AHN and improve memory, mediated by the stomach hormone, ghrelin. Intermittent fasting (IF), a dietary strategy offering more flexibility than conventional CR, has also been shown to promote aspects of AHN. The 5:2 diet is a popular form of IF; however, its effects on AHN are not well characterised. To address this, we quantified AHN in adolescent and adult wild-type and ghrelin-receptor-deficient mice following 6 weeks on a 5:2 diet. We report an age-related decline in neurogenic processes. However, the 5:2 diet does not increase AHN nor enhance memory performance, suggesting that this specific form of IF is ineffective in promoting brain plasticity to support learning.
Collapse
Affiliation(s)
- Luke D Roberts
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | | | - Alanna Thomas
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Martina Sassi
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Aimee Kinzett
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Nathan Hsiao
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Bethan R David
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| | - Mark Good
- School of Psychology, Cardiff University, Cardiff, UK
| | - Timothy Wells
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, UK
| |
Collapse
|
3
|
Gabarró‐Solanas R, Davaatseren A, Kleifeld J, Kepčija T, Köcher T, Giralt A, Crespo‐Enríquez I, Urbán N. Adult neural stem cells and neurogenesis are resilient to intermittent fasting. EMBO Rep 2023; 24:e57268. [PMID: 37987220 PMCID: PMC10702802 DOI: 10.15252/embr.202357268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Intermittent fasting (IF) is a promising strategy to counteract ageing shown to increase the number of adult-born neurons in the dentate gyrus of mice. However, it is unclear which steps of the adult neurogenesis process are regulated by IF. The number of adult neural stem cells (NSCs) decreases with age in an activation-dependent manner and, to counteract this loss, adult NSCs are found in a quiescent state which ensures their long-term maintenance. We aimed to determine if and how IF affects adult NSCs in the hippocampus. To identify the effects of every-other-day IF on NSCs and all following steps in the neurogenic lineage, we combined fasting with lineage tracing and label retention assays. We show here that IF does not affect NSC activation or maintenance and, that contrary to previous reports, IF does not increase neurogenesis. The same results are obtained regardless of strain, sex, diet length, tamoxifen administration or new-born neuron identification method. Our data suggest that NSCs maintain homeostasis upon IF and that this intervention is not a reliable strategy to increase adult neurogenesis.
Collapse
Affiliation(s)
- Rut Gabarró‐Solanas
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Amarbayasgalan Davaatseren
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Justus Kleifeld
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Tatjana Kepčija
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | | | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de NeurociènciesUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health ScienceUniversity of BarcelonaBarcelonaSpain
| | - Iván Crespo‐Enríquez
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Noelia Urbán
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
4
|
Melgar-Locatelli S, de Ceglia M, Mañas-Padilla MC, Rodriguez-Pérez C, Castilla-Ortega E, Castro-Zavala A, Rivera P. Nutrition and adult neurogenesis in the hippocampus: Does what you eat help you remember? Front Neurosci 2023; 17:1147269. [PMID: 36908779 PMCID: PMC9995971 DOI: 10.3389/fnins.2023.1147269] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Neurogenesis is a complex process by which neural progenitor cells (NPCs)/neural stem cells (NSCs) proliferate and differentiate into new neurons and other brain cells. In adulthood, the hippocampus is one of the areas with more neurogenesis activity, which is involved in the modulation of both emotional and cognitive hippocampal functions. This complex process is affected by many intrinsic and extrinsic factors, including nutrition. In this regard, preclinical studies performed in rats and mice demonstrate that high fats and/or sugars diets have a negative effect on adult hippocampal neurogenesis (AHN). In contrast, diets enriched with bioactive compounds, such as polyunsaturated fatty acids and polyphenols, as well as intermittent fasting or caloric restriction, can induce AHN. Interestingly, there is also growing evidence demonstrating that offspring AHN can be affected by maternal nutrition in the perinatal period. Therefore, nutritional interventions from early stages and throughout life are a promising perspective to alleviate neurodegenerative diseases by stimulating neurogenesis. The underlying mechanisms by which nutrients and dietary factors affect AHN are still being studied. Interestingly, recent evidence suggests that additional peripheral mediators may be involved. In this sense, the microbiota-gut-brain axis mediates bidirectional communication between the gut and the brain and could act as a link between nutritional factors and AHN. The aim of this mini-review is to summarize, the most recent findings related to the influence of nutrition and diet in the modulation of AHN. The importance of maternal nutrition in the AHN of the offspring and the role of the microbiota-gut-brain axis in the nutrition-neurogenesis relationship have also been included.
Collapse
Affiliation(s)
- Sonia Melgar-Locatelli
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Marialuisa de Ceglia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,UGC Salud Mental, Hospital Universitario Regional de Málaga, Málaga, Spain
| | - M Carmen Mañas-Padilla
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Celia Rodriguez-Pérez
- Departamento de Nutrición y Bromatología, Facultad de Ciencias de la Salud, Universidad de Granada, Granada, Spain.,Instituto de Nutrición y Tecnología de los Alimentos 'José Mataix', Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Adriana Castro-Zavala
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,UGC Salud Mental, Hospital Universitario Regional de Málaga, Málaga, Spain
| |
Collapse
|
5
|
Reich N, Hölscher C. Beyond Appetite: Acylated Ghrelin As A Learning, Memory and Fear Behavior-modulating Hormone. Neurosci Biobehav Rev 2022; 143:104952. [DOI: 10.1016/j.neubiorev.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/27/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
6
|
Coelho P, Fão L, Mota S, Rego AC. Mitochondrial function and dynamics in neural stem cells and neurogenesis: Implications for neurodegenerative diseases. Ageing Res Rev 2022; 80:101667. [PMID: 35714855 DOI: 10.1016/j.arr.2022.101667] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Mitochondria have been largely described as the powerhouse of the cell and recent findings demonstrate that this organelle is fundamental for neurogenesis. The mechanisms underlying neural stem cells (NSCs) maintenance and differentiation are highly regulated by both intrinsic and extrinsic factors. Mitochondrial-mediated switch from glycolysis to oxidative phosphorylation, accompanied by mitochondrial remodeling and dynamics are vital to NSCs fate. Deregulation of mitochondrial proteins, mitochondrial DNA, function, fission/fusion and metabolism underly several neurodegenerative diseases; data show that these impairments are already present in early developmental stages and NSC fate decisions. However, little is known about mitochondrial role in neurogenesis. In this Review, we describe the recent evidence covering mitochondrial role in neurogenesis, its impact in selected neurodegenerative diseases, for which aging is the major risk factor, and the recent advances in stem cell-based therapies that may alleviate neurodegenerative disorders-related neuronal deregulation through improvement of mitochondrial function and dynamics.
Collapse
Affiliation(s)
- Patrícia Coelho
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal.
| | - Lígia Fão
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal; FMUC- Faculty of Medicine, University of Coimbra Polo 3, Coimbra, Portugal.
| | - Sandra Mota
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal; III, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - A Cristina Rego
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal; FMUC- Faculty of Medicine, University of Coimbra Polo 3, Coimbra, Portugal.
| |
Collapse
|
7
|
Brocchi A, Rebelos E, Dardano A, Mantuano M, Daniele G. Effects of Intermittent Fasting on Brain Metabolism. Nutrients 2022; 14:nu14061275. [PMID: 35334932 PMCID: PMC8954770 DOI: 10.3390/nu14061275] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
We are facing an obesity epidemic, and obesity itself and its close companion, type 2 diabetes, are independent risk factors for neurodegeneration. While most medical treatments fail to induce a clinically meaningful improvement in neurodegenerative disorders, lifestyle interventions have emerged in the spotlight. A recently rediscovered approach is intermittent fasting (IF), which, compared to the classic caloric restriction regimens, limits only the time of eating, rather than the number of calories allowed per day. There is already a large amount of evidence from preclinical and clinical studies showing the beneficial effects of IF. In this review, we specifically focus on the effects of IF on brain metabolism. Key molecular players modified during IF and involved in its beneficial central effects (ketone bodies, BDNF, GABA, GH/IGF-1, FGF2, sirtuin-3, mTOR, and gut microbiota) are identified and discussed. Studies suggest that IF induces several molecular and cellular adaptations in neurons, which, overall, enhance cellular stress resistance, synaptic plasticity, and neurogenesis. Still, the absence of guidelines regarding the application of IF to patients hampers its broad utilization in clinical practice, and further studies are needed to improve our knowledge on the different IF protocols and long-term effects of IF on brain metabolism before it can be widely prescribed.
Collapse
Affiliation(s)
- Alex Brocchi
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
| | - Eleni Rebelos
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy;
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
| | - Michele Mantuano
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
| | - Giuseppe Daniele
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy; (A.B.); (A.D.); (M.M.)
- Correspondence: ; Tel.: +39-3404618257
| |
Collapse
|
8
|
Sassi M, Morgan AH, Davies JS. Ghrelin Acylation-A Post-Translational Tuning Mechanism Regulating Adult Hippocampal Neurogenesis. Cells 2022; 11:cells11050765. [PMID: 35269387 PMCID: PMC8909677 DOI: 10.3390/cells11050765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/05/2023] Open
Abstract
Adult hippocampal neurogenesis—the generation of new functional neurones in the adult brain—is impaired in aging and many neurodegenerative disorders. We recently showed that the acylated version of the gut hormone ghrelin (acyl-ghrelin) stimulates adult hippocampal neurogenesis while the unacylated form of ghrelin inhibits it, thus demonstrating a previously unknown function of unacyl-ghrelin in modulating hippocampal plasticity. Analysis of plasma samples from Parkinson’s disease patients with dementia demonstrated a reduced acyl-ghrelin:unacyl-ghrelin ratio compared to both healthy controls and cognitively intact Parkinson’s disease patients. These data, from mouse and human studies, suggest that restoring acyl-ghrelin signalling may promote the activation of pathways to support memory function. In this short review, we discuss the evidence for ghrelin’s role in regulating adult hippocampal neurogenesis and the enzymes involved in ghrelin acylation and de-acylation as targets to treat mood-related disorders and dementia.
Collapse
|
9
|
Abstract
The stomach hormone, ghrelin, which is released during food restriction, provides a link between circulating energy state and adaptive brain function. The maintenance of such homeostatic systems is essential for an organism to survive and thrive, and accumulating evidence points to ghrelin being a key regulator of adult hippocampal neurogenesis and memory function. Aberrant neurogenesis is linked to cognitive decline in aging and neurodegeneration. Therefore, identifying endogenous metabolic factors that regulate new adult-born neuron formation is an important objective in understanding the link between nutritional status and CNS function. Here, we review current developments in our understanding of ghrelin's role in regulating neurogenesis and memory function.
Collapse
Affiliation(s)
- Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
10
|
Currenti W, Godos J, Castellano S, Mogavero MP, Ferri R, Caraci F, Grosso G, Galvano F. Time restricted feeding and mental health: a review of possible mechanisms on affective and cognitive disorders. Int J Food Sci Nutr 2020; 72:723-733. [PMID: 33356688 DOI: 10.1080/09637486.2020.1866504] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last decades, a high increase in life expectancy not adequately balanced by an improvement in the quality of life has been observed, leading possibly to an increase in the prevalence of affective and cognitive disorders related to aging, such as depression, cognitive impairment, dementia and Alzheimer's disease. As mental illnesses have multifactorial aetiologies, many modifiable factors including lifestyle and nutrition play an essential role. Among nutritional factors, intermittent fasting has emerged as an innovative strategy to prevent and treat mental health disorders, sleep disturbances and cognitive impairment. Among all types of intermittent fasting regimens, the time restricted feeding appears to be the most promising protocol as it allows to induce benefits of a total fasting without reducing global calories and nutrients intake. This review summarises the evidence on the effect of time restricted feeding towards brain health, emphasising its role on brain signalling, neurogenesis and synaptic plasticity.
Collapse
Affiliation(s)
- Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Itaely
| | | | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Maria P Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Pavia, Italy
| | | | - Filippo Caraci
- Oasi Research Institute - IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Itaely
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Itaely
| |
Collapse
|
11
|
Barthez M, Song Z, Wang CL, Chen D. Stem Cell Metabolism and Diet. CURRENT STEM CELL REPORTS 2020; 6:119-125. [PMID: 33777658 PMCID: PMC7992378 DOI: 10.1007/s40778-020-00180-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW Diet has profound impacts on health and longevity. Evidence is emerging to suggest that diet impinges upon the metabolic pathways in tissue-specific stem cells to influence health and disease. Here, we review the similarities and differences in the metabolism of stem cells from several tissues, and highlight the mitochondrial metabolic checkpoint in stem cell maintenance and aging. We discuss how diet engages the nutrient sensing metabolic pathways and impacts stem cell maintenance. Finally, we explore the therapeutic implications of dietary and metabolic regulation of stem cells. RECENT FINDINGS Stem Cell transition from quiescence to proliferation is associated with a metabolic switch from glycolysis to mitochondrial OXPHOS and the mitochondrial metabolic checkpoint is critically controlled by the nutrient sensors SIRT2, SIRT3, and SIRT7 in hematopoietic stem cells. Intestine stem cell homeostasis during aging and in response to diet is critically dependent on fatty acid metabolism and ketone bodies and is influenced by the niche mediated by the nutrient sensor mTOR. SUMMARY Nutrient sensing metabolic pathways critically regulate stem cell maintenance during aging and in response to diet. Elucidating the molecular mechanisms underlying dietary and metabolic regulation of stem cells provides novel insights for stem cell biology and may be targeted therapeutically to reverse stem cell aging and tissue degeneration.
Collapse
Affiliation(s)
- Marine Barthez
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720
| | - Zehan Song
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720
| | - Chih Ling Wang
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, 119 Morgan Hall, University of California, Berkeley, CA 94720
| |
Collapse
|
12
|
Li W, Wu M, Zhang Y, Wei X, Zang J, Liu Y, Wang Y, Gong CX, Wei W. Intermittent fasting promotes adult hippocampal neuronal differentiation by activating GSK-3β in 3xTg-AD mice. J Neurochem 2020; 155:697-713. [PMID: 32578216 DOI: 10.1111/jnc.15105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/26/2022]
Abstract
Moderate dietary restriction can ameliorate age-related chronic diseases such as Alzheimer's disease (AD) by increasing the expression of neurotrophic factors and promoting neurogenesis in the brain. Glycogen synthase kinase-3β (GSK-3β) signaling is essential for the coordination of progenitor cell proliferation and differentiation during brain development. The mechanisms by which GSK-3β is involved in dietary restriction-induced neurogenesis and cognitive improvement remain unclear. Six-month-old male 3xTg-AD and wild-type mice were fed on alternate days (intermittent fasting, IF) or ad libitum (AL) for 3 months. GSK-3β activity was regulated by bilaterally infusing lentiviral vectors carrying siRNA targeting GSK-3β into the dentate gyrus region of the hippocampus. Intermittent fasting promoted neuronal differentiation and maturation in the dentate gyrus and ameliorated recognized dysfunction in 3xTg-AD mice. These effects were reversed by siRNA targeting GSK-3β. After intermittent fasting, the insulin and protein kinase A signaling pathways were inhibited, while the adenosine monophosphate-activated protein kinase and brain-derived neurotrophic factor pathways were activated. These findings suggest that intermittent fasting can promote neuronal differentiation and maturation in the hippocampus by activating GSK-3β, thus improving learning and memory.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China.,Department of Pathology, The first people's hospital of foshan, Foshan, Guangdong, P. R. China
| | - Meijian Wu
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Yilin Zhang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Xuemin Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Jiankun Zang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Yinghua Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, P. R. China
| | - Yanping Wang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Wei Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
13
|
Buntwal L, Sassi M, Morgan AH, Andrews ZB, Davies JS. Ghrelin-Mediated Hippocampal Neurogenesis: Implications for Health and Disease. Trends Endocrinol Metab 2019; 30:844-859. [PMID: 31445747 DOI: 10.1016/j.tem.2019.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
There is a close relationship between cognition and nutritional status, however, the mechanisms underlying this relationship require elucidation. The stomach hormone, ghrelin, which is released during food restriction, provides a link between circulating energy state and adaptive brain function. The maintenance of such homeostatic systems is essential for an organism to thrive and survive, and accumulating evidence points to ghrelin being key in promoting adult hippocampal neurogenesis and memory. Aberrant neurogenesis is linked to cognitive decline in ageing and neurodegeneration. Therefore, identifying endogenous metabolic factors that regulate new adult-born neurone formation is an important objective in understanding the link between nutritional status and central nervous system (CNS) function. Here, we review current developments in our understanding of ghrelin's role in regulating neurogenesis and memory function.
Collapse
Affiliation(s)
- Luke Buntwal
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, SA2 8PP, UK
| | - Martina Sassi
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, SA2 8PP, UK
| | - Alwena H Morgan
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, SA2 8PP, UK
| | - Zane B Andrews
- Department of Physiology, Biomedical Discovery Unit, Monash University, Melbourne, Australia
| | - Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Sciences, School of Medicine, Swansea University, SA2 8PP, UK.
| |
Collapse
|
14
|
Fasting as a Therapy in Neurological Disease. Nutrients 2019; 11:nu11102501. [PMID: 31627405 PMCID: PMC6836141 DOI: 10.3390/nu11102501] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
Fasting is deeply entrenched in evolution, yet its potential applications to today’s most common, disabling neurological diseases remain relatively unexplored. Fasting induces an altered metabolic state that optimizes neuron bioenergetics, plasticity, and resilience in a way that may counteract a broad array of neurological disorders. In both animals and humans, fasting prevents and treats the metabolic syndrome, a major risk factor for many neurological diseases. In animals, fasting probably prevents the formation of tumors, possibly treats established tumors, and improves tumor responses to chemotherapy. In human cancers, including cancers that involve the brain, fasting ameliorates chemotherapy-related adverse effects and may protect normal cells from chemotherapy. Fasting improves cognition, stalls age-related cognitive decline, usually slows neurodegeneration, reduces brain damage and enhances functional recovery after stroke, and mitigates the pathological and clinical features of epilepsy and multiple sclerosis in animal models. Primarily due to a lack of research, the evidence supporting fasting as a treatment in human neurological disorders, including neurodegeneration, stroke, epilepsy, and multiple sclerosis, is indirect or non-existent. Given the strength of the animal evidence, many exciting discoveries may lie ahead, awaiting future investigations into the viability of fasting as a therapy in neurological disease.
Collapse
|
15
|
Park JM, Kim YJ. [Effect of Ghrelin on Memory Impairment in a Rat Model of Vascular Dementia]. J Korean Acad Nurs 2019; 49:317-328. [PMID: 31266928 DOI: 10.4040/jkan.2019.49.3.317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 11/09/2022]
Abstract
PURPOSE The purpose of this study was to identify the effect of ghrelin on memory impairment in a rat model of vascular dementia induced by chronic cerebral hypoperfusion. METHODS Randomized controlled groups and the posttest design were used. We established the representative animal model of vascular dementia caused by bilateral common carotid artery occlusion and administered 80 μg/kg ghrelin intraperitoneally for 4 weeks. First, behavioral studies were performed to evaluate spatial memory. Second, we used molecular biology techniques to determine whether ghrelin ameliorates the damage to the structure and function of the white matter and hippocampus, which are crucial to learning and memory. RESULTS Ghrelin improved the spatial memory impairment in the Y-maze and Morris water maze test. In the white matter, demyelination and atrophy of the corpus callosum were significantly decreased in the ghrelin-treated group. In the hippocampus, ghrelin increased the length of hippocampal microvessels and reduced the microvessels pathology. Further, we confirmed angiogenesis enhancement through the fact that ghrelin treatment increased vascular endothelial growth factor (VEGF)-related protein levels, which are the most powerful mediators of angiogenesis in the hippocampus. CONCLUSION We found that ghrelin affected the damaged myelin sheaths and microvessels by increasing angiogenesis, which then led to neuroprotection and improved memory function. We suggest that further studies continue to accumulate evidence of the effect of ghrelin. Further, we believe that the development of therapeutic interventions that increase ghrelin may contribute to memory improvement in patients with vascular dementia.
Collapse
Affiliation(s)
- Jong Min Park
- College of Nursing Science, Kyung Hee University, Seoul, Korea
| | - Youn Jung Kim
- College of Nursing Science, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
16
|
Huang HJ, Chen XR, Han QQ, Wang J, Pilot A, Yu R, Liu Q, Li B, Wu GC, Wang YQ, Yu J. The protective effects of Ghrelin/GHSR on hippocampal neurogenesis in CUMS mice. Neuropharmacology 2019; 155:31-43. [PMID: 31103617 DOI: 10.1016/j.neuropharm.2019.05.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 04/27/2019] [Accepted: 05/12/2019] [Indexed: 12/18/2022]
Abstract
Ghrelin is an orexigenic hormone that also plays an important role in mood disorders. Our previous studies demonstrated that ghrelin administration could protect against depression-like behaviors of chronic unpredictable mild stress (CUMS) in rodents. However, the mechanism related to the effect of ghrelin on CUMS mice has yet to be revealed. This article shows that ghrelin (5 nmol/kg/day for 2 weeks, i.p.) decreased depression-like behaviors induced by CUMS and increased hippocampal integrity (neurogenesis and spine density) measured via Ki67, 5-bromo-2-deoxyuridine (BrdU), doublecortin (DCX) labeling and Golgi-cox staining, which were decreased under CUMS. The behavioral phenotypes of Growth hormone secretagogue receptor (Ghsr)-null and wild type (WT) mice were evaluated under no stress condition and after CUMS exposure to determine the effect of Ghsr knockout on the behavioral phenotypes and stress susceptibility of mice. Ghsr-null mice exhibited depression-like behaviors under no stress condition. CUMS induced similar depression- and anxiety-like behavioral manifestations in both Ghsr-null and WT mice. A similar pattern of behavioral changes was observed after hippocampal GHSR knockdown. Additionally, both Ghsr knockout as well as CUMS exhibited deleterious effects on neurogenesis and spine density in the dentate gyrus (DG). Besides, CCK8 assay and 5-Ethynyl-2'-deoxyuridine (EdU) incorporation assay showed that ghrelin has a proliferative effect on primary cultured hippocampal neural stem cells (NSCs) and this proliferation was blocked by D-Lys3-GHRP-6 (DLS, the antagonist of GHSR, 100 μM) pretreatment. Ghrelin-induced proliferation is associated with the inhibition of G1 arrest, and this inhibition was blocked by LY294002 (specific inhibitor of PI3K, 20 μM). Furthermore, the in vivo data displayed that LY294002 (50 nmol, i.c.v.) can significantly block the antidepressant-like action of exogenous ghrelin treatment. All these results suggest that ghrelin/GHSR signaling maintains the integrity of hippocampus and has an inherent neuroprotective effect whether facing stress or not.
Collapse
Affiliation(s)
- Hui-Jie Huang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Rong Chen
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiu-Qin Han
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Adam Pilot
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, 200032, China
| | - Bing Li
- Center Laboratories, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Gen-Cheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Suarez AN, Noble EE, Kanoski SE. Regulation of Memory Function by Feeding-Relevant Biological Systems: Following the Breadcrumbs to the Hippocampus. Front Mol Neurosci 2019; 12:101. [PMID: 31057368 PMCID: PMC6482164 DOI: 10.3389/fnmol.2019.00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The hippocampus (HPC) controls fundamental learning and memory processes, including memory for visuospatial navigation (spatial memory) and flexible memory for facts and autobiographical events (declarative memory). Emerging evidence reveals that hippocampal-dependent memory function is regulated by various peripheral biological systems that are traditionally known for their roles in appetite and body weight regulation. Here, we argue that these effects are consistent with a framework that it is evolutionarily advantageous to encode and recall critical features surrounding feeding behavior, including the spatial location of a food source, social factors, post-absorptive processing, and other episodic elements of a meal. We review evidence that gut-to-brain communication from the vagus nerve and from feeding-relevant endocrine systems, including ghrelin, insulin, leptin, and glucagon-like peptide-1 (GLP-1), promote hippocampal-dependent spatial and declarative memory via neurotrophic and neurogenic mechanisms. The collective literature reviewed herein supports a model in which various stages of feeding behavior and hippocampal-dependent memory function are closely linked.
Collapse
Affiliation(s)
| | | | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
18
|
Early effects of a high-caloric diet and physical exercise on brain volumetry and behavior: a combined MRI and histology study in mice. Brain Imaging Behav 2018; 11:1385-1396. [PMID: 27734300 PMCID: PMC5653704 DOI: 10.1007/s11682-016-9638-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Excessive intake of high-caloric diets as well as subsequent development of obesity and diabetes mellitus may exert a wide range of unfavorable effects on the central nervous system (CNS) in the long-term. The potentially harmful effects of such diets were suggested to be mitigated by physical exercise. Here, we conducted a study investigating early effects of a cafeteria-diet on gray and white brain matter volume by means of voxel-based morphometry (VBM) and region-of-interest (ROI) analysis. Half of the mice performed voluntary wheel running to study if regular physical exercise prevents unfavorable effects of a cafeteria-diet. In addition, histological analyses for myelination and neurogenesis were performed. As expected, wheel running resulted in a significant increase of gray matter volume in the CA1-3 areas, the dentate gyrus and stratum granulosum of the hippocampus in the VBM analysis, while a positive effect of the cafeteria-diet was shown for the whole hippocampal CA1-3 area only in the ROI analysis, indicating a regional volume effect. It was earlier found that hippocampal neurogenesis may be related to volume increases after exercise. Interestingly, while running resulted in a significant increase in neurogenesis assessed by doublecortin (DCX)-labeling, this was not true for cafeteria diet. This indicates different underlying mechanisms for gray matter increase. Moreover, animals receiving cafeteria diet only showed mild deficits in long-term memory assessed by the puzzle-box paradigm, while executive functioning and short term memory were not affected. Our data therefore highlight that high caloric diet impacts on the brain and behavior. Physical exercise seems not to interact with these mechanisms.
Collapse
|
19
|
Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 2018; 19:63-80. [PMID: 29321682 PMCID: PMC5913738 DOI: 10.1038/nrn.2017.156] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During evolution, individuals whose brains and bodies functioned well in a fasted state were successful in acquiring food, enabling their survival and reproduction. With fasting and extended exercise, liver glycogen stores are depleted and ketones are produced from adipose-cell-derived fatty acids. This metabolic switch in cellular fuel source is accompanied by cellular and molecular adaptations of neural networks in the brain that enhance their functionality and bolster their resistance to stress, injury and disease. Here, we consider how intermittent metabolic switching, repeating cycles of a metabolic challenge that induces ketosis (fasting and/or exercise) followed by a recovery period (eating, resting and sleeping), may optimize brain function and resilience throughout the lifespan, with a focus on the neuronal circuits involved in cognition and mood. Such metabolic switching impacts multiple signalling pathways that promote neuroplasticity and resistance of the brain to injury and disease.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Nathaniel Ghena
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Maggie Schmaedick
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| | - Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA
| |
Collapse
|
20
|
Poulose SM, Miller MG, Scott T, Shukitt-Hale B. Nutritional Factors Affecting Adult Neurogenesis and Cognitive Function. Adv Nutr 2017; 8:804-811. [PMID: 29141966 PMCID: PMC5683005 DOI: 10.3945/an.117.016261] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adult neurogenesis, a complex process by which stem cells in the hippocampal brain region differentiate and proliferate into new neurons and other resident brain cells, is known to be affected by many intrinsic and extrinsic factors, including diet. Neurogenesis plays a critical role in neural plasticity, brain homeostasis, and maintenance in the central nervous system and is a crucial factor in preserving the cognitive function and repair of damaged brain cells affected by aging and brain disorders. Intrinsic factors such as aging, neuroinflammation, oxidative stress, and brain injury, as well as lifestyle factors such as high-fat and high-sugar diets and alcohol and opioid addiction, negatively affect adult neurogenesis. Conversely, many dietary components such as curcumin, resveratrol, blueberry polyphenols, sulforaphane, salvionic acid, polyunsaturated fatty acids (PUFAs), and diets enriched with polyphenols and PUFAs, as well as caloric restriction, physical exercise, and learning, have been shown to induce neurogenesis in adult brains. Although many of the underlying mechanisms by which nutrients and dietary factors affect adult neurogenesis have yet to be determined, nutritional approaches provide promising prospects to stimulate adult neurogenesis and combat neurodegenerative diseases and cognitive decline. In this review, we summarize the evidence supporting the role of nutritional factors in modifying adult neurogenesis and their potential to preserve cognitive function during aging.
Collapse
Affiliation(s)
- Shibu M Poulose
- USDA-ARS Human Nutrition Research Center on Aging at Tufts University, Neuroscience and Aging Laboratory, Boston, MA
| | - Marshall G Miller
- USDA-ARS Human Nutrition Research Center on Aging at Tufts University, Neuroscience and Aging Laboratory, Boston, MA
| | - Tammy Scott
- USDA-ARS Human Nutrition Research Center on Aging at Tufts University, Neuroscience and Aging Laboratory, Boston, MA
| | - Barbara Shukitt-Hale
- USDA-ARS Human Nutrition Research Center on Aging at Tufts University, Neuroscience and Aging Laboratory, Boston, MA
| |
Collapse
|
21
|
Morgan AH, Andrews ZB, Davies JS. Less is more: Caloric regulation of neurogenesis and adult brain function. J Neuroendocrinol 2017; 29. [PMID: 28771924 DOI: 10.1111/jne.12512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Calorie intake is essential for regulating normal physiological processes and is fundamental to maintaining life. Indeed, both extremes of calorie intake result in increased morbidity and mortality. In this review, we discuss the effect of calorie intake on adult brain function, with an emphasis on the beneficial effects of mild calorie restriction. Recent findings relating to the regenerative and protective effects of the gastrointestinal hormone, ghrelin, suggest that it may underlie the beneficial effects of calorie restriction. We discuss the putative cellular mechanisms underlying the action of ghrelin and their possible role in supporting healthy brain ageing.
Collapse
Affiliation(s)
- A H Morgan
- Molecular Neurobiology, Institute of Life Science, School of Medicine, Swansea University, Swansea, UK
| | - Z B Andrews
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - J S Davies
- Molecular Neurobiology, Institute of Life Science, School of Medicine, Swansea University, Swansea, UK
| |
Collapse
|
22
|
Yoshii Y, Inoue T, Uemura Y, Iwasaki Y, Yada T, Nakabeppu Y, Noda M. Complexity of Stomach-Brain Interaction Induced by Molecular Hydrogen in Parkinson's Disease Model Mice. Neurochem Res 2017; 42:2658-2665. [PMID: 28462451 DOI: 10.1007/s11064-017-2281-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/11/2017] [Accepted: 04/22/2017] [Indexed: 11/28/2022]
Abstract
Molecular hydrogen (H2), as a new medical gas, has protective effects in neurological disorders including Parkinson's disease (PD). In our previous report, the neuroprotective effect of drinking water with saturated H2 (H2 water) in PD mice might be due to stomach-brain interaction via release of gastric hormone, ghrelin. In the present study, we assessed the effect of H2-induced ghrelin more precisely. To confirm the contribution of ghrelin in H2 water-drinking PD model mice, ghrelin-knock out (KO) mice were used. Despite the speculation, the effect of H2 water was still observed in ghrelin-KO PD model mice. To further check the involvement of ghrelin, possible contribution of ghrelin-induced vagal afferent effect was tested by performing subdiaphragmatic vagotomy before treating with H2 water and administration of MPTP (1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine). The protective effect of H2 water was still observed in the vagotomized mice in substantia nigra, suggesting that stimulation of vagal afferent nerves is not involved in H2-induced neuroprotection. Other neuroprotective substitutes in ghrelin-KO mice were speculated because H2-induced neuroprotection was not cancelled by ghrelin receptor antagonist, D-Lys3 GHRP-6, in ghrelin-KO PD model mice, unlike in wild-type PD model mice. Our results indicate that ghrelin may not be the only factor for H2-induced neuroprotection and other factors can substitute the role of ghrelin when ghrelin is absent, raising intriguing options of research for H2-responsive factors.
Collapse
Affiliation(s)
- Yusuke Yoshii
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Taikai Inoue
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuya Uemura
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yusaku Iwasaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
23
|
Staples MC, Fannon MJ, Mysore KK, Dutta RR, Ongjoco AT, Quach LW, Kharidia KM, Somkuwar SS, Mandyam CD. Dietary restriction reduces hippocampal neurogenesis and granule cell neuron density without affecting the density of mossy fibers. Brain Res 2017; 1663:59-65. [PMID: 28284897 DOI: 10.1016/j.brainres.2017.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/04/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022]
Abstract
The hippocampal formation undergoes significant morphological and functional changes after prolonged caloric and dietary restriction (DR). In this study we tested whether prolonged DR results in deleterious alterations in hippocampal neurogenesis, density of granule cell neurons and mossy fibers, all of which support plasticity in the dentate gyrus. Young adult animals either experienced free access to food (control condition), or every-other-day feeding regimen (DR condition) for 3months. The number of Ki-67 cells and 28-day old 5-bromo-2'-deoxyuridine (BrdU) cells were quantified in the dorsal and ventral dentate gyrus to determine the effect of DR on cellular proliferation and survival of neural progenitor cells in the anatomically defined regions of the dentate gyrus. The density of granule cell neurons and synaptoporin were also quantified to determine the effect of DR on granule cell neurons and mossy fiber projections in the dentate gyrus. Our results show that DR increases cellular proliferation and concurrently reduces survival of newly born neurons in the ventral dentate gyrus without effecting the number of cells in the dorsal dentate gyrus. DR reduced density of granule cell neurons in the dorsal dentate gyrus. These alterations in the number of granule cell neurons did not affect mossy fiber density in DR animals, which was visualized as no differences in synaptoporin expression. Our findings demonstrate that granule cell neurons in the dentate gyrus are vulnerable to chronic DR and that the reorganization of granule cells in the dentate gyrus subregions is not producing concomitant alterations in dentate gyrus neuronal circuitry with this type of DR.
Collapse
Affiliation(s)
- Miranda C Staples
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - McKenzie J Fannon
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Karthik K Mysore
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Rahul R Dutta
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Alexandria T Ongjoco
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Leon W Quach
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Khush M Kharidia
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Sucharita S Somkuwar
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Chitra D Mandyam
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
24
|
Kim C, Kim S, Park S. Neurogenic Effects of Ghrelin on the Hippocampus. Int J Mol Sci 2017; 18:ijms18030588. [PMID: 28282857 PMCID: PMC5372604 DOI: 10.3390/ijms18030588] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 01/25/2023] Open
Abstract
Mammalian neurogenesis continues throughout adulthood in the subventricular zone of the lateral ventricle and in the subgranular zone of the dentate gyrus in the hippocampus. It is well known that hippocampal neurogenesis is essential in mediating hippocampus-dependent learning and memory. Ghrelin, a peptide hormone mainly synthesized in the stomach, has been shown to play a major role in the regulation of energy metabolism. A plethora of evidence indicates that ghrelin can also exert important effects on neurogenesis in the hippocampus of the adult brain. The aim of this review is to discuss the current role of ghrelin on the in vivo and in vitro regulation of neurogenesis in the adult hippocampus. We will also discuss the possible role of ghrelin in dietary restriction-induced hippocampal neurogenesis and the link between ghrelin-induced hippocampal neurogenesis and cognitive functions.
Collapse
Affiliation(s)
- Chanyang Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Sehee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Seungjoon Park
- Department of Pharmacology and Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
25
|
Coppens J, Bentea E, Bayliss JA, Demuyser T, Walrave L, Albertini G, Van Liefferinge J, Deneyer L, Aourz N, Van Eeckhaut A, Portelli J, Andrews ZB, Massie A, De Bundel D, Smolders I. Caloric Restriction Protects against Lactacystin-Induced Degeneration of Dopamine Neurons Independent of the Ghrelin Receptor. Int J Mol Sci 2017; 18:ijms18030558. [PMID: 28273852 PMCID: PMC5372574 DOI: 10.3390/ijms18030558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder, characterized by a loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Caloric restriction (CR) has been shown to exert ghrelin-dependent neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-based animal model for PD. We here investigated whether CR is neuroprotective in the lactacystin (LAC) mouse model for PD, in which proteasome disruption leads to the destruction of the DA neurons of the SNc, and whether this effect is mediated via the ghrelin receptor. Adult male ghrelin receptor wildtype (WT) and knockout (KO) mice were maintained on an ad libitum (AL) diet or on a 30% CR regimen. After 3 weeks, LAC was injected unilaterally into the SNc, and the degree of DA neuron degeneration was evaluated 1 week later. In AL mice, LAC injection significanty reduced the number of DA neurons and striatal DA concentrations. CR protected against DA neuron degeneration following LAC injection. However, no differences were observed between ghrelin receptor WT and KO mice. These results indicate that CR can protect the nigral DA neurons from toxicity related to proteasome disruption; however, the ghrelin receptor is not involved in this effect.
Collapse
Affiliation(s)
- Jessica Coppens
- Research Group Experimental Pharmacology (EFAR/FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| | - Eduard Bentea
- Research Group Pharmaceutical Biotechnology and Molecular Biology (MICH), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| | - Jacqueline A Bayliss
- Department of Physiology, School of Biomedical and Psychological Sciences, Monash University, Clayton, Melbourne 3800, Australia.
| | - Thomas Demuyser
- Research Group Experimental Pharmacology (EFAR/FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| | - Laura Walrave
- Research Group Experimental Pharmacology (EFAR/FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| | - Giulia Albertini
- Research Group Experimental Pharmacology (EFAR/FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| | - Joeri Van Liefferinge
- Research Group Experimental Pharmacology (EFAR/FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| | - Lauren Deneyer
- Research Group Pharmaceutical Biotechnology and Molecular Biology (MICH), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| | - Najat Aourz
- Research Group Experimental Pharmacology (EFAR/FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| | - Ann Van Eeckhaut
- Research Group Experimental Pharmacology (EFAR/FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| | - Jeanelle Portelli
- Research Group Experimental Pharmacology (EFAR/FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| | - Zane B Andrews
- Department of Physiology, School of Biomedical and Psychological Sciences, Monash University, Clayton, Melbourne 3800, Australia.
| | - Ann Massie
- Research Group Pharmaceutical Biotechnology and Molecular Biology (MICH), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| | - Dimitri De Bundel
- Research Group Experimental Pharmacology (EFAR/FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| | - Ilse Smolders
- Research Group Experimental Pharmacology (EFAR/FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium.
| |
Collapse
|
26
|
Feng H, Wang Q, Guo F, Han X, Pang M, Sun X, Gong Y, Xu L. Nesfatin-1 influences the excitability of gastric distension-responsive neurons in the ventromedial hypothalamic nucleus of rats. Physiol Res 2016; 66:335-344. [PMID: 27982684 DOI: 10.33549/physiolres.933347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The present study investigated the effects of nesfatin-1 on gastric distension (GD)-responsive neurons via an interaction with corticotropin-releasing factor (CRF) receptor signaling in the ventromedial hypothalamic nucleus (VMH), and the potential regulation of these effects by hippocampal projections to VMH. Extracellular single-unit discharges were recorded in VHM following administration of nesfatin-1. The projection of nerve fibers and expression of nesfatin-1 were assessed by retrograde tracing and fluoro-immunohistochemical staining, respectively. Results showed that there were GD-responsive neurons in VMH; Nesfatin-1 administration and electrical stimulation of hippocampal CA1 sub-region altered the firing rate of these neurons. These changes could be partially blocked by pretreatment with the non-selective CRF antagonist astressin-B or an antibody to NUCB2/nesfatin-1. Electrolytic lesion of CA1 hippocampus reduced the effects of nesfatin-1 on VMH GD-responsive neuronal activity. These studies suggest that nesfatin-1 plays an important role in GD-responsive neuronal activity through interactions with CRF signaling pathways in VMH. The hippocampus may participate in the modulation of nesfatin-1-mediated effects in VMH.
Collapse
Affiliation(s)
- Hongzhen Feng
- Department of Pathophysiology, Medical College of Qingdao University, Qingdao, Shandong, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Arslan-Ergul A, Erbaba B, Karoglu ET, Halim DO, Adams MM. Short-term dietary restriction in old zebrafish changes cell senescence mechanisms. Neuroscience 2016; 334:64-75. [DOI: 10.1016/j.neuroscience.2016.07.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 10/25/2022]
|
28
|
Chung H, Park S. Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells. J Endocrinol 2016; 230:239-50. [PMID: 27325242 DOI: 10.1530/joe-16-0126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023]
Abstract
We have previously demonstrated that ghrelin stimulates the cellular proliferation of cultured adult rat hippocampal neural stem cells (NSCs). However, little is known about the molecular mechanisms by which ghrelin regulates cell cycle progression. The purpose of this study was to investigate the potential effects of ghrelin on cell cycle regulatory molecules in cultured hippocampal NSCs. Ghrelin treatment increased proliferation assessed by CCK-8 proliferation assay. The expression levels of proliferating cell nuclear antigen and cell division control 2, well-known cell-proliferating markers, were also increased by ghrelin. Fluorescence-activated cell sorting analysis revealed that ghrelin promoted progression of cell cycle from G0/G1 to S phase, whereas this progression was attenuated by the pretreatment with specific inhibitors of MEK/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/Akt, mammalian target of rapamycin, and janus kinase 2/signal transducer and activator of transcription 3. Ghrelin-induced proliferative effect was associated with increased expression of E2F1 transcription factor in the nucleus, as determined by Western blotting and immunofluorescence. We also found that ghrelin caused an increase in protein levels of positive regulators of cell cycle, such as cyclin A and cyclin-dependent kinase (CDK) 2. Moreover, p27(KIP1) and p57(KIP2) protein levels were reduced when cell were exposed to ghrelin, suggesting downregulation of CDK inhibitors may contribute to proliferative effect of ghrelin. Our data suggest that ghrelin targets both cell cycle positive and negative regulators to stimulate proliferation of cultured hippocampal NSCs.
Collapse
Affiliation(s)
- Hyunju Chung
- Department of Core Research LaboratoryClinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Seungjoon Park
- Department of Pharmacology and Medical Research Center for Bioreaction to ROS and Biomedical Science InstituteSchool of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
29
|
Hullinger R, Puglielli L. Molecular and cellular aspects of age-related cognitive decline and Alzheimer's disease. Behav Brain Res 2016; 322:191-205. [PMID: 27163751 DOI: 10.1016/j.bbr.2016.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/19/2016] [Accepted: 05/03/2016] [Indexed: 01/14/2023]
Abstract
As the population of people aged 60 or older continues to rise, it has become increasingly important to understand the molecular basis underlying age-related cognitive decline. In fact, a better understanding of aging biology will help us identify ways to maintain high levels of cognitive functioning throughout the aging process. Many cellular and molecular aspects of brain aging are shared with other organ systems; however, certain age-related changes are unique to the nervous system due to its structural, cellular and molecular complexity. Importantly, the brain appears to show differential changes throughout the aging process, with certain regions (e.g. frontal and temporal regions) being more vulnerable than others (e.g. brain stem). Within the medial temporal lobe, the hippocampus is especially susceptible to age-related changes. The important role of the hippocampus in age-related cognitive decline and in vulnerability to disease processes such as Alzheimer's disease has prompted this review, which will focus on the complexity of changes that characterize aging, and on the molecular connections that exist between normal aging and Alzheimer's disease. Finally, it will discuss behavioral interventions and emerging insights for promoting healthy cognitive aging.
Collapse
Affiliation(s)
- Rikki Hullinger
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Geriatric Research Education Clinical Center, VA Medical Center, Madison, WI 53705, USA.
| |
Collapse
|
30
|
Valero J, Paris I, Sierra A. Lifestyle Shapes the Dialogue between Environment, Microglia, and Adult Neurogenesis. ACS Chem Neurosci 2016; 7:442-53. [PMID: 26971802 DOI: 10.1021/acschemneuro.6b00009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lifestyle modulates brain function. Diet, stress levels, and physical exercise among other factors influence the "brain cognitive reserve", that is, the capacity of the brain to maintain a normal function when confronting neurodegenerative diseases, injury, and/or aging. This cognitive reserve relays on several cellular and molecular elements that contribute to brain plasticity allowing adaptive responses to cognitive demands, and one of its key components is the hippocampal neurogenic reserve. Hippocampal neural stem cells give rise to new neurons that integrate into the local circuitry and contribute to hippocampal functions such as memory and learning. Importantly, adult hippocampal neurogenesis is well-known to be modulated by the demands of the environment and lifestyle factors. Diet, stress, and physical exercise directly act on neural stem cells and/or their progeny, but, in addition, they may also indirectly affect neurogenesis by acting on microglia. Microglia, the guardians of the brain, rapidly sense changes in the brain milieu, and it has been recently shown that their function is affected by lifestyle factors. However, few studies have analyzed the modulatory effect of microglia on adult neurogenesis in these conditions. Here, we review the current knowledge about the dialogue maintained between microglia and the hippocampal neurogenic cascade. Understanding how the communication between microglia and hippocampal neurogenesis is affected by lifestyle choices is crucial to maintain the brain cognitive reserve and prevent the maladaptive responses that emerge during disease or injury through adulthood and aging.
Collapse
Affiliation(s)
- Jorge Valero
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
- Ikerbasque Foundation, E-48013 Bilbao, Bizkaia Spain
| | - Iñaki Paris
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, E-48170 Zamudio, Bizkaia Spain
- Ikerbasque Foundation, E-48013 Bilbao, Bizkaia Spain
- University of the Basque Country EHU/UPV, E-48940 Leioa, Bizkaia Spain
| |
Collapse
|
31
|
Gargantini E, Lazzari L, Settanni F, Taliano M, Trovato L, Gesmundo I, Ghigo E, Granata R. Obestatin promotes proliferation and survival of adult hippocampal progenitors and reduces amyloid-β-induced toxicity. Mol Cell Endocrinol 2016; 422:18-30. [PMID: 26586206 DOI: 10.1016/j.mce.2015.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 12/31/2022]
Abstract
The ghrelin gene-derived peptide obestatin promotes survival in different cell types through a yet undefined receptor; however, its potential neuroprotective activities are still unknown. Here, obestatin effects were investigated on proliferation and survival of adult rat hippocampal progenitor cells (AHPs). Obestatin immunoreactivity was found in AHPs; moreover, obestatin binding to AHPs was displaced by the GLP-1R agonist Ex-4 and antagonist Ex-9. Furthermore, obestatin increased cell proliferation and survival in growth factor deprived medium and inhibited apoptosis; these effects were blocked by Ex-9. The underlying mechanisms involved Gαs/cAMP/PKA/CREB signaling, phosphorylation of ERK1/2 and PI3K/Akt, and the PI3K targets GSK-3β/β-catenin and mTOR. Obestatin also counteracted Aβ1-42-induced detrimental effects through inhibition of GSK-3β activity and Tau hyperphosphorylation, main hallmarks of neuronal death in Alzheimer's disease. These findings indicate a novel protective role for obestatin in AHPs and candidate this peptide as potential therapeutic target for increasing neurogenesis and for approaching neurodegenerative disorders.
Collapse
Affiliation(s)
- Eleonora Gargantini
- Laboratory of Molecular and Cellular Endocrinology, University of Torino, 10126 Torino, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Laura Lazzari
- Laboratory of Molecular and Cellular Endocrinology, University of Torino, 10126 Torino, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Fabio Settanni
- Laboratory of Molecular and Cellular Endocrinology, University of Torino, 10126 Torino, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Marina Taliano
- Laboratory of Molecular and Cellular Endocrinology, University of Torino, 10126 Torino, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Letizia Trovato
- Laboratory of Molecular and Cellular Endocrinology, University of Torino, 10126 Torino, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Iacopo Gesmundo
- Laboratory of Molecular and Cellular Endocrinology, University of Torino, 10126 Torino, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, University of Torino, 10126 Torino, Italy; Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
32
|
Short-term calorie restriction enhances adult hippocampal neurogenesis and remote fear memory in a Ghsr-dependent manner. Psychoneuroendocrinology 2016; 63:198-207. [PMID: 26460782 PMCID: PMC4686051 DOI: 10.1016/j.psyneuen.2015.09.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/03/2015] [Accepted: 09/20/2015] [Indexed: 12/11/2022]
Abstract
The beneficial effects of calorie restriction (CR) have been described at both organismal and cellular levels in multiple organs. However, our understanding of the causal mediators of such hormesis is poorly understood, particularly in the context of higher brain function. Here, we show that the receptor for the orexigenic hormone acyl-ghrelin, the growth hormone secretagogue receptor (Ghsr), is enriched in the neurogenic niche of the hippocampal dentate gyrus (DG). Acute elevation of acyl-ghrelin levels by injection or by overnight CR, increased DG levels of the neurogenic transcription factor, Egr-1. Two weeks of CR increased the subsequent number of mature newborn neurons in the DG of adult wild-type but not Ghsr(-/-) mice. CR wild-type mice also showed improved remote contextual fear memory. Our findings suggest that Ghsr mediates the beneficial effects of CR on enhancing adult hippocampal neurogenesis and memory.
Collapse
|