1
|
Santoro C, Aiello F, Farina A, Miraglia del Giudice E, Pascarella F, Licenziati MR, Improda N, Piluso G, Torella A, Del Vecchio Blanco F, Cirillo M, Nigro V, Grandone A. A Novel Missense Variant in LHX4 in Three Children with Multiple Pituitary Hormone Deficiency Belonging to Two Unrelated Families and Contribution of Additional GLI2 and IGFR1 Variant. CHILDREN (BASEL, SWITZERLAND) 2025; 12:364. [PMID: 40150646 PMCID: PMC11941417 DOI: 10.3390/children12030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Multiple genes can disrupt hypothalamic-pituitary axis development, causing multiple pituitary hormone deficiencies (MPHD). Despite advances in next-generation sequencing (NGS) identifying over 30 key genes, 85% of cases remain unsolved, indicating complex genotype-phenotype correlations and variable inheritance patterns. OBJECTIVE This study aimed to identify the MPHD genetics in three probands from two unrelated families. METHODS Family A had one affected child, while Family B had two affected siblings. All probands exhibited poor growth since birth, and family B's probands were born small for gestational age. Growth hormone deficiency was confirmed in all subjects. Family B's probands responded poorly to growth hormone treatment compared to the first patient. Furthermore, Family A's proband and Family B's younger sibling developed central hypothyroidism, while Family B's older sibling presented hypogonadotropic hypogonadism. Brain magnetic resonance imaging (MRI) revealed pituitary hypoplasia, ectopic posterior pituitary gland, and small sella turcica in all probands. Patients and their available relatives underwent NGS. RESULTS NGS identified the same novel and likely pathogenic LHX4 variant (c.481C>G) in all probands despite the families being unrelated. Additionally, Family A's proband carried a GLI2 variant (c.2105C>A), and Family B's probands carried an IGF1R variant (c.166G>A), both interpreted as being of uncertain significance. CONCLUSIONS This study confirms that heterozygous pathogenic variants of LHX4 can cause MPHD associated with a specific neuroradiological triad of abnormalities despite incomplete penetrance and variable phenotype. Moreover, the co-occurrence of the other two gene variants was debated. The IGF1R variant could explain the unusually poor response to growth hormone therapy in Family B, suggesting an oligogenic mechanism underlying the phenotype.
Collapse
Affiliation(s)
- Claudia Santoro
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| | - Francesca Aiello
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| | - Antonella Farina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Emanuele Miraglia del Giudice
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| | - Filomena Pascarella
- Pediatric Endocrinology Unit, Sant’Anna e San Sebastiano Hospital, Palasciano Street, 81100 Caserta, Italy
| | - Maria Rosaria Licenziati
- Neuro-Endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children’s Hospital, Via Egiziaca a Forcella, 18, 80139 Naples, Italy; (M.R.L.); (N.I.)
| | - Nicola Improda
- Neuro-Endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children’s Hospital, Via Egiziaca a Forcella, 18, 80139 Naples, Italy; (M.R.L.); (N.I.)
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Francesca Del Vecchio Blanco
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
| | - Mario Cirillo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square, 80138 Naples, Italy;
- MRI Research Center SUN-FISM, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square, 80138 Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Sant’Andrea delle Dame Square L. De Crecchio 7 Street, 80138 Naples, Italy; (A.F.); (G.P.); (A.T.); (F.D.V.B.); (V.N.)
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Anna Grandone
- Department of Child, Woman, General and Specialized Surgery, University of Campania “L. Vanvitelli”, L. De Crecchio 4 Street, 80138 Naples, Italy; (C.S.); (E.M.d.G.); (A.G.)
| |
Collapse
|
2
|
Dolgun H, Ülkü G, Elbir C, Dinç S, Şener B, Kavcar M, Kalindemirtaş M, Beger O. Relation of the Pituitary Gland With the Sella Turcica in Adult Patients With Chiari Malformation Type 1. J Craniofac Surg 2024:00001665-990000000-02150. [PMID: 39527721 DOI: 10.1097/scs.0000000000010867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE This study aims to assess the relation of the pituitary gland height (PGH) with the heights of the tuberculum sellae (TSH) and dorsum sellae (DSH) in adult patients with Chiari malformation type 1 (CM1). METHODS Magnetic resonance imaging (MRI) views of 50 CM1 patients aged 20 to 71 years and 50 controls aged 20 to 65 years were included in the study. RESULTS CM1 patients (6.29±1.24 mm) had statistically similar PGH to controls (6.63±1.18 mm, P=0.171). TSH (10.11±2.18 mm), and DSH (8.87±1.88 mm) of these patients were statistically smaller than TSH (11.28±2.07 mm) and DSH (10.50±1.62 mm) of controls (P<0.01). In CM1, there was one male patient (2%) with PGH > 10 mm, whereas in controls, there was no case with PGH > 10 mm. Two CM1 patients (4%) had taller PGH compared with DSH, and 1 CM1 patient (2%) had taller PGH compared with TSH. In controls, all PGHs were smaller than TSHs and DSHs. CONCLUSION In comparison with controls, CM1 patients had smaller TSH and DSH, but statistically similar PGH. Thus, a shallow sella on MRI image of a CM1 patient may result in the pituitary gland to appear longer than normal, and this may lead to erroneous diagnoses such as gland enlargement on their MRI images.
Collapse
Affiliation(s)
| | - Göktuğ Ülkü
- Department of Neurosurgery, Ankara Etlik City Hospital, Ankara
| | - Cagri Elbir
- Department of Neurosurgery, Ankara Etlik City Hospital, Ankara
| | - Samet Dinç
- Department of Neurosurgery, Ankara Etlik City Hospital, Ankara
| | - Burak Şener
- Department of Neurosurgery, Ankara Etlik City Hospital, Ankara
| | - Mustafa Kavcar
- Department of Neurosurgery, Ankara Etlik City Hospital, Ankara
| | | | - Orhan Beger
- Department of Anatomy, Faculty of Medicine, Gaziantep University, Gaziantep, Türkiye
| |
Collapse
|
3
|
Yan RE, Chae JK, Dahmane N, Ciaramitaro P, Greenfield JP. The Genetics of Chiari 1 Malformation. J Clin Med 2024; 13:6157. [PMID: 39458107 PMCID: PMC11508843 DOI: 10.3390/jcm13206157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Chiari malformation type 1 (CM1) is a structural defect that involves the herniation of the cerebellar tonsils through the foramen magnum, causing mild to severe neurological symptoms. Little is known about the molecular and developmental mechanisms leading to its pathogenesis, prompting current efforts to elucidate genetic drivers. Inherited genetic disorders are reported in 2-3% of CM1 patients; however, CM1, including familial forms, is predominantly non-syndromic. Recent work has focused on identifying CM1-asscoiated variants through the study of both familial cases and de novo mutations using exome sequencing. This article aims to review the current understanding of the genetics of CM1. We discuss three broad classes of CM1 based on anatomy and link them with genetic lesions, including posterior fossa-linked, macrocephaly-linked, and connective tissue disorder-linked CM1. Although the genetics of CM1 are only beginning to be understood, we anticipate that additional studies with diverse patient populations, tissue types, and profiling technologies will reveal new insights in the coming years.
Collapse
Affiliation(s)
- Rachel E. Yan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - John K. Chae
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - Nadia Dahmane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - Palma Ciaramitaro
- Neuroscience Department, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy;
| | - Jeffrey P. Greenfield
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| |
Collapse
|
4
|
Giugno A, Fichera V, Zanghì A, Vecchio M, Catalano M, Palmucci S, Belfiore G, Lavalle S, Polizzi A, Praticò AD. Anomalies of the Craniocervical Junction (Chiari Malformations). JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:359-365. [DOI: 10.1055/s-0044-1786792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractArnold Chiari malformations include a combination of posterior fossa, hindbrain, and cervical occipital junction abnormalities, sometimes associated with spinal cord abnormalities such as spina bifida, syringomyelia, and syringobulbia. The most frequent form is Chiari I syndrome but two other variants, progressively more severe, have been described. Chiari malformations are the result of defective development of posterior fossa and can be due to genetic mutations, skeletal malformations, and intrautero factors. Clinical manifestations depend on the compression of the nerve structures within the foramen magnum and the spinal canal and mainly consist in headache or neck pain, gait disturbances, sensory or motor abnormalities, and autonomic signs. However, a high number of cases of Chiari I is asymptomatic and the diagnosis is occasional. Diagnosis is performed through nuclear magnetic resonance imaging of the brain and cervical tract, although other investigations may support the diagnosis. First-line treatment for candidate patients is a surgical procedure that involves decompression of the posterior cranial fossa and the craniocervical junction, as well as correction of associated malformations with techniques that depend on the severity of the case. Anyhow, some symptomatic patients benefit from conservative medical treatment with nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Andrea Giugno
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Valeria Fichera
- Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Michele Vecchio
- Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Catalano
- Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Stefano Palmucci
- IPTRA Unit, Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Giuseppe Belfiore
- Unit of Radiology 1, Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Salvatore Lavalle
- Chair of Radiology, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| |
Collapse
|
5
|
Martel-Duguech L, Poirier J, Bourdeau I, Lacroix A. Diagnosis and management of secondary adrenal crisis. Rev Endocr Metab Disord 2024; 25:619-637. [PMID: 38411891 DOI: 10.1007/s11154-024-09877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
Adrenal crisis (AC) is a life threatening acute adrenal insufficiency (AI) episode which can occur in patients with primary AI but also secondary AI (SAI), tertiary AI (TAI) and iatrogenic AI (IAI). In SAI, TAI and IAI, AC may develop when the HPA axis is unable to mount an adequate glucocorticoid response to severe stress due to pituitary or hypothalamic disruption. It manifests as an acute deterioration in multi-organ homeostasis that, if untreated, leads to shock and death. Despite the availability of effective preventive strategies, its prevalence is increasing in patients with SAI, TAI and IAI due to more frequent exogenous steroid administration, pituitary immune-related effects of immune checkpoint inhibitors and opioid use in pain management. The delayed diagnosis of acute AI which remains infrequently suspected increases the risk of AC. Its main precipitating factors are infections, emotional distress, surgery, cessation or reduction in GC doses, pituitary infarction or surgical cure of endogenous Cushing's syndrome. In patients not known previously to have SAI/TAI/IAI, recognition of its symptoms, signs, and biochemical abnormalities can be challenging and cause delay in proper diagnosis and therapy. Effective therapy of AC is rapid intravenous administration of hydrocortisone (initial bolus of 100 mg followed by 200 mg/24 h as continuous infusion or bolus of 50 mg every 6 h) and 0.9% saline. In diagnosed patients, preventive education in sick-day rules adjustment of glucocorticoid replacement and hydrocortisone parenteral self-administration must be performed repeatedly by trained health care providers. Strategies to improve the adequate preventive education in patients at risk for secondary AI should be promoted in collaboration with various medical specialist societies and patients support associations.
Collapse
Affiliation(s)
- Luciana Martel-Duguech
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada
| | - Jonathan Poirier
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada.
| |
Collapse
|
6
|
Jee YH, Gangat M, Yeliosof O, Temnycky AG, Vanapruks S, Whalen P, Gourgari E, Bleach C, Yu CH, Marshall I, Yanovski JA, Link K, Ten S, Baron J, Radovick S. Evidence That the Etiology of Congenital Hypopituitarism Has a Major Genetic Component but Is Infrequently Monogenic. Front Genet 2021; 12:697549. [PMID: 34456972 PMCID: PMC8386283 DOI: 10.3389/fgene.2021.697549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/12/2021] [Indexed: 01/31/2023] Open
Abstract
Purpose Congenital hypopituitarism usually occurs sporadically. In most patients, the etiology remains unknown. Methods We studied 13 children with sporadic congenital hypopituitarism. Children with non-endocrine, non-familial idiopathic short stature (NFSS) (n = 19) served as a control group. Exome sequencing was performed in probands and both unaffected parents. A burden testing approach was used to compare the number of candidate variants in the two groups. Results First, we assessed the frequency of rare, predicted-pathogenic variants in 42 genes previously reported to be associated with pituitary gland development. The average number of variants per individual was greater in probands with congenital hypopituitarism than those with NFSS (1.1 vs. 0.21, mean variants/proband, P = 0.03). The number of probands with at least 1 variant in a pituitary-associated gene was greater in congenital hypopituitarism than in NFSS (62% vs. 21%, P = 0.03). Second, we assessed the frequency of rare, predicted-pathogenic variants in the exome (to capture undiscovered causes) that were inherited in a fashion that could explain the sporadic occurrence of the proband's condition with a monogenic etiology (de novo mutation, autosomal recessive, or X-linked recessive) with complete penetrance. There were fewer monogenic candidates in the probands with congenital hypopituitarism than those with NFSS (1.3 vs. 2.5 candidate variants/proband, P = 0.024). We did not find any candidate variants (0 of 13 probands) in genes previously reported to explain the phenotype in congenital hypopituitarism, unlike NFSS (8 of 19 probands, P = 0.01). Conclusion Our findings provide evidence that the etiology of sporadic congenital hypopituitarism has a major genetic component but may be infrequently monogenic with full penetrance, suggesting a more complex etiology.
Collapse
Affiliation(s)
- Youn Hee Jee
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mariam Gangat
- Division of Pediatric Endocrinology Rutgers Robert Wood Johnson Medical School Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Olga Yeliosof
- Division of Pediatric Endocrinology Rutgers Robert Wood Johnson Medical School Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Adrian G Temnycky
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Selena Vanapruks
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Philip Whalen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Evgenia Gourgari
- Division of Pediatric Endocrinology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Cortney Bleach
- Division of Pediatric Endocrinology, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Christine H Yu
- Section of Adult and Pediatric Endocrinology and Metabolism, University of Chicago, Chicago, IL, United States
| | - Ian Marshall
- Division of Pediatric Endocrinology Rutgers Robert Wood Johnson Medical School Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Jack A Yanovski
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Kathleen Link
- Division of Pediatric Endocrinology, Pediatric Subspecialists of Virginia, Fairfax, VA, United States
| | - Svetlana Ten
- Pediatric Endocrinology, Richmond University Medical Center, Staten Island, NY, United States
| | - Jeffrey Baron
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sally Radovick
- Division of Pediatric Endocrinology Rutgers Robert Wood Johnson Medical School Child Health Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
7
|
Louden ED, Poch A, Kim HG, Ben-Mahmoud A, Kim SH, Layman LC. Genetics of hypogonadotropic Hypogonadism-Human and mouse genes, inheritance, oligogenicity, and genetic counseling. Mol Cell Endocrinol 2021; 534:111334. [PMID: 34062169 DOI: 10.1016/j.mce.2021.111334] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Hypogonadotropic hypogonadism, which may be normosmic (nHH) or anosmic/hyposmic, known as Kallmann syndrome (KS), is due to gonadotropin-releasing hormone deficiency, which results in absent puberty and infertility. Investigation of the genetic basis of nHH/KS over the past 35 years has yielded a substantial increase in our understanding, as variants in 44 genes in OMIM account for ~50% of cases. The first genes for KS (ANOS1) and nHH (GNRHR) were followed by the discovery that FGFR1 variants may cause either nHH or KS. Associated anomalies include midline facial defects, neurologic deficits, cardiac anomalies, and renal agenesis, among others. Mouse models for all but one gene (ANOS1) generally support findings in humans. About half of the known genes implicated in nHH/KS are inherited as autosomal dominant and half are autosomal recessive, whereas only 7% are X-linked recessive. Digenic and oligogenic inheritance has been reported in 2-20% of patients, most commonly with variants in genes that may result in either nHH or KS inherited in an autosomal dominant fashion. In vitro analyses have only been conducted for both gene variants in eight cases and for one gene variant in 20 cases. Rigorous confirmation that two gene variants in the same individual cause the nHH/KS phenotype is lacking for most. Clinical diagnosis is probably best accomplished by targeted next generation sequencing of the known candidate genes with confirmation by Sanger sequencing. Elucidation of the genetic basis of nHH/KS has resulted in an enhanced understanding of this disorder, as well as normal puberty, which makes genetic diagnosis clinically relevant.
Collapse
Affiliation(s)
- Erica D Louden
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Alexandra Poch
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
8
|
Bosch i Ara L, Katugampola H, Dattani MT. Congenital Hypopituitarism During the Neonatal Period: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome. Front Pediatr 2021; 8:600962. [PMID: 33634051 PMCID: PMC7902025 DOI: 10.3389/fped.2020.600962] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Congenital hypopituitarism (CH) is characterized by a deficiency of one or more pituitary hormones. The pituitary gland is a central regulator of growth, metabolism, and reproduction. The anterior pituitary produces and secretes growth hormone (GH), adrenocorticotropic hormone, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, and prolactin. The posterior pituitary hormone secretes antidiuretic hormone and oxytocin. Epidemiology: The incidence is 1 in 4,000-1 in 10,000. The majority of CH cases are sporadic; however, a small number of familial cases have been identified. In the latter, a molecular basis has frequently been identified. Between 80-90% of CH cases remain unsolved in terms of molecular genetics. Pathogenesis: Several transcription factors and signaling molecules are involved in the development of the pituitary gland. Mutations in any of these genes may result in CH including HESX1, PROP1, POU1F1, LHX3, LHX4, SOX2, SOX3, OTX2, PAX6, FGFR1, GLI2, and FGF8. Over the last 5 years, several novel genes have been identified in association with CH, but it is likely that many genes remain to be identified, as the majority of patients with CH do not have an identified mutation. Clinical manifestations: Genotype-phenotype correlations are difficult to establish. There is a high phenotypic variability associated with different genetic mutations. The clinical spectrum includes severe midline developmental disorders, hypopituitarism (in isolation or combined with other congenital abnormalities), and isolated hormone deficiencies. Diagnosis and treatment: Key investigations include MRI and baseline and dynamic pituitary function tests. However, dynamic tests of GH secretion cannot be performed in the neonatal period, and a diagnosis of GH deficiency may be based on auxology, MRI findings, and low growth factor concentrations. Once a hormone deficit is confirmed, hormone replacement should be started. If onset is acute with hypoglycaemia, cortisol deficiency should be excluded, and if identified this should be rapidly treated, as should TSH deficiency. This review aims to give an overview of CH including management of this complex condition.
Collapse
Affiliation(s)
- Laura Bosch i Ara
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Harshini Katugampola
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Mehul T. Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
9
|
Abstract
The development of the anterior pituitary gland occurs in distinct sequential developmental steps, leading to the formation of a complex organ containing five different cell types secreting six different hormones. During this process, the temporal and spatial expression of a cascade of signaling molecules and transcription factors plays a crucial role in organ commitment, cell proliferation, patterning, and terminal differentiation. The morphogenesis of the gland and the emergence of distinct cell types from a common primordium are governed by complex regulatory networks involving transcription factors and signaling molecules that may be either intrinsic to the developing pituitary or extrinsic, originating from the ventral diencephalon, the oral ectoderm, and the surrounding mesenchyme. Endocrine cells of the pituitary gland are organized into structural and functional networks that contribute to the coordinated response of endocrine cells to stimuli; these cellular networks are formed during embryonic development and are maintained or may be modified in adulthood, contributing to the plasticity of the gland. Abnormalities in any of the steps of pituitary development may lead to congenital hypopituitarism that includes a spectrum of disorders from isolated to combined hormone deficiencies including syndromic disorders such as septo-optic dysplasia. Over the past decade, the acceleration of next-generation sequencing has allowed for rapid analysis of the patient genome to identify novel mutations and novel candidate genes associated with hypothalmo-pituitary development. Subsequent functional analysis using patient fibroblast cells, and the generation of stem cells derived from patient cells, is fast replacing the need for animal models while providing a more physiologically relevant characterization of novel mutations. Furthermore, CRISPR-Cas9 as the method for gene editing is replacing previous laborious and time-consuming gene editing methods that were commonly used, thus yielding knockout cell lines in a fraction of the time. © 2020 American Physiological Society. Compr Physiol 10:389-413, 2020.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Louise C Gregory
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| |
Collapse
|
10
|
Parkin K, Kapoor R, Bhat R, Greenough A. Genetic causes of hypopituitarism. Arch Med Sci 2020; 16:27-33. [PMID: 32051702 PMCID: PMC6963153 DOI: 10.5114/aoms.2020.91285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/24/2019] [Indexed: 01/13/2023] Open
Abstract
Hypopituitarism in neonates is rare, but has life-threatening complications if untreated. This review describes the features of hypopituitarism and the evidence for which infants in whom a genetic cause should be suspected. Importantly, neonates are often asymptomatic or present with non-specific symptoms. Hypopituitarism can be due to abnormal gland development as a result of genetic defects, which result from mutations in gene coding for transcription factors which regulate pituitary development. The mutations can be divided into those causing isolated hypopituitarism or those causing syndromes with associated hypopituitarism. The latter involve mutations in transcription factors which regulate pituitary, as well as extra-pituitary development. There is a paucity of evidence as to which patients should be investigated for genetic mutations, but detailed clinical and biochemical phenotyping with magnetic resonance imaging of the pituitary gland could help target those in whom genetic investigations would be most appropriate.
Collapse
Affiliation(s)
- Katherine Parkin
- King’s College London, Guy’s King’s and St Thomas School of Medicine, London, United Kingdom
| | - Ritika Kapoor
- Department of Paediatric Endocrinology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Ravindra Bhat
- Neonatal Intensive Care Centre, King’s College Hospital NHS Foundation Trust, London, United Kingdom
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, United Kingdom
| | - Anne Greenough
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, United Kingdom
- Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, United Kingdom
- NIHR Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, United Kingdom
| |
Collapse
|
11
|
Nwotchouang BST, Eppelheimer MS, Bishop P, Biswas D, Andronowski JM, Bapuraj JR, Frim D, Labuda R, Amini R, Loth F. Three-Dimensional CT Morphometric Image Analysis of the Clivus and Sphenoid Sinus in Chiari Malformation Type I. Ann Biomed Eng 2019; 47:2284-2295. [PMID: 31187348 DOI: 10.1007/s10439-019-02301-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
This study evaluated three-dimensional (3D) volumetric image reconstructions to identify morphological differences of the clivus and sphenoid sinus on computed tomography (CT) scans of Chiari malformation type I (CMI) and control subjects. Axial CT images of adult females for 30 CMI subjects and 30 age and body mass index (BMI) matched controls were used for this retrospective study. 3D volumetric reconstructions were created from the bone windows of axial data following image registration for position and orientation correction of the head. The volume, surface area, linear dimensions and spatial position in the x, y, and z-axes were computed separately for the clivus and the sphenoid sinus for each subject. Eleven parameters were found to be significantly different between CMI subjects compared to controls. Most notably, clivus volume was reduced by 31% on average in CMI subjects. In contrast, we found that the sphenoid sinus volume was 38% greater on average in CMI subjects. Moreover, clivus length, height, width, and thickness were 3.7, 2.8, 3.0 and 9.4 mm reduced, respectively, in CMI subjects. This is the first study to demonstrate cephalometric differences in the 3D morphology of the clivus and sphenoid sinus between CMI subjects and controls.
Collapse
Affiliation(s)
| | - Maggie S Eppelheimer
- Department of Biomedical Engineering, University of Akron, Akron, OH, 44325-3903, USA
| | - Paul Bishop
- Department of Biomedical Engineering, University of Akron, Akron, OH, 44325-3903, USA
- Department of Vascular Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Dipankar Biswas
- Department of Mechanical Engineering, University of Akron, Akron, OH, USA
| | | | - Jayapalli R Bapuraj
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI, USA
| | - David Frim
- Department of Neurosurgery, University of Chicago, Chicago, IL, USA
| | | | - Rouzbeh Amini
- Department of Biomedical Engineering, University of Akron, Akron, OH, 44325-3903, USA
| | - Francis Loth
- Department of Biomedical Engineering, University of Akron, Akron, OH, 44325-3903, USA
- Department of Mechanical Engineering, University of Akron, Akron, OH, USA
| |
Collapse
|
12
|
Dong X, Xie X, Guo L, Xu J, Xu M, Liang G, Gan L. Generation and characterization of Lhx4 tdT reporter knock-in and Lhx4 loxP conditional knockout mice. Genesis 2019; 57:e23328. [PMID: 31313880 PMCID: PMC6995401 DOI: 10.1002/dvg.23328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 11/06/2022]
Abstract
LHX4 is a LIM-homeodomain transcription factor essential for the development of spinal cord and pituitary gland. Mice with homozygous Lhx4-null mutation suffer early postnatal death from lung defect. In this study, to facilitate the research on Lhx4 function, we designed a targeting construct to generate two novel Lhx4 mouse lines: Lhx4 loxP conditional knockout and Lhx4 tdT reporter knock-in mice. Lhx4 tdT/+ , Lhx4 loxP/+ , and Lhx4 loxP/loxP were viable, fertile, and did not display any gross abnormalities. By breeding Lhx4 loxP line with Cre-expressing mice, the Exon 3 of Lhx4 was efficiently removed, resulting in a shift in the reading frame and the inactivation of Lhx4. The expression of tdTomato knock-in reporter recapitulated the endogenous LHX4 expression and was detected in the retina, spinal cord, pituitary gland, and hindbrain of Lhx4 tdT mice. Thus, Lhx4 tdT and Lhx4 loxP mouse lines provide valuable tools for unraveling the tissue-specific role of Lhx4 at postnatal stages in mice.
Collapse
Affiliation(s)
- Xuhui Dong
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaoling Xie
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
| | - Luming Guo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jiadong Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
| | - Mei Xu
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Guoqing Liang
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lin Gan
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
| |
Collapse
|
13
|
Cohen E, Maghnie M, Collot N, Leger J, Dastot F, Polak M, Rose S, Touraine P, Duquesnoy P, Tauber M, Copin B, Bertrand AM, Brioude F, Larizza D, Edouard T, González Briceño L, Netchine I, Oliver-Petit I, Sobrier ML, Amselem S, Legendre M. Contribution of LHX4 Mutations to Pituitary Deficits in a Cohort of 417 Unrelated Patients. J Clin Endocrinol Metab 2017; 102:290-301. [PMID: 27820671 DOI: 10.1210/jc.2016-3158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022]
Abstract
CONTEXT LHX4 encodes a LIM-homeodomain transcription factor that is implicated in early pituitary development. In humans, only 13 heterozygous LHX4 mutations have been associated with congenital hypopituitarism. OBJECTIVE The aims of this study were to evaluate the prevalence of LHX4 mutations in patients with hypopituitarism, to define the associated phenotypes, and to characterize the functional impact of the identified variants and the respective role of the 2 LIM domains of LHX4. DESIGN AND PATIENTS We screened 417 unrelated patients with isolated growth hormone deficiency or combined pituitary hormone deficiency associated with ectopic posterior pituitary and/or sella turcica anomalies for LHX4 mutations (Sanger sequencing). In vitro studies were performed to assess the functional consequences of the identified variants. RESULTS We identified 7 heterozygous variations, including p.(Tyr131*), p.(Arg48Thrfs*104), c.606+1G>T, p.Arg65Val, p.Thr163Pro, p.Arg221Gln, and p.Arg235Gln), that were associated with variable expressivity; 5 of the 7 were also associated with incomplete penetrance. The p.(Tyr131*), p.(Arg48Thrfs*104), p.Ala65Val, p.Thr163Pro, and p.Arg221Gln LHX4 variants are unable to transactivate the POU1F1 and GH promoters. As suggested by transactivation, subcellular localization, and protein-protein interaction studies, p.Arg235Gln is probably a rare polymorphism. Coimmunoprecipitation studies identified LHX3 as a potential protein partner of LHX4. As revealed by functional studies of LIM-defective recombinant LHX4 proteins, the LIM1 and LIM2 domains are not redundant. CONCLUSION This study, performed in the largest cohort of patients screened so far for LHX4 mutations, describes 6 disease-causing mutations that are responsible for congenital hypopituitarism. LHX4 mutations were found to be associated with variable expressivity, and most of them with incomplete penetrance; their contribution to pituitary deficits that are associated with an ectopic posterior pituitary and/or a sella turcica defect is ∼1.4% in the 417 probands tested.
Collapse
Affiliation(s)
- Enzo Cohen
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Unité Mixte de Recherche S933, F-75012, Paris, France
- INSERM, Unité Mixte de Recherche S933, F-75012, Paris, France
| | - Mohamad Maghnie
- Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico G. Gaslini, University of Genoa, I-16147, Genoa, Italy
| | - Nathalie Collot
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d'Embryologie Médicales, F-75012, Paris, France
| | - Juliane Leger
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Service d'Endocrinologie Pédiatrique, F-75019, Paris, France
| | - Florence Dastot
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d'Embryologie Médicales, F-75012, Paris, France
| | - Michel Polak
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Service d'Endocrinologie Pédiatrique, F-75015, Paris, France
| | - Sophie Rose
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d'Embryologie Médicales, F-75012, Paris, France
| | - Philippe Touraine
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Service d'Endocrinologie Pédiatrique, F-75013, Paris, France
| | | | - Maïté Tauber
- Centre Hospitalier Universitaire de Toulouse, Hôpital des Enfants, Service d'Endocrinologie et Génétique, F-70000, Toulouse, France
| | - Bruno Copin
- INSERM, Unité Mixte de Recherche S933, F-75012, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d'Embryologie Médicales, F-75012, Paris, France
| | - Anne-Marie Bertrand
- Centre Hospitalier Universitaire de Besançon, Service de Pédiatrie Endocrinologie, F-25000, Besançon, France
| | - Frederic Brioude
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, F-75012, Paris, France
| | - Daniela Larizza
- Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo Pavia and Department of Internal Medicine, University of Pavia, I-27100, Pavia, Italy
| | - Thomas Edouard
- Centre Hospitalier Universitaire de Toulouse, Hôpital des Enfants, Service d'Endocrinologie et Génétique, F-70000, Toulouse, France
| | - Laura González Briceño
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Service d'Endocrinologie Pédiatrique, F-75015, Paris, France
| | - Irène Netchine
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, F-75012, Paris, France
| | - Isabelle Oliver-Petit
- Centre Hospitalier Universitaire de Toulouse, Hôpital des Enfants, Service d'Endocrinologie et Génétique, F-70000, Toulouse, France
| | | | - Serge Amselem
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Unité Mixte de Recherche S933, F-75012, Paris, France
- INSERM, Unité Mixte de Recherche S933, F-75012, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d'Embryologie Médicales, F-75012, Paris, France
| | - Marie Legendre
- INSERM, Unité Mixte de Recherche S933, F-75012, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d'Embryologie Médicales, F-75012, Paris, France
| |
Collapse
|
14
|
Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LYM, Daly AZ, Ajmal A, Pérez Millán MI, Ozel AB, Kitzman JO, Mills RE, Li JZ, Camper SA. Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocr Rev 2016; 37:636-675. [PMID: 27828722 PMCID: PMC5155665 DOI: 10.1210/er.2016-1101] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023]
Abstract
The genetic basis for combined pituitary hormone deficiency (CPHD) is complex, involving 30 genes in a variety of syndromic and nonsyndromic presentations. Molecular diagnosis of this disorder is valuable for predicting disease progression, avoiding unnecessary surgery, and family planning. We expect that the application of high throughput sequencing will uncover additional contributing genes and eventually become a valuable tool for molecular diagnosis. For example, in the last 3 years, six new genes have been implicated in CPHD using whole-exome sequencing. In this review, we present a historical perspective on gene discovery for CPHD and predict approaches that may facilitate future gene identification projects conducted by clinicians and basic scientists. Guidelines for systematic reporting of genetic variants and assigning causality are emerging. We apply these guidelines retrospectively to reports of the genetic basis of CPHD and summarize modes of inheritance and penetrance for each of the known genes. In recent years, there have been great improvements in databases of genetic information for diverse populations. Some issues remain that make molecular diagnosis challenging in some cases. These include the inherent genetic complexity of this disorder, technical challenges like uneven coverage, differing results from variant calling and interpretation pipelines, the number of tolerated genetic alterations, and imperfect methods for predicting pathogenicity. We discuss approaches for future research in the genetics of CPHD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Akima S George
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michelle L Brinkmeier
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda H Mortensen
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Peter Gergics
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Leonard Y M Cheung
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Alexandre Z Daly
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Adnan Ajmal
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - María Ines Pérez Millán
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - A Bilge Ozel
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jacob O Kitzman
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Ryan E Mills
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jun Z Li
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Sally A Camper
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
15
|
Gregory LC, Humayun KN, Turton JPG, McCabe MJ, Rhodes SJ, Dattani MT. Novel Lethal Form of Congenital Hypopituitarism Associated With the First Recessive LHX4 Mutation. J Clin Endocrinol Metab 2015; 100:2158-64. [PMID: 25871839 PMCID: PMC4454798 DOI: 10.1210/jc.2014-4484] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND LHX4 encodes a member of the LIM-homeodomain family of transcription factors that is required for normal development of the pituitary gland. To date, only incompletely penetrant heterozygous mutations in LHX4 have been described in patients with variable combined pituitary hormone deficiencies. OBJECTIVE/HYPOTHESIS To report a unique family with a novel recessive variant in LHX4 associated with a lethal form of congenital hypopituitarism that was identified through screening a total of 97 patients. METHOD We screened 97 unrelated patients with combined pituitary hormone deficiency, including 65% with an ectopic posterior pituitary, for variants in the LHX4 gene using Sanger sequencing. Control databases (1000 Genomes, dbSNP, Exome Variant Server, ExAC Browser) were consulted upon identification of variants. RESULTS We identified the first novel homozygous missense variant (c.377C>T, p.T126M) in two deceased male patients of Pakistani origin with severe panhypopituitarism associated with anterior pituitary aplasia and posterior pituitary ectopia. Both were born small for gestational age with a small phallus, undescended testes, and mid-facial hypoplasia. The parents' first-born child was a female with mid-facial hypoplasia (DNA was unavailable). Despite rapid commencement of hydrocortisone and T4 in the brothers, all three children died within the first week of life. The LHX4(p.T126M) variant is located within the LIM2 domain, in a highly conserved location. The absence of homozygosity for the variant in over 65 000 controls suggests that it is likely to be responsible for the phenotype. CONCLUSION We report, for the first time to our knowledge, a novel homozygous mutation in LHX4 associated with a lethal phenotype, implying that recessive mutations in LHX4 may be incompatible with life.
Collapse
Affiliation(s)
- L C Gregory
- Developmental Endocrinology Research Group (L.C.G., J.P.G.T., M.J.M., M.T.D.), Genetics and Epigenetics in Health and Disease Unit, Genetic and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, United Kingdom; Department of Pediatrics and Child Health (K.N.H.), Aga Khan University, Karachi 74800, Pakistan; and Department of Biology (S.J.R.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - K N Humayun
- Developmental Endocrinology Research Group (L.C.G., J.P.G.T., M.J.M., M.T.D.), Genetics and Epigenetics in Health and Disease Unit, Genetic and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, United Kingdom; Department of Pediatrics and Child Health (K.N.H.), Aga Khan University, Karachi 74800, Pakistan; and Department of Biology (S.J.R.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - J P G Turton
- Developmental Endocrinology Research Group (L.C.G., J.P.G.T., M.J.M., M.T.D.), Genetics and Epigenetics in Health and Disease Unit, Genetic and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, United Kingdom; Department of Pediatrics and Child Health (K.N.H.), Aga Khan University, Karachi 74800, Pakistan; and Department of Biology (S.J.R.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - M J McCabe
- Developmental Endocrinology Research Group (L.C.G., J.P.G.T., M.J.M., M.T.D.), Genetics and Epigenetics in Health and Disease Unit, Genetic and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, United Kingdom; Department of Pediatrics and Child Health (K.N.H.), Aga Khan University, Karachi 74800, Pakistan; and Department of Biology (S.J.R.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - S J Rhodes
- Developmental Endocrinology Research Group (L.C.G., J.P.G.T., M.J.M., M.T.D.), Genetics and Epigenetics in Health and Disease Unit, Genetic and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, United Kingdom; Department of Pediatrics and Child Health (K.N.H.), Aga Khan University, Karachi 74800, Pakistan; and Department of Biology (S.J.R.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - M T Dattani
- Developmental Endocrinology Research Group (L.C.G., J.P.G.T., M.J.M., M.T.D.), Genetics and Epigenetics in Health and Disease Unit, Genetic and Genomic Medicine Programme, UCL Institute of Child Health, London WC1N 1EH, United Kingdom; Department of Pediatrics and Child Health (K.N.H.), Aga Khan University, Karachi 74800, Pakistan; and Department of Biology (S.J.R.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| |
Collapse
|
16
|
Rochette C, Jullien N, Saveanu A, Caldagues E, Bergada I, Braslavsky D, Pfeifer M, Reynaud R, Herman JP, Barlier A, Brue T, Enjalbert A, Castinetti F. Identifying the Deleterious Effect of Rare LHX4 Allelic Variants, a Challenging Issue. PLoS One 2015; 10:e0126648. [PMID: 25955177 PMCID: PMC4425544 DOI: 10.1371/journal.pone.0126648] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/06/2015] [Indexed: 11/18/2022] Open
Abstract
LHX4 is a LIM homeodomain transcription factor involved in the early steps of pituitary ontogenesis. To date, 8 heterozygous LHX4 mutations have been reported as responsible of combined pituitary hormone deficiency (CPHD) in Humans. We identified 4 new LHX4 heterozygous allelic variants in patients with congenital hypopituitarism: W204X, delK242, N271S and Q346R. Our objective was to determine the role of LHX4 variants in patients’ phenotypes. Heterologous HEK293T cells were transfected with plasmids encoding for wild-type or mutant LHX4. Protein expression was analysed by Western Blot, and DNA binding by electro-mobility shift assay experiments. Target promoters of LHX4 were cotransfected with wild type or mutant LHX4 to test the transactivating abilities of each variant. Our results show that the W204X mutation was associated with early GH and TSH deficiencies and later onset ACTH deficiency. It led to a truncated protein unable to bind to alpha-Gsu promoter binding consensus sequence. W204X was not able to activate target promoters in vitro. Cotransfection experiments did not favour a dominant negative effect. In contrast, all other mutants were able to bind the promoters and led to an activation similar as that observed with wild type LHX4, suggesting that they were likely polymorphisms. To conclude, our study underlines the need for functional in vitro studies to ascertain the role of rare allelic variants of LHX4 in disease phenotypes. It supports the causative role of the W204X mutation in CPHD and adds up childhood onset ACTH deficiency to the clinical spectrum of the various phenotypes related to LHX4 mutations.
Collapse
Affiliation(s)
- Claire Rochette
- Aix Marseille University, CNRS UMR7286, CRN2M, Faculté de médecine, Marseille, France and Reference Center for Rare Pituitary Diseases DEFHY, La Timone Hospital, Marseille, France
| | - Nicolas Jullien
- Aix Marseille University, CNRS UMR7286, CRN2M, Faculté de médecine, Marseille, France and Reference Center for Rare Pituitary Diseases DEFHY, La Timone Hospital, Marseille, France
| | - Alexandru Saveanu
- Aix Marseille University, CNRS UMR7286, CRN2M, Faculté de médecine, Marseille, France and Reference Center for Rare Pituitary Diseases DEFHY, La Timone Hospital, Marseille, France
- Laboratory of Molecular Endocrinology, La Conception Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | | | - Ignacio Bergada
- Centro de Investigaciones Endocrinologicas (CEDIE) « Dr. César Bergada » Division de Endocrinologia, Hospital de Ninos Ricardo Guttierrez, Buenos Aires, Argentina
| | - Debora Braslavsky
- Centro de Investigaciones Endocrinologicas (CEDIE) « Dr. César Bergada » Division de Endocrinologia, Hospital de Ninos Ricardo Guttierrez, Buenos Aires, Argentina
| | - Marija Pfeifer
- Univ med center Ljubjana, Department Endocrinology, Zaloska 7, Ljubjana, Slovenia
| | - Rachel Reynaud
- Aix Marseille University, CNRS UMR7286, CRN2M, Faculté de médecine, Marseille, France and Reference Center for Rare Pituitary Diseases DEFHY, La Timone Hospital, Marseille, France
| | - Jean-Paul Herman
- Aix Marseille University, CNRS UMR7286, CRN2M, Faculté de médecine, Marseille, France and Reference Center for Rare Pituitary Diseases DEFHY, La Timone Hospital, Marseille, France
| | - Anne Barlier
- Aix Marseille University, CNRS UMR7286, CRN2M, Faculté de médecine, Marseille, France and Reference Center for Rare Pituitary Diseases DEFHY, La Timone Hospital, Marseille, France
- Laboratory of Molecular Endocrinology, La Conception Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Thierry Brue
- Aix Marseille University, CNRS UMR7286, CRN2M, Faculté de médecine, Marseille, France and Reference Center for Rare Pituitary Diseases DEFHY, La Timone Hospital, Marseille, France
| | - Alain Enjalbert
- Aix Marseille University, CNRS UMR7286, CRN2M, Faculté de médecine, Marseille, France and Reference Center for Rare Pituitary Diseases DEFHY, La Timone Hospital, Marseille, France
- Laboratory of Molecular Endocrinology, La Conception Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Frederic Castinetti
- Aix Marseille University, CNRS UMR7286, CRN2M, Faculté de médecine, Marseille, France and Reference Center for Rare Pituitary Diseases DEFHY, La Timone Hospital, Marseille, France
- * E-mail:
| |
Collapse
|
17
|
Fuxman Bass JI, Sahni N, Shrestha S, Garcia-Gonzalez A, Mori A, Bhat N, Yi S, Hill DE, Vidal M, Walhout AJM. Human gene-centered transcription factor networks for enhancers and disease variants. Cell 2015; 161:661-673. [PMID: 25910213 PMCID: PMC4409666 DOI: 10.1016/j.cell.2015.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/26/2014] [Accepted: 01/30/2015] [Indexed: 01/16/2023]
Abstract
Gene regulatory networks (GRNs) comprising interactions between transcription factors (TFs) and regulatory loci control development and physiology. Numerous disease-associated mutations have been identified, the vast majority residing in non-coding regions of the genome. As current GRN mapping methods test one TF at a time and require the use of cells harboring the mutation(s) of interest, they are not suitable to identify TFs that bind to wild-type and mutant loci. Here, we use gene-centered yeast one-hybrid (eY1H) assays to interrogate binding of 1,086 human TFs to 246 enhancers, as well as to 109 non-coding disease mutations. We detect both loss and gain of TF interactions with mutant loci that are concordant with target gene expression changes. This work establishes eY1H assays as a powerful addition to the toolkit of mapping human GRNs and for the high-throughput characterization of genomic variants that are rapidly being identified by genome-wide association studies.
Collapse
Affiliation(s)
- Juan I Fuxman Bass
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nidhi Sahni
- Department of Cancer Biology, Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Shaleen Shrestha
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aurian Garcia-Gonzalez
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Akihiro Mori
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Numana Bhat
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Song Yi
- Department of Cancer Biology, Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David E Hill
- Department of Cancer Biology, Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Vidal
- Department of Cancer Biology, Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Albertha J M Walhout
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Cancer Biology, Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
18
|
Gergics P, Brinkmeier ML, Camper SA. Lhx4 deficiency: increased cyclin-dependent kinase inhibitor expression and pituitary hypoplasia. Mol Endocrinol 2015; 29:597-612. [PMID: 25668206 PMCID: PMC4399274 DOI: 10.1210/me.2014-1380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/06/2015] [Indexed: 12/30/2022] Open
Abstract
Defects in the Lhx4, Lhx3, and Pitx2 genes can cause combined pituitary hormone deficiency and pituitary hypoplasia in both humans and mice. Not much is known about the mechanism underlying hypoplasia in these mutants beyond generally increased cell death and poorly maintained proliferation. We identified both common and unique abnormalities in developmental regulation of key cell cycle regulator gene expression in each of these three mutants. All three mutants exhibit reduced expression of the proliferative marker Ki67 and the transitional marker p57. We discovered that expression of the cyclin-dependent kinase inhibitor 1a (Cdkn1a or p21) is expanded dorsally in the pituitary primordium of both Lhx3 and Lhx4 mutants. Uniquely, Lhx4 mutants exhibit reduced cyclin D1 expression and have auxiliary pouch-like structures. We show evidence for indirect and direct effects of LHX4 on p21 expression in αT3-1 pituitary cells. In summary, Lhx4 is necessary for efficient pituitary progenitor cell proliferation and restriction of p21 expression.
Collapse
Affiliation(s)
- Peter Gergics
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
19
|
Linkage disequilibrium and haplotype distribution of the bovine LHX4 gene in relation to growth. Gene 2014; 538:354-60. [DOI: 10.1016/j.gene.2013.12.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 11/20/2022]
|
20
|
Markunas CA, Enterline DS, Dunlap K, Soldano K, Cope H, Stajich J, Grant G, Fuchs H, Gregory SG, Ashley-Koch AE. Genetic evaluation and application of posterior cranial fossa traits as endophenotypes for Chiari type I malformation. Ann Hum Genet 2013; 78:1-12. [PMID: 24359474 DOI: 10.1111/ahg.12041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/21/2013] [Indexed: 11/29/2022]
Abstract
Chiari Type I Malformation (CMI) is characterized by herniation of the cerebellar tonsils through the base of the skull. Although cerebellar tonsillar herniation (CTH) is hypothesized to result from an underdeveloped posterior cranial fossa (PF), patients are frequently diagnosed by the extent of CTH without cranial morphometric assessment. We recently completed the largest CMI whole genome qualitative linkage screen to date. Despite an initial lack of statistical evidence, stratified analyses using clinical criteria to reduce heterogeneity resulted in a striking increase in evidence for linkage. The present study focused on the use of cranial base morphometrics to further dissect this heterogeneity and increase power to identify disease genes. We characterized the genetic contribution for a series of PF traits and evaluated the use of heritable, disease-relevant PF traits in ordered subset analysis (OSA). Consistent with a genetic hypothesis for CMI, much of the PF morphology was found to be heritable and multiple genomic regions were strongly implicated from OSA, including regions on Chromosomes 1 (LOD = 3.07, p = 3 × 10(-3) ) and 22 (LOD = 3.45, p = 6 × 10(-5) ) containing several candidates warranting further investigation. This study underscores the genetic heterogeneity of CMI and the utility of PF traits in CMI genetic studies.
Collapse
|
21
|
Tajima T, Ishizu K, Nakamura A. Molecular and Clinical Findings in Patients with LHX4 and OTX2 Mutations. Clin Pediatr Endocrinol 2013; 22:15-23. [PMID: 23990694 DOI: 10.1292/cpe.22.15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/28/2012] [Indexed: 11/22/2022] Open
Abstract
The pituitary gland produces hormones that play important roles in both the development and homeostasis of the body. Ontogeny of the anterior and posterior pituitary is orchestrated by inputs from neighboring tissues, cellular signaling molecules and transcription factors. Disruption of expression or function of these factors has been implicated in the etiology of combined pituitary hormone deficiency (CPHD). These include the transcription factors HESX1, PROP1, POU1F1, LHX3, LHX4, OTX2, SOX2, SOX3 and GLI2. This review focuses on summarizing most recent mutations in LHX4 and OTX2 responsible for pituitary hormone deficiency. In both genetic defects of LHX4 and OTX2, there is high variability in clinical manifestations even in the same family. In addition, there is no clear phenotype-genotype correlation. These findings indicate that the other genetic and/or environmental factors influence the phenotype. In addition, the variability might reflect a plasticity during pituitary development and maintenance. Over the past two decades, a genetic basis for pituitary hormone deficiency and the mechanism of pituitary development have been clarified. It should be kept in mind that this review is not comprehensive, and defects of other transcriptional factors have been described in patients with CPHD. Furthermore, the causes in many patients with CPHD have not yet been determined. Therefore, continuing efforts for the clarification of the etiology are necessary.
Collapse
Affiliation(s)
- Toshihiro Tajima
- Department of Pediatrics, Hokkaido University School of Medicine, Hokkaido, Japan
| | | | | |
Collapse
|
22
|
Abstract
The pituitary gland produces hormones that play
important roles in both the development and homeostasis of the body. Ontogeny of the
anterior and posterior pituitary is orchestrated by inputs from neighboring tissues,
cellular signaling molecules and transcription factors. Disruption of expression or
function of these factors has been implicated in the etiology of combined pituitary
hormone deficiency (CPHD). These include the transcription factors HESX1, PROP1, POU1F1,
LHX3, LHX4, OTX2, SOX2, SOX3 and GLI2. This review focuses on summarizing most recent
mutations in LHX4 and OTX2 responsible for pituitary
hormone deficiency. In both genetic defects of LHX4 and
OTX2, there is high variability in clinical manifestations even in the
same family. In addition, there is no clear phenotype-genotype correlation. These findings
indicate that the other genetic and/or environmental factors influence the phenotype. In
addition, the variability might reflect a plasticity during pituitary development and
maintenance. Over the past two decades, a genetic basis for pituitary hormone deficiency
and the mechanism of pituitary development have been clarified. It should be kept in mind
that this review is not comprehensive, and defects of other transcriptional factors have
been described in patients with CPHD. Furthermore, the causes in many patients with CPHD
have not yet been determined. Therefore, continuing efforts for the clarification of the
etiology are necessary.
Collapse
Affiliation(s)
- Toshihiro Tajima
- Department of Pediatrics, Hokkaido University School of Medicine, Hokkaido, Japan
| | | | | |
Collapse
|
23
|
Takagi M, Ishii T, Inokuchi M, Amano N, Narumi S, Asakura Y, Muroya K, Hasegawa Y, Adachi M, Hasegawa T. Gradual loss of ACTH due to a novel mutation in LHX4: comprehensive mutation screening in Japanese patients with congenital hypopituitarism. PLoS One 2012; 7:e46008. [PMID: 23029363 PMCID: PMC3454328 DOI: 10.1371/journal.pone.0046008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/23/2012] [Indexed: 11/18/2022] Open
Abstract
Mutations in transcription factors genes, which are well regulated spatially and temporally in the pituitary gland, result in congenital hypopituitarism (CH) in humans. The prevalence of CH attributable to transcription factor mutations appears to be rare and varies among populations. This study aimed to define the prevalence of CH in terms of nine CH-associated genes among Japanese patients. We enrolled 91 Japanese CH patients for DNA sequencing of POU1F1, PROP1, HESX1, LHX3, LHX4, SOX2, SOX3, OTX2, and GLI2. Additionally, gene copy numbers for POU1F1, PROP1, HESX1, LHX3, and LHX4 were examined by multiplex ligation-dependent probe amplification. The gene regulatory properties of mutant LHX4 proteins were characterized in vitro. We identified two novel heterozygous LHX4 mutations, namely c.249-1G>A, p.V75I, and one common POU1F1 mutation, p.R271W. The patient harboring the c.249-1G>A mutation exhibited isolated growth hormone deficiency at diagnosis and a gradual loss of ACTH, whereas the patient with the p.V75I mutation exhibited multiple pituitary hormone deficiency. In vitro experiments showed that both LHX4 mutations were associated with an impairment of the transactivation capacities of POU1F1 andαGSU, without any dominant-negative effects. The total mutation prevalence in Japanese CH patients was 3.3%. This study is the first to describe, a gradual loss of ACTH in a patient carrying an LHX4 mutation. Careful monitoring of hypothalamic–pituitary -adrenal function is recommended for CH patients with LHX4 mutations.
Collapse
Affiliation(s)
- Masaki Takagi
- Department of Pediatrics, Keio University School of Medicine Tokyo, Japan
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine Tokyo, Japan
| | - Mikako Inokuchi
- Department of Pediatrics, Keio University School of Medicine Tokyo, Japan
| | - Naoko Amano
- Department of Pediatrics, Keio University School of Medicine Tokyo, Japan
| | - Satoshi Narumi
- Department of Pediatrics, Keio University School of Medicine Tokyo, Japan
| | - Yumi Asakura
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Koji Muroya
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Yukihiro Hasegawa
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Masanori Adachi
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine Tokyo, Japan
- * E-mail:
| |
Collapse
|
24
|
Di Iorgi N, Allegri AEM, Napoli F, Bertelli E, Olivieri I, Rossi A, Maghnie M. The use of neuroimaging for assessing disorders of pituitary development. Clin Endocrinol (Oxf) 2012; 76:161-76. [PMID: 21955099 DOI: 10.1111/j.1365-2265.2011.04238.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Magnetic resonance imaging (MRI) is the radiological examination method of choice for evaluating hypothalamo-pituitary-related endocrine disease and is considered essential in the assessment of patients with suspected hypothalamo-pituitary pathology. Physicians involved in the care of such patients have, in MRI, a valuable tool that can aid them in determining the pathogenesis of their patients' underlying pituitary conditions. Indeed, the use of MRI has led to an enormous increase in our knowledge of pituitary morphology, improving, in particular, the differential diagnosis of hypopituitarism. Specifically, MRI allows detailed and precise anatomical study of the pituitary gland by differentiating between the anterior and posterior pituitary lobes. MRI recognition of pituitary hyperintensity in the posterior part of the sella, now considered a marker of neurohypophyseal functional integrity, has been the most striking finding in the diagnosis and understanding of certain forms of 'idiopathic' and permanent growth hormone deficiency (GHD). Published data show a number of correlations between pituitary abnormalities as observed on MRI and a patient's endocrine profile. Indeed, several trends have emerged and have been confirmed: (i) a normal MRI or anterior pituitary hypoplasia generally indicates isolated growth hormone deficiency that is mostly transient and resolves upon adult height achievement; (ii) patients with multiple pituitary hormone deficiencies (MPHD) seldom show a normal pituitary gland; and (iii) the classic triad of ectopic posterior pituitary, pituitary stalk hypoplasia/agenesis and anterior pituitary hypoplasia is more frequently reported in MPHD patients and is generally associated with permanent GHD. Pituitary abnormalities have also been reported in patients with hypopituitarism carrying mutations in several genes encoding transcription factors. Establishing endocrine and MRI phenotypes is extremely useful for the selection and management of patients with hypopituitarism, both in terms of possible genetic counselling and in the early diagnosis of evolving anterior pituitary hormone deficiencies. Going forward, neuroimaging techniques are expected to progressively expand and improve our knowledge and understanding of pituitary diseases.
Collapse
Affiliation(s)
- Natascia Di Iorgi
- Department of Paediatrics, IRCCS G. Gaslini, University of Genova, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Filges I, Bischof-Renner A, Röthlisberger B, Potthoff C, Glanzmann R, Günthard J, Schneider J, Huber AR, Zumsteg U, Miny P, Szinnai G. Panhypopituitarism presenting as life-threatening heart failure caused by an inherited microdeletion in 1q25 including LHX4. Pediatrics 2012; 129:e529-34. [PMID: 22232309 DOI: 10.1542/peds.2010-3849] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Clinical presentation of hypopituitarism in the neonate may be variable, ranging from absent to severe nonspecific symptoms and may be life-threatening in patients with adrenocorticotropic hormone deficiency. The LIM homeobox gene 4 (LHX4) transcription factor regulates early embryonic development of the anterior pituitary gland. Autosomal dominant mutations in LHX4 cause congenital hypopituitarism with variable combined pituitary hormone deficiency (CPHD). We report on a neonate with unexplained heart failure and minor physical anomalies, suggesting a midline defect. She was diagnosed with complete CPHD. Cardiac function was rescued by replacement with hydrocortisone and thyroxine; hypoglycaemia stopped under growth hormone therapy. Magnetic resonance imaging revealed a dysgenetic pituitary gland suggesting an early developmental defect. Array comparative genomic hybridization showed a maternally inherited 1.5-megabase microdeletion in 1q25.2q25.3, including the LHX4 gene. Haploinsufficiency of LHX4 likely explains the predominant pituitary phenotype in the proposita and we suggest variable intrafamilial penetrance of the inherited microdeletion. To the best of our knowledge, we are the first to report on heart failure as a rare nonspecific symptom of treatable CPHD in the newborn. Variably penetrant pituitary insufficiency, including this severe and atypical presentation, can be correlated with LHX4 insufficiency and highlights the role of LHX4 for pituitary development.
Collapse
Affiliation(s)
- Isabel Filges
- Division of Medical Genetics, University Children's Hospital and Department of Biomedicine, Burgfelderstrasse 101, Building J, CH- 4055 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Prince KL, Walvoord EC, Rhodes SJ. The role of homeodomain transcription factors in heritable pituitary disease. Nat Rev Endocrinol 2011; 7:727-37. [PMID: 21788968 DOI: 10.1038/nrendo.2011.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The anterior pituitary gland secretes hormones that regulate developmental and physiological processes, including growth, the stress response, metabolic status, reproduction and lactation. During embryogenesis, cellular determination and differentiation events establish specialized hormone-secreting cell types within the anterior pituitary gland. These developmental decisions are mediated in part by the actions of a cascade of transcription factors, many of which belong to the homeodomain class of DNA-binding proteins. The discovery of some of these regulatory proteins has facilitated genetic analyses of patients with hormone deficiencies. The findings of these studies reveal that congenital defects-ranging from isolated hormone deficiencies to combined pituitary hormone deficiency syndromes-are sometimes associated with mutations in the genes encoding pituitary-acting developmental transcription factors. The phenotypes of affected individuals and animal models have together provided useful insights into the biology of these transcription factors and have suggested new hypotheses for testing in the basic science laboratory. Here, we summarize the gene regulatory pathways that control anterior pituitary development, with emphasis on the role of the homeodomain transcription factors in normal pituitary organogenesis and heritable pituitary disease.
Collapse
Affiliation(s)
- Kelly L Prince
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Medical Science Room 362A, 635 North Barnhill Drive, Indianapolis, IN 46202-5120, USA
| | | | | |
Collapse
|
27
|
El Ansari N. Les hypogonadismes hypogonadotrophiques congénitaux masculins, quelles données récentes ? Basic Clin Androl 2011. [DOI: 10.1007/s12610-011-0127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Résumé
Les hypogonadismes hypogonadotrophiques congénitaux (HHC) sont un ensemble très hétérogène d’affections résultant d’un défaut de sécrétion des gonadotrophines hypophysaires en rapport avec un défaut de migration des neurones à GnRH ou secondaires à des anomalies organiques ou fonctionnelles de la commande hypothalamohypophysaire. Le déficit gonadotrope reste une cause rare d’hypogonadisme avec une prévalence mal précisée estimée à 1/5 000, il est responsable de manifestations cliniques en rapport avec la baisse de testostérone circulante variable en fonction de l’âge de leur expression. La classification des HHC, basée sur l’existence ou non d’anosmie, s’est enrichie ces deux dernières décennies par la découverte de nombreux gènes impliqués dans le développement et le fonctionnement de l’axe gonadotrope; cela a permis de mieux préciser les HHC et de proposer le conseil génétique dans les formes dominantes. Le but de ce travail est de faire le point sur les nouvelles connaissances qui ont permis de mieux préciser la physiopathologie et le cadre nosologique des HHC.
Collapse
|
28
|
Toldo I, Calderone M, Sartori S, Mardari R, Gatta M, Boniver C, Guerrini R, Battistella PA. Bilateral perisylvian polymicrogyria with cerebellar dysplasia and ectopic neurohypophysis. J Child Neurol 2011; 26:361-5. [PMID: 21273507 DOI: 10.1177/0883073810381447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Polymicrogyria (involving or not the sylvian scissure) with cerebellar cortical dysplasia or vermis hypoplasia has been reported in few cases. In addition, the association between ectopic neurohypophysis and other cortical malformations, including bilateral perisylvian polymicrogyria, has been documented. We describe a girl affected by focal epilepsy since the age of 2 years. Magnetic resonance imaging (MRI) at 11 and 22 years of age showed bilateral perisylvian polymicrogyria, dysplasia of the left cerebellar hemisphere, and ectopic neurohypophysis. Genetic tests, including fluorescent in situ hybridization 22q11.2 and array-comparative genomic hybridization, and pituitary hormones (at the age of 20 years) were normal. The patient is now 22 years old, and she is seizure free under therapy with lamotrigine and levetiracetam. To the best of our knowledge, this is the first description of this complex cerebral malformation. This finding confirms that bilateral perisylvian polymicrogyria can be associated with other cerebral malformations; cerebellum and neurohypophysis must be carefully evaluated in patients with polymicrogyria.
Collapse
Affiliation(s)
- Irene Toldo
- Department of Pediatrics, University Hospital of Padua, Padua, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Rybina OY, Pasyukova EG. A naturally occurring polymorphism at Drosophila melanogaster Lim3 Locus, a homolog of human LHX3/4, affects Lim3 transcription and fly lifespan. PLoS One 2010; 5:e12621. [PMID: 20838645 PMCID: PMC2935391 DOI: 10.1371/journal.pone.0012621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 08/05/2010] [Indexed: 11/18/2022] Open
Abstract
Lim3 encodes an RNA polymerase II transcription factor with a key role in neuron specification. It was also identified as a candidate gene that affects lifespan. These pleiotropic effects indicate the fundamental significance of the potential interplay between neural development and lifespan control. The goal of this study was to analyze the causal relationships between Lim3 structural variations, and gene expression and lifespan changes, and to provide insights into regulatory pathways controlling lifespan. Fifty substitution lines containing second chromosomes from a Drosophila natural population were used to analyze the association between lifespan and sequence variation in the 5'-regulatory region, and first exon and intron of Lim3A, in which we discovered multiple transcription start sites (TSS). The core and proximal promoter organization for Lim3A and a previously unknown mRNA named Lim3C were described. A haplotype of two markers in the Lim3A regulatory region was significantly associated with variation in lifespan. We propose that polymorphisms in the regulatory region affect gene transcription, and consequently lifespan. Indeed, five polymorphic markers located within 380 to 680 bp of the Lim3A major TSS, including two markers associated with lifespan variation, were significantly associated with the level of Lim3A transcript, as evaluated by real time RT-PCR in embryos, adult heads, and testes. A naturally occurring polymorphism caused a six-fold change in gene transcription and a 25% change in lifespan. Markers associated with long lifespan and intermediate Lim3A transcription were present in the population at high frequencies. We hypothesize that polymorphic markers associated with Lim3A expression are located within the binding sites for proteins that regulate gene function, and provide general rather than tissue-specific regulation of transcription, and that intermediate levels of Lim3A expression confer a selective advantage and longer lifespan.
Collapse
|
30
|
Kelberman D, Rizzoti K, Lovell-Badge R, Robinson ICAF, Dattani MT. Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 2009; 30:790-829. [PMID: 19837867 PMCID: PMC2806371 DOI: 10.1210/er.2009-0008] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.
Collapse
Affiliation(s)
- Daniel Kelberman
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Romero CJ, Nesi-França S, Radovick S. The molecular basis of hypopituitarism. Trends Endocrinol Metab 2009; 20:506-16. [PMID: 19854060 PMCID: PMC2787976 DOI: 10.1016/j.tem.2009.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/26/2009] [Accepted: 06/30/2009] [Indexed: 01/31/2023]
Abstract
Hypopituitarism is defined as the deficiency of one or more of the hormones secreted by the pituitary gland. Several developmental factors necessary for pituitary embryogenesis and hormone secretion have been described, and mutations of these genes in humans provide a molecular understanding of hypopituitarism. Genetic studies of affected patients and their families provide insights into possible mechanisms of abnormal pituitary development; however, mutations are rare. This review characterizes several of these developmental proteins and their role in the pathogenesis of hypopituitarism. Continuing research is required to better understand the complexities and interplay between these pituitary factors and to make improvements in genetic diagnosis that can lead to early detection and provide a future cure.
Collapse
Affiliation(s)
- Christopher J Romero
- Department of Pediatrics, The Johns Hopkins University School of Medicine, CMSC 4-106, Baltimore, MD 21208, USA
| | | | | |
Collapse
|
32
|
Abstract
The anterior pituitary gland is a central regulator of growth, reproduction and homeostasis. The development of the pituitary gland depends on the sequential temporal and spatial expression of transcription factors and signalling molecules. Naturally occurring and transgenic murine models have demonstrated a role for many of these molecules in the aetiology of congenital hypopituitarism. These include the transcription factors HESX1, PROP1, POU1F1, LHX3, LHX4, PITX1, PITX2, OTX2, SOX2 and SOX3. Mutations in any of the genes involved in pituitary development may result in congenital hypopituitarism, which manifests as the deficiency in one or more pituitary hormones. The phenotype can be highly variable and may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Neonates with congenital hypopituitarism may present with non-specific symptoms, with or without associated developmental defects such as ocular, midline and genital abnormalities. Alternatively, they may be initially asymptomatic but at risk of developing pituitary hormone deficiencies over time. The overall incidence of mutations in known transcription factors in patients with hypopituitarism is low, indicating that many genes remain to be identified. Their characterization will further elucidate the pathogenesis of this complex condition and will shed light on normal pituitary development.
Collapse
|
33
|
Ren G, Chen H, Zhang LZ, Lan XY, Wei TB, Li MJ, Jing YJ, Lei CZ, Wang JQ. A coding SNP of LHX4 gene is associated with body weight and body length in bovine. Mol Biol Rep 2009; 37:417-22. [PMID: 19283511 DOI: 10.1007/s11033-009-9486-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Heterozygous mutations in LHX4 are associated with combined pituitary hormone deficiency. In this study, the polymorphism of LHX4-HaeIII locus was revealed in 822 individuals from four Chinese cattle breeds. The PCR-RFLP analysis showed that there were three genotypes: GG, GA, AA. The frequencies of genotype GG ranged from 0.6620 to 0.9789 in analyzed populations. The genotypic frequencies of LHX4 locus in the four populations all agreed with Hardy-Weinberg equilibrium (P > 0.05). Distributions of genotypic frequencies of different breeds (QC, NY, JX, CH) at this locus were found to be significantly different based on a chi(2) test (P < 0.001). The genetic diversity analysis revealed the JX cattle possessed intermediate genetic diversity, and the other three Chinese cattle breeds belonged to poor genetic diversity. Correlation analysis with growth traits in the NY breed indicated that: the animals with genotype GA had greater body weight than those with genotype GG (P < 0.05); the animals with GA genotype owned significantly longer body length than the ones with GG genotype (P < 0.05) at 18 and 24 months.
Collapse
Affiliation(s)
- G Ren
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Shaanxi, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Roze C, Touraine P, Leger J, de Roux N. [Congenital hypogonadotropic hypogonadism]. ANNALES D'ENDOCRINOLOGIE 2009; 70:2-13. [PMID: 19200533 DOI: 10.1016/j.ando.2008.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 02/01/2023]
Abstract
Congenital hypogonadotropic hypogonadism is defined by reduced steroid hormone synthesis and secretion due to low LH and FSH secretion. It is a rare disease with an unknown prevalence (about 1/5000). It results from a fetal defect in GnRH neuron migration, a defect of pituitary development or from a functional defect of the hypothalamopituitary axis between GnRH neurons and gonadotropic cells. The diagnosis should be considered at birth in males with micropenis, during adolescence in case of delayed puberty or absent puberty, and during adulthood in case of infertility. It may be restricted to the gonadotropic axis, combined with other endocrine system defects or be part of a complex syndrome. Several gene defects have now been described. Molecular studies should be performed to confirm the diagnosis and to help provide appropriate genetic counseling. Treatment to induce puberty should be provided at adolescence, followed by hormonal substitution treatment during adulthood. Specific infertility treatment may also be proposed but patients with the dominant form of gonadotropic deficiency should be informed of the risk of transmission.
Collapse
Affiliation(s)
- C Roze
- Inserm U690, hôpital Robert-Debré, 75019 Paris, France
| | | | | | | |
Collapse
|
35
|
Current World Literature. Curr Opin Allergy Clin Immunol 2008; 8:590-3. [DOI: 10.1097/aci.0b013e32831ceb82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Castinetti F, Reynaud R, Saveanu A, Quentien MH, Albarel F, Enjalbert A, Barlier A, Brue T. Congenital pituitary hormone deficiencies: role of LHX3/LHX4 genes. Expert Rev Endocrinol Metab 2008; 3:751-760. [PMID: 30764064 DOI: 10.1586/17446651.3.6.751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
LHX3 and LHX4 are LIM domain transcription factors involved in the early steps of pituitary organogenesis. They are necessary for the proper differentiation of Rathke's pouch that gives rise to the anterior pituitary lobe. Mutations of these transcription factors are involved in congenital hypopituitarism: to date, nine mutations of LHX3 have been reported, responsible for variable pituitary hormone deficiencies and extrapituitary manifestations, including limited neck rotation. By contrast, only five LHX4 mutations have been reported, responsible for variable hormone deficiencies, and pituitary/intracranial abnormalities. Future investigations will aim to better understand human pituitary organogenesis and to shed light on the interspecies differences in the roles of these transcription factors.
Collapse
Affiliation(s)
- Frederic Castinetti
- a Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France
| | - Rachel Reynaud
- a Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France
| | - Alexandru Saveanu
- b Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France and Laboratoire de Biochimie-Biologie Moléculaire, Hôpital Conception, Marseille, France
| | - Marie-Helene Quentien
- a Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France
| | - Frederique Albarel
- a Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France
| | - Alain Enjalbert
- b Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France and Laboratoire de Biochimie-Biologie Moléculaire, Hôpital Conception, Marseille, France
| | - Anne Barlier
- b Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France and Laboratoire de Biochimie-Biologie Moléculaire, Hôpital Conception, Marseille, France
| | - Thierry Brue
- c Centre de Recherche en neurobiologie et neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des déficits hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France.
| |
Collapse
|
37
|
Li M, Lan X, Chen H, Zhang L, Jing Y, Ren G, Wei T, Wang X. The novel missense mutation of goat LHX4 gene. Small Rumin Res 2008. [DOI: 10.1016/j.smallrumres.2008.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Castinetti F, Saveanu A, Reynaud R, Quentien MH, Buffin A, Brauner R, Kaffel N, Albarel F, Guedj AM, El Kholy M, Amin M, Enjalbert A, Barlier A, Brue T. A novel dysfunctional LHX4 mutation with high phenotypical variability in patients with hypopituitarism. J Clin Endocrinol Metab 2008; 93:2790-9. [PMID: 18445675 DOI: 10.1210/jc.2007-2389] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CONTEXT LHX4 is a LIM homeodomain transcription factor involved in pituitary ontogenesis. Only a few heterozygous LHX4 mutations have been reported to be responsible for congenital pituitary hormone deficiency. SUBJECTS AND METHODS A total of 136 patients with congenital hypopituitarism associated with malformations of brain structures, pituitary stalk, or posterior pituitary gland was screened for LHX4 mutations. RESULTS Three novel allelic variants that cause predicted changes in the protein sequence of LHX4 (2.3%) were found (p.Thr99fs, p.Thr90Met, and p.Gly370Ser). On the basis of functional studies, p.Thr99fs mutation was responsible for the patients' phenotype, whereas p.Thr90Met and p.Gly370Ser were likely polymorphisms. Patients bearing the heterozygous p.Thr99fs mutation had variable phenotypes: two brothers presented somato-lactotroph and thyrotroph deficiencies, with pituitary hypoplasia and poorly developed sella turcica; the youngest brother (propositus) also had corpus callosum hypoplasia and ectopic neurohypophysis; their father only had somatotroph deficiency and delayed puberty with pituitary hyperplasia. Functional studies showed that the mutation induced a complete loss of transcriptional activity on POU1F1 promoter and a lack of DNA binding. Cotransfection of p.Thr99fs mutant and wild-type LHX4 failed to evidence any dominant negative effect, suggesting a mechanism of haploinsufficiency. We also identified prolactin and GH promoters as potential target genes of LHX4 and found that the p.Thr99fs mutant was also unable to transactivate these promoters. CONCLUSIONS The present report describes three new exonic LHX4 allelic variants with at least one being responsible for congenital hypopituitarism. It also extends the phenotypical heterogeneity associated with LHX4 mutations, which includes variable anterior pituitary hormone deficits, as well as pituitary and extrapituitary abnormalities.
Collapse
Affiliation(s)
- F Castinetti
- Department of Endocrinology, Hôpital de la Timone, 264 rue St Pierre cedex 5, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pfaeffle RW, Hunter CS, Savage JJ, Duran-Prado M, Mullen RD, Neeb ZP, Eiholzer U, Hesse V, Haddad NG, Stobbe HM, Blum WF, Weigel JFW, Rhodes SJ. Three novel missense mutations within the LHX4 gene are associated with variable pituitary hormone deficiencies. J Clin Endocrinol Metab 2008; 93:1062-71. [PMID: 18073311 PMCID: PMC2266965 DOI: 10.1210/jc.2007-1525] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The LHX4 LIM-homeodomain transcription factor has essential roles in pituitary gland and nervous system development. Heterozygous mutations in LHX4 are associated with combined pituitary hormone deficiency. OBJECTIVES Our objectives were to determine the nature and frequency of LHX4 mutations in patients with pituitary hormone deficiency and to examine the functional outcomes of observed mutations. DESIGN The LHX4 gene sequence was determined from patient DNA. The biochemical and gene regulatory properties of aberrant LHX4 proteins were characterized using structural predictions, pituitary gene transcription assays, and DNA binding experiments. PATIENTS A total of 253 patients from 245 pedigrees with GH deficiency and deficiency of at least one additional pituitary hormone was included in the study. RESULTS In five patients, three types of heterozygous missense mutations in LHX4 that result in substitution of conserved amino acids were identified. One substitution is between the LIM domains (R84C); the others are in the homeodomain (L190R; A210P). The patients have GH deficiency; some also display reductions in TSH, LH, FSH, or ACTH, and aberrant pituitary morphology. Structural models predict that the aberrant L190R and A210P LHX4 proteins would have impaired DNA binding and gene activation properties. Consistent with these models, EMSAs and transfection experiments using pituitary gene promoters demonstrate that whereas the R84C form has reduced activity, the L190R and A210P proteins are inactive. CONCLUSIONS LHX4 mutations are a relatively rare cause of combined pituitary hormone deficiency. This report extends the range of phenotypes associated with LHX4 gene mutations and describes three novel exonic mutations in the gene.
Collapse
|
40
|
Kim HG, Bhagavath B, Layman LC. Clinical manifestations of impaired GnRH neuron development and function. Neurosignals 2008; 16:165-82. [PMID: 18253056 DOI: 10.1159/000111561] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) and olfactory neurons migrate together in embryologic development, and disruption of this process causes idiopathic hypogonadotropic hypogonadism (IHH) with anosmia (Kallmann syndrome (KS)). Patients with IHH/KS generally manifest irreversible pubertal delay and subsequent infertility due to deficient pituitary gonadotropins or GnRH. The molecular basis of IHH/KS includes genes that: (1) regulate GnRH and olfactory neuron migration; (2) control the synthesis or secretion of GnRH; (3) disrupt GnRH action upon pituitary gonadotropes, or (4) interfere with pituitary gonadotropin synthesis or secretion. KS patients may also have midline facial defects indicating the diverse developmental functions of genes involved. Most causative genes cause either normosmic IHH or KS except FGFR1, which may cause either phenotype. Recently, several balanced chromosomal translocations have been identified in IHH/KS patients, which could lead to the identification of new disease-producing genes. Although there are two cases reported who have digenic disease, this awaits confirmation in future larger studies. The challenge will be to determine the importance of these genes in the 10-15% of couples with normal puberty who have infertility.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Obstetrics and Gynecology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-3360, USA
| | | | | |
Collapse
|