1
|
Sogl G, Pilling S, Fischer LJ, Ludwig J, Mihretu N, Bashtrykov P, Jeltsch A. Systematic analysis of specificities and flanking sequence preferences of bacterial DNA-(cytosine C5)-methyltransferases reveals mechanisms of enzyme- and sequence-specific DNA readout. Nucleic Acids Res 2025; 53:gkaf126. [PMID: 40037710 PMCID: PMC11879396 DOI: 10.1093/nar/gkaf126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
DNA-(cytosine C5)-methyltransferases (MTases) represent a large group of evolutionary related enzymes with specific DNA interaction. We systematically investigated the specificity and flanking sequence preferences of six bacterial enzymes of this class and many MTase mutants. We observed high (>1000-fold) target sequence specificity reflecting strong evolutionary pressure against unspecific DNA methylation. Strong flanking sequence preferences (∼100-fold) were observed which changed for methylation of near-cognate sites suggesting that the DNA structures in the transition states of the methylation of these sites differ. Mutation of amino acids involved in DNA contacts led to local changes of specificity and flanking sequence preferences, but also global effects indicating that larger conformational changes occur upon transition state formation. Based on these findings, we conclude that the transition state of the DNA methylation reaction precedes the covalent enzyme-DNA complex conformations with flipped target base that are resolved in structural studies. Moreover, our data suggest that alternative catalytically active conformations exist whose occupancy is modulated by enzyme-DNA contacts. Sequence dependent DNA shape analyses suggest that MTase flanking sequence preferences are caused by flanking sequence dependent modulation of the DNA conformation. Likely, many of these findings are transferable to other DNA MTases and DNA interacting proteins.
Collapse
Affiliation(s)
- Greta Sogl
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Sabrina Pilling
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Lukas F J Fischer
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Jan Ludwig
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Nahom Mihretu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Mensah IK, Norvil AB, He M, Lendy E, Hjortland N, Tan H, Pomerantz RT, Mesecar A, Gowher H. Development of a sensitive microplate assay for characterizing RNA methyltransferase activity: Implications for epitranscriptomics and drug development. J Biol Chem 2023; 299:105257. [PMID: 37716702 PMCID: PMC10582764 DOI: 10.1016/j.jbc.2023.105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023] Open
Abstract
RNA methylation is a ubiquitous post-transcriptional modification found in diverse RNA classes and is a critical regulator of gene expression. In this study, we used Zika virus RNA methyltransferase (MTase) to develop a highly sensitive microplate assay that uses a biotinylated RNA substrate and radiolabeled AdoMet coenzyme. The assay is fast, highly reproducible, exhibits linear progress-curve kinetics under multiple turnover conditions, has high sensitivity in competitive inhibition assays, and significantly lower background levels compared with the currently used method. Using our newly developed microplate assay, we observed no significant difference in the catalytic constants of the full-length nonstructural protein 5 enzyme and the truncated MTase domain. These data suggest that, unlike the Zika virus RNA-dependent RNA polymerase activity, the MTase activity is unaffected by RNA-dependent RNA polymerase-MTase interdomain interaction. Given its quantitative nature and accuracy, this method can be used to characterize various RNA MTases, and, therefore, significantly contribute to the field of epitranscriptomics and drug development against infectious diseases.
Collapse
Affiliation(s)
- Isaiah K Mensah
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Allison B Norvil
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Ming He
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Emma Lendy
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Nicole Hjortland
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Hern Tan
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Richard T Pomerantz
- Department Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - Andrew Mesecar
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
3
|
Thomas JM, Sasankan D, Abraham M, Surendran S, Kartha CC, Rajavelu A. DNA methylation signatures on vascular differentiation genes are aberrant in vessels of human cerebral arteriovenous malformation nidus. Clin Epigenetics 2022; 14:127. [PMID: 36229855 PMCID: PMC9563124 DOI: 10.1186/s13148-022-01346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/02/2022] [Indexed: 12/04/2022] Open
Abstract
Arteriovenous malformation (AVM) is a tangle of arteries and veins, rupture of which can result in catastrophic hemorrhage in vulnerable sites such as the brain. Cerebral AVM is associated with a high mortality rate in humans. The causative factor or the stimulus at the artery-venous junction and the molecular basis of the development and progression of cerebral AVM remain unknown. While it is known that aberrant hemodynamic forces in the artery-vein junction contribute to the development of AVMs, the mechanistic pathways are unclear. Given that various environmental stimuli modulate epigenetic modifications on the chromatin of cells, we speculated that misregulated DNA methylome could lead to cerebral AVM development. To identify the aberrant epigenetic signatures, we used AVM nidus tissues and analyzed the global DNA methylome using the Infinium DNA methylome array. We observed significant alterations of DNA methylation in the genes associated with the vascular developmental pathway. Further, we validated the DNA hypermethylation by DNA bisulfite sequencing analysis of selected genes from human cerebral AVM nidus. Taken together, we provide the first experimental evidence for aberrant epigenetic signatures on the genes of vascular development pathway, in human cerebral AVM nidus.
Collapse
Affiliation(s)
- Jaya Mary Thomas
- Cardio Vascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram, Kerala, India, 695014
| | - Dhakshmi Sasankan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India
| | - Mathew Abraham
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India, 695011
| | - Sumi Surendran
- Cardio Vascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram, Kerala, India, 695014
| | - Chandrasekharan C Kartha
- Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Arumugam Rajavelu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
4
|
Wang J, Catania S, Wang C, de la Cruz MJ, Rao B, Madhani HD, Patel DJ. Structural insights into DNMT5-mediated ATP-dependent high-fidelity epigenome maintenance. Mol Cell 2022; 82:1186-1198.e6. [PMID: 35202575 PMCID: PMC8956514 DOI: 10.1016/j.molcel.2022.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Epigenetic evolution occurs over million-year timescales in Cryptococcus neoformans and is mediated by DNMT5, the first maintenance type cytosine methyltransferase identified in the fungal or protist kingdoms, the first dependent on adenosine triphosphate (ATP), and the most hemimethyl-DNA-specific enzyme known. To understand these novel properties, we solved cryo-EM structures of CnDNMT5 in three states. These studies reveal an elaborate allosteric cascade in which hemimethylated DNA binding first activates the SNF2 ATPase domain by a large rigid body rotation while the target cytosine partially flips out of the DNA duplex. ATP binding then triggers striking structural reconfigurations of the methyltransferase catalytic pocket to enable cofactor binding, completion of base flipping, and catalysis. Bound unmethylated DNA does not open the catalytic pocket and is instead ejected upon ATP binding, driving high fidelity. This unprecedented chaperone-like, enzyme-remodeling role of the SNF2 ATPase domain illuminates how energy is used to enable faithful epigenetic memory.
Collapse
Affiliation(s)
- Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Sandra Catania
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chongyuan Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M Jason de la Cruz
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Beiduo Rao
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
5
|
Tacias-Pascacio VG, Morellon-Sterling R, Castañeda-Valbuena D, Berenguer-Murcia Á, Kamli MR, Tavano O, Fernandez-Lafuente R. Immobilization of papain: A review. Int J Biol Macromol 2021; 188:94-113. [PMID: 34375660 DOI: 10.1016/j.ijbiomac.2021.08.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Papain is a cysteine protease from papaya, with many applications due to its broad specificity. This paper reviews for first time the immobilization of papain on different supports (organic, inorganic or hybrid supports) presenting some of the features of the utilized immobilization strategies (e.g., epoxide, glutaraldehyde, genipin, glyoxyl for covalent immobilization). Special focus is placed on the preparation of magnetic biocatalysts, which will permit the simple recovery of the biocatalyst even if the medium is a suspension. Problems specific to the immobilization of proteases (e.g., steric problems when hydrolyzing large proteins) are also defined. The benefits of a proper immobilization (enzyme stabilization, widening of the operation window) are discussed, together with some artifacts that may suggest an enzyme stabilization that may be unrelated to enzyme rigidification.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Roberto Morellon-Sterling
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Daniel Castañeda-Valbuena
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddad 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddad 21589, Saudi Arabia
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Center of Excellence in Bionanoscience Research, External advisory board, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
6
|
Norvil AB, AlAbdi L, Liu B, Tu YH, Forstoffer NE, Michie A, Chen T, Gowher H. The acute myeloid leukemia variant DNMT3A Arg882His is a DNMT3B-like enzyme. Nucleic Acids Res 2020; 48:3761-3775. [PMID: 32123902 PMCID: PMC7144950 DOI: 10.1093/nar/gkaa139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
We have previously shown that the highly prevalent acute myeloid leukemia (AML) mutation, Arg882His, in DNMT3A disrupts its cooperative mechanism and leads to reduced enzymatic activity, thus explaining the genomic hypomethylation in AML cells. However, the underlying cause of the oncogenic effect of Arg882His in DNMT3A is not fully understood. Here, we discovered that DNMT3A WT enzyme under conditions that favor non-cooperative kinetic mechanism as well as DNMT3A Arg882His variant acquire CpG flanking sequence preference akin to that of DNMT3B, which is non-cooperative. We tested if DNMT3A Arg882His could preferably methylate DNMT3B-specific target sites in vivo. Rescue experiments in Dnmt3a/3b double knockout mouse embryonic stem cells show that the corresponding Arg878His mutation in mouse DNMT3A severely impairs its ability to methylate major satellite DNA, a DNMT3A-preferred target, but has no overt effect on the ability to methylate minor satellite DNA, a DNMT3B-preferred target. We also observed a previously unappreciated CpG flanking sequence bias in major and minor satellite repeats that is consistent with DNMT3A and DNMT3B specificity suggesting that DNA methylation patterns are guided by the sequence preference of these enzymes. We speculate that aberrant methylation of DNMT3B target sites could contribute to the oncogenic potential of DNMT3A AML variant.
Collapse
Affiliation(s)
- Allison B Norvil
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Lama AlAbdi
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yu Han Tu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nicole E Forstoffer
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Amie R Michie
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Narayanan N, Banerjee A, Jain D, Kulkarni DS, Sharma R, Nirwal S, Rao DN, Nair DT. Tetramerization at Low pH Licenses DNA Methylation Activity of M.HpyAXI in the Presence of Acid Stress. J Mol Biol 2020; 432:324-342. [DOI: 10.1016/j.jmb.2019.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 11/25/2022]
|
8
|
Emperle M, Rajavelu A, Kunert S, Arimondo PB, Reinhardt R, Jurkowska RZ, Jeltsch A. The DNMT3A R882H mutant displays altered flanking sequence preferences. Nucleic Acids Res 2019. [PMID: 29518238 PMCID: PMC5887309 DOI: 10.1093/nar/gky168] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The DNMT3A R882H mutation is frequently observed in acute myeloid leukemia (AML). It is located in the subunit and DNA binding interface of DNMT3A and has been reported to cause a reduction in activity and dominant negative effects. We investigated the mechanistic consequences of the R882H mutation on DNMT3A showing a roughly 40% reduction in overall DNA methylation activity. Biochemical assays demonstrated that R882H does not change DNA binding affinity, protein stability or subnuclear distribution of DNMT3A. Strikingly, DNA methylation experiments revealed pronounced changes in the flanking sequence preference of the DNMT3A-R882H mutant. Based on these results, different DNA substrates with selected flanking sequences were designed to be favored or disfavored by R882H. Kinetic analyses showed that the R882H favored substrate was methylated by R882H with 45% increased rate when compared with wildtype DNMT3A, while methylation of the disfavored substrate was reduced 7-fold. Our data expand the model of the potential carcinogenic effect of the R882H mutation by showing CpG site specific activity changes. This result suggests that R882 is involved in the indirect readout of flanking sequence preferences of DNMT3A and it may explain the particular enrichment of the R882H mutation in cancer patients by revealing mutation specific effects.
Collapse
Affiliation(s)
- Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Arumugam Rajavelu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Stefan Kunert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Paola B Arimondo
- CNRS ETaC FRE3600, Bât. IBCG. 118, Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Richard Reinhardt
- Max-Planck-Genomzentrum Köln, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
9
|
Rajavelu A, Lungu C, Emperle M, Dukatz M, Bröhm A, Broche J, Hanelt I, Parsa E, Schiffers S, Karnik R, Meissner A, Carell T, Rathert P, Jurkowska RZ, Jeltsch A. Chromatin-dependent allosteric regulation of DNMT3A activity by MeCP2. Nucleic Acids Res 2019; 46:9044-9056. [PMID: 30102379 PMCID: PMC6158614 DOI: 10.1093/nar/gky715] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Despite their central importance in mammalian development, the mechanisms that regulate the DNA methylation machinery and thereby the generation of genomic methylation patterns are still poorly understood. Here, we identify the 5mC-binding protein MeCP2 as a direct and strong interactor of DNA methyltransferase 3 (DNMT3) proteins. We mapped the interaction interface to the transcriptional repression domain of MeCP2 and the ADD domain of DNMT3A and find that binding of MeCP2 strongly inhibits the activity of DNMT3A in vitro. This effect was reinforced by cellular studies where a global reduction of DNA methylation levels was observed after overexpression of MeCP2 in human cells. By engineering conformationally locked DNMT3A variants as novel tools to study the allosteric regulation of this enzyme, we show that MeCP2 stabilizes the closed, autoinhibitory conformation of DNMT3A. Interestingly, the interaction with MeCP2 and its resulting inhibition were relieved by the binding of K4 unmodified histone H3 N-terminal tail to the DNMT3A-ADD domain. Taken together, our data indicate that the localization and activity of DNMT3A are under the combined control of MeCP2 and H3 tail modifications where, depending on the modification status of the H3 tail at the binding sites, MeCP2 can act as either a repressor or activator of DNA methylation.
Collapse
Affiliation(s)
- Arumugam Rajavelu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Cristiana Lungu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Alexander Bröhm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Julian Broche
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ines Hanelt
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Edris Parsa
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Sarah Schiffers
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Rahul Karnik
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas Carell
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
10
|
Dukatz M, Requena CE, Emperle M, Hajkova P, Sarkies P, Jeltsch A. Mechanistic Insights into Cytosine-N3 Methylation by DNA Methyltransferase DNMT3A. J Mol Biol 2019; 431:3139-3145. [PMID: 31229457 DOI: 10.1016/j.jmb.2019.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
Recently, it has been discovered that different DNA-(cytosine C5)-methyltransferases including DNMT3A generate low levels of 3mC [Rosic et al. (2018), Nat. Genet., 50, 452-459]. This reaction resulted in the co-evolution of DNMTs and ALKB2 DNA repair enzymes, but its mechanism remained elusive. Here, we investigated the catalytic mechanism of DNMT3A for cytosine N3 methylation. We generated several DNMT3A variants with mutated catalytic residues and measured their activities in 5mC and 3mC generation by liquid chromatography linked to tandem mass spectrometry. Our data suggest that the methylation of N3 instead of C5 is caused by an inverted binding of the flipped cytosine target base into the active-site pocket of the DNA methyltransferase, which is partially compatible with the arrangement of catalytic amino acid residues. Given that all DNA-(cytosine C5)-methyltransferases have a common catalytic mechanism, it is likely that other enzymes of this class generate 3mC following the same mechanism.
Collapse
Affiliation(s)
- Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Cristina E Requena
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Petra Hajkova
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
11
|
Emperle M, Dukatz M, Kunert S, Holzer K, Rajavelu A, Jurkowska RZ, Jeltsch A. The DNMT3A R882H mutation does not cause dominant negative effects in purified mixed DNMT3A/R882H complexes. Sci Rep 2018; 8:13242. [PMID: 30185810 PMCID: PMC6125428 DOI: 10.1038/s41598-018-31635-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022] Open
Abstract
The DNA methyltransferase DNMT3A R882H mutation is observed in 25% of all AML patients. DNMT3A is active as tetramer and the R882H mutation is located in one of the subunit/subunit interfaces. Previous work has reported that formation of mixed wildtype/R882H complexes leads to a strong loss of catalytic activity observed in in vitro DNA methylation assays (Russler-Germain et al., 2014, Cancer Cell 25:442–454). To investigate this effect further, we have prepared mixed wildtype/R882H DNMT3A complexes by incubation of individually purified subunits of the DNMT3A catalytic domain and full-length DNMT3A2. In addition, we have used a double affinity tag approach and specifically purified mixed catalytic domain complexes formed after co-expression of R882H and wildtype subunits in E. coli cells. Afterwards, we determined the catalytic activity of the mixed complexes and compared it to that of purified complexes only consisting of one subunit type. In both settings, the expected catalytic activities of mixed R882H/wildtype complexes were observed demonstrating an absence of a dominant negative effect of the R882H mutation in purified DNMT3A enzymes. This result suggests that heterocomplex formation of DNMT3A and R882H is unlikely to cause dominant negative effects in human cells as well. The limitations of this conclusion and its implications are discussed.
Collapse
Affiliation(s)
- Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Stefan Kunert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Katharina Holzer
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany
| | - Arumugam Rajavelu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.,Rajiv Gandhi Center for Biotechnology (RGCB), Trivandrum, 695014, Kerala, India
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.,BioMed X Innovation Center, Im Neuenheimer Feld 583, D-69120, Heidelberg, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
12
|
Norvil AB, Petell CJ, Alabdi L, Wu L, Rossie S, Gowher H. Dnmt3b Methylates DNA by a Noncooperative Mechanism, and Its Activity Is Unaffected by Manipulations at the Predicted Dimer Interface. Biochemistry 2018; 57:4312-4324. [PMID: 27768276 PMCID: PMC5992102 DOI: 10.1021/acs.biochem.6b00964] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The catalytic domains of the de novo DNA methyltransferases Dnmt3a-C and Dnmt3b-C are highly homologous. However, their unique biochemical properties could potentially contribute to differences in the substrate preferences or biological functions of these enzymes. Dnmt3a-C forms tetramers through interactions at the dimer interface, which also promote multimerization on DNA and cooperativity. Similar to the case for processive enzymes, cooperativity allows Dnmt3a-C to methylate multiple sites on the same DNA molecule; however, it is unclear whether Dnmt3b-C methylates DNA by a cooperative or processive mechanism. The importance of the tetramer structure and cooperative mechanism is emphasized by the observation that the R882H mutation in the dimer interface of DNMT3A is highly prevalent in acute myeloid leukemia and leads to a substantial loss of its activity. Under conditions that distinguish between cooperativity and processivity, we show that in contrast to that of Dnmt3a-C, the activity of Dnmt3b-C is not cooperative and confirm the processivity of Dnmt3b-C and the full length Dnmt3b enzyme. Whereas the R878H mutation (mouse homologue of R882H) led to the loss of cooperativity of Dnmt3a-C, the activity and processivity of the analogous Dnmt3b-C R829H variant were comparable to those of the wild-type enzyme. Additionally, buffer acidification that attenuates the dimer interface interactions of Dnmt3a-C had no effect on Dnmt3b-C activity. Taken together, these results demonstrate an important mechanistic difference between Dnmt3b and Dnmt3a and suggest that interactions at the dimer interface may play a limited role in regulating Dnmt3b-C activity. These new insights have potential implications for the distinct biological roles of Dnmt3a and Dnmt3b.
Collapse
Affiliation(s)
- Allison B. Norvil
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher J. Petell
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lama Alabdi
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lanchen Wu
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sandra Rossie
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Humaira Gowher
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Sergeev AV, Kirsanova OV, Loiko AG, Nomerotskaya EI, Gromova ES. Detection of DNA Methylation by Dnmt3a Methyltransferase using Methyl-Dependent Restriction Endonucleases. Mol Biol 2018. [DOI: 10.1134/s0026893318020139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Laurino P, Tóth-Petróczy Á, Meana-Pañeda R, Lin W, Truhlar DG, Tawfik DS. An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors. PLoS Biol 2016; 14:e1002396. [PMID: 26938925 PMCID: PMC4777477 DOI: 10.1371/journal.pbio.1002396] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/29/2016] [Indexed: 01/30/2023] Open
Abstract
Nucleoside-based cofactors are presumed to have preceded proteins. The Rossmann fold is one of the most ancient and functionally diverse protein folds, and most Rossmann enzymes utilize nucleoside-based cofactors. We analyzed an omnipresent Rossmann ribose-binding interaction: a carboxylate side chain at the tip of the second β-strand (β2-Asp/Glu). We identified a canonical motif, defined by the β2-topology and unique geometry. The latter relates to the interaction being bidentate (both ribose hydroxyls interacting with the carboxylate oxygens), to the angle between the carboxylate and the ribose, and to the ribose's ring configuration. We found that this canonical motif exhibits hallmarks of divergence rather than convergence. It is uniquely found in Rossmann enzymes that use different cofactors, primarily SAM (S-adenosyl methionine), NAD (nicotinamide adenine dinucleotide), and FAD (flavin adenine dinucleotide). Ribose-carboxylate bidentate interactions in other folds are not only rare but also have a different topology and geometry. We further show that the canonical geometry is not dictated by a physical constraint--geometries found in noncanonical interactions have similar calculated bond energies. Overall, these data indicate the divergence of several major Rossmann-fold enzyme classes, with different cofactors and catalytic chemistries, from a common pre-LUCA (last universal common ancestor) ancestor that possessed the β2-Asp/Glu motif.
Collapse
Affiliation(s)
- Paola Laurino
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ágnes Tóth-Petróczy
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Rubén Meana-Pañeda
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei Lin
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dan S. Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
15
|
Maier JAH, Albu RF, Jurkowski TP, Jeltsch A. Investigation of the C-terminal domain of the bacterial DNA-(adenine N6)-methyltransferase CcrM. Biochimie 2015; 119:60-7. [PMID: 26475175 DOI: 10.1016/j.biochi.2015.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/11/2015] [Indexed: 01/30/2023]
Abstract
CcrM-related DNA-(adenine N6)-methyltransferases play very important roles in the biology of Caulobacter crescentus and other alpha-proteobacteria. These enzymes methylate GANTC sequences, but the molecular mechanism by which they recognize their target sequence is unknown. We carried out multiple sequence alignments and noticed that CcrM enzymes contain a conserved C-terminal domain (CTD) which is not present in other DNA-(adenine N6)-methyltransferases and we show here that deletion of this part abrogates catalytic activity and DNA binding of CcrM. A mutational study identified 7 conserved residues in the CTD (out of 13 tested), mutation of which led to a strong reduction in catalytic activity. All of these mutants showed altered DNA binding, but no change in AdoMet binding and secondary structure. Some mutants exhibited reduced DNA binding, but others showed an enhanced DNA binding. Moreover, we show that CcrM does not specifically bind to DNA containing GANTC sequences. Taken together, these findings suggest that the specific CcrM-DNA complex undergoes a conformational change, which is endergonic but essential for catalytic activity and this step is blocked by some of the mutations. Moreover, our data indicate that the CTD of CcrM is involved in DNA binding and recognition. This suggests that the CTD functions as target recognition domain of CcrM and, therefore, CcrM can be considered the first example of a δ-type DNA-(adenine N6)-methyltransferase identified so far.
Collapse
Affiliation(s)
- Johannes A H Maier
- Institute of Biochemistry, Stuttgart University, 70569 Stuttgart, Germany
| | - Razvan F Albu
- Institute of Biochemistry, Stuttgart University, 70569 Stuttgart, Germany
| | - Tomasz P Jurkowski
- Institute of Biochemistry, Stuttgart University, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, 70569 Stuttgart, Germany.
| |
Collapse
|
16
|
Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 2014; 517:640-4. [PMID: 25383530 DOI: 10.1038/nature13899] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/29/2014] [Indexed: 12/18/2022]
Abstract
DNA methylation is an important epigenetic modification that is essential for various developmental processes through regulating gene expression, genomic imprinting, and epigenetic inheritance. Mammalian genomic DNA methylation is established during embryogenesis by de novo DNA methyltransferases, DNMT3A and DNMT3B, and the methylation patterns vary with developmental stages and cell types. DNA methyltransferase 3-like protein (DNMT3L) is a catalytically inactive paralogue of DNMT3 enzymes, which stimulates the enzymatic activity of Dnmt3a. Recent studies have established a connection between DNA methylation and histone modifications, and revealed a histone-guided mechanism for the establishment of DNA methylation. The ATRX-DNMT3-DNMT3L (ADD) domain of Dnmt3a recognizes unmethylated histone H3 (H3K4me0). The histone H3 tail stimulates the enzymatic activity of Dnmt3a in vitro, whereas the molecular mechanism remains elusive. Here we show that DNMT3A exists in an autoinhibitory form and that the histone H3 tail stimulates its activity in a DNMT3L-independent manner. We determine the crystal structures of DNMT3A-DNMT3L (autoinhibitory form) and DNMT3A-DNMT3L-H3 (active form) complexes at 3.82 and 2.90 Å resolution, respectively. Structural and biochemical analyses indicate that the ADD domain of DNMT3A interacts with and inhibits enzymatic activity of the catalytic domain (CD) through blocking its DNA-binding affinity. Histone H3 (but not H3K4me3) disrupts ADD-CD interaction, induces a large movement of the ADD domain, and thus releases the autoinhibition of DNMT3A. The finding adds another layer of regulation of DNA methylation to ensure that the enzyme is mainly activated at proper targeting loci when unmethylated H3K4 is present, and strongly supports a negative correlation between H3K4me3 and DNA methylation across the mammalian genome. Our study provides a new insight into an unexpected autoinhibition and histone H3-induced activation of the de novo DNA methyltransferase after its initial genomic positioning.
Collapse
|
17
|
Emperle M, Rajavelu A, Reinhardt R, Jurkowska RZ, Jeltsch A. Cooperative DNA binding and protein/DNA fiber formation increases the activity of the Dnmt3a DNA methyltransferase. J Biol Chem 2014; 289:29602-13. [PMID: 25147181 DOI: 10.1074/jbc.m114.572032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Dnmt3a DNA methyltransferase has been shown to bind cooperatively to DNA and to form large multimeric protein/DNA fibers. However, it has also been reported to methylate DNA in a processive manner, a property that is incompatible with protein/DNA fiber formation. We show here that the DNA methylation rate of Dnmt3a increases more than linearly with increasing enzyme concentration on a long DNA substrate, but not on a short 30-mer oligonucleotide substrate. We also show that addition of a catalytically inactive Dnmt3a mutant, which carries an amino acid exchange in the catalytic center, increases the DNA methylation rate by wild type Dnmt3a on the long substrate but not on the short one. In agreement with this finding, preincubation experiments indicate that stable protein/DNA fibers are formed on the long, but not on the short substrate. In addition, methylation experiments with substrates containing one or two CpG sites did not provide evidence for a processive mechanism over a wide range of enzyme concentrations. These data clearly indicate that Dnmt3a binds to DNA in a cooperative reaction and that the formation of stable protein/DNA fibers increases the DNA methylation rate. Fiber formation occurs at low μm concentrations of Dnmt3a, which are in the range of Dnmt3a concentrations in the nucleus of embryonic stem cells. Understanding the mechanism of Dnmt3a is of vital importance because Dnmt3a is a hotspot of somatic cancer mutations one of which has been implicated in changing Dnmt3a processivity.
Collapse
Affiliation(s)
- Max Emperle
- From the Institute of Biochemistry, Stuttgart University, D-70569 Stuttgart, Germany and
| | - Arumugam Rajavelu
- From the Institute of Biochemistry, Stuttgart University, D-70569 Stuttgart, Germany and
| | | | - Renata Z Jurkowska
- From the Institute of Biochemistry, Stuttgart University, D-70569 Stuttgart, Germany and
| | - Albert Jeltsch
- From the Institute of Biochemistry, Stuttgart University, D-70569 Stuttgart, Germany and
| |
Collapse
|
18
|
Asgatay S, Champion C, Marloie G, Drujon T, Senamaud-Beaufort C, Ceccaldi A, Erdmann A, Rajavelu A, Schambel P, Jeltsch A, Lequin O, Karoyan P, Arimondo PB, Guianvarc’h D. Synthesis and Evaluation of Analogues of N-Phthaloyl-l-tryptophan (RG108) as Inhibitors of DNA Methyltransferase 1. J Med Chem 2014; 57:421-34. [DOI: 10.1021/jm401419p] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saâdia Asgatay
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Christine Champion
- MNHN CNRS
UMR 7196, INSERM U565, 43 Rue Cuvier, 75005 Paris, France
- UPMC Université Paris 6, 75005 Paris, France
| | - Gaël Marloie
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Thierry Drujon
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | | | - Alexandre Ceccaldi
- MNHN CNRS
UMR 7196, INSERM U565, 43 Rue Cuvier, 75005 Paris, France
- UPMC Université Paris 6, 75005 Paris, France
| | - Alexandre Erdmann
- USR ETaC CNRS-Pierre Fabre No. 3388, CRDPF BP 13562, 3 Avenue Hubert Curien, 31100 Toulouse, France
| | - Arumugam Rajavelu
- Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Philippe Schambel
- Institut de Recherche Pierre
Fabre, Centre de Recherche Pierre Fabre, 17 Rue Jean Moulin, 81 106, Castres Cedex, France
| | - Albert Jeltsch
- Institute of Biochemistry, Faculty of Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Olivier Lequin
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Philippe Karoyan
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| | - Paola B. Arimondo
- MNHN CNRS
UMR 7196, INSERM U565, 43 Rue Cuvier, 75005 Paris, France
- USR ETaC CNRS-Pierre Fabre No. 3388, CRDPF BP 13562, 3 Avenue Hubert Curien, 31100 Toulouse, France
| | - Dominique Guianvarc’h
- Laboratoire des BioMolécules,
UMR 7203, Université Pierre et Marie Curie-Paris 6, ENS, CNRS, 4, Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
19
|
Ceccaldi A, Rajavelu A, Ragozin S, Sénamaud-Beaufort C, Bashtrykov P, Testa N, Dali-Ali H, Maulay-Bailly C, Amand S, Guianvarc’h D, Jeltsch A, Arimondo PB. Identification of novel inhibitors of DNA methylation by screening of a chemical library. ACS Chem Biol 2013; 8:543-8. [PMID: 23294304 DOI: 10.1021/cb300565z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In order to discover new inhibitors of the DNA methyltransferase 3A/3L complex, we used a medium-throughput nonradioactive screen on a random collection of 1120 small organic compounds. After a primary hit detection against DNA methylation activity of the murine Dnmt3A/3L catalytic complex, we further evaluated the EC50 of the 12 most potent hits as well as their cytotoxicity on DU145 prostate cancer cultured cells. Interestingly, most of the inhibitors showed low micromolar activities and little cytotoxicity. Dichlone, a small halogenated naphthoquinone, classically used as pesticide and fungicide, showed the lowest EC50 at 460 nM. We briefly assessed the selectivity of a subset of our new inhibitors against hDNMT1 and bacterial Dnmts, including M. SssI and EcoDam, and the protein lysine methyltransferase PKMT G9a and the mode of inhibition. Globally, the tested molecules showed a clear preference for the DNA methyltransferases, but poor selectivity among them. Two molecules including Dichlone efficiently reactivated YFP gene expression in a stable HEK293 cell line by promoter demethylation. Their efficacy was comparable to the DNMT inhibitor of reference 5-azacytidine.
Collapse
Affiliation(s)
- Alexandre Ceccaldi
- CNRS-MNHN UMR 7196, 43 rue Cuvier, 75005
Paris, France
- INSERM UR565, 43 rue Cuvier, 75005 Paris, France
- Université Pierre et Marie Curie, Paris 6, place Jussieu, 75005
Paris, France
| | - Arumugam Rajavelu
- Institute
of Biochemistry, Faculty
of Chemistry, University Stuttgart, Pfaffenwaldring
55, 70569 Stuttgart, Germany
| | - Sergey Ragozin
- Institute
of Biochemistry, Faculty
of Chemistry, University Stuttgart, Pfaffenwaldring
55, 70569 Stuttgart, Germany
| | | | - Pavel Bashtrykov
- Institute
of Biochemistry, Faculty
of Chemistry, University Stuttgart, Pfaffenwaldring
55, 70569 Stuttgart, Germany
| | - Noé Testa
- CNRS-MNHN UMR 7196, 43 rue Cuvier, 75005
Paris, France
- INSERM UR565, 43 rue Cuvier, 75005 Paris, France
| | - Hana Dali-Ali
- CNRS-MNHN UMR 7196, 43 rue Cuvier, 75005
Paris, France
- INSERM UR565, 43 rue Cuvier, 75005 Paris, France
| | | | - Séverine Amand
- CNRS-MNHN UMR 7245 RDDM, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Dominique Guianvarc’h
- UPMC Paris 06−ENS−CNRS,
UMR 7203, Laboratoire des Biomolécules and FR2769 Chimie Moléculaire, Université Pierre et Marie Curie, 4 place Jussieu,
75005 Paris, France
| | - Albert Jeltsch
- Institute
of Biochemistry, Faculty
of Chemistry, University Stuttgart, Pfaffenwaldring
55, 70569 Stuttgart, Germany
| | - Paola B. Arimondo
- CNRS-MNHN UMR 7196, 43 rue Cuvier, 75005
Paris, France
- INSERM UR565, 43 rue Cuvier, 75005 Paris, France
| |
Collapse
|
20
|
Rapid and sensitive method to identify Mycobacterium avium subsp. paratuberculosis in cow's milk by DNA methylase genotyping. Appl Environ Microbiol 2012; 79:1612-8. [PMID: 23275511 DOI: 10.1128/aem.02719-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Paratuberculosis is an infectious, chronic, and incurable disease that affects ruminants, caused by Mycobacterium avium subsp. paratuberculosis. This bacterium is shed primarily through feces of infected cows but can be also excreted in colostrum and milk and might survive pasteurization. Since an association of genomic sequences of M. avium subsp. paratuberculosis in patients with Crohn's disease has been described; it is of interest to rapidly detect M. avium subsp. paratuberculosis in milk for human consumption. IS900 insertion is used as a target for PCR amplification to identify the presence of M. avium subsp. paratuberculosis in biological samples. Two target sequences were selected: IS1 (155 bp) and IS2 (94 bp). These fragments have a 100% identity among all M. avium subsp. paratuberculosis strains sequenced. M. avium subsp. paratuberculosis was specifically concentrated from milk samples by immunomagnetic separation prior to performing PCR. The amplicons were characterized using DNA methylase Genotyping, i.e., the amplicons were methylated with 6-methyl-adenine and digested with restriction enzymes to confirm their identity. The methylated amplicons from 100 CFU of M. avium subsp. paratuberculosis can be visualized in a Western blot format using an anti-6-methyl-adenine monoclonal antibody. The use of DNA methyltransferase genotyping coupled to a scintillation proximity assay allows for the detection of up to 10 CFU of M. avium subsp. paratuberculosis per ml of milk. This test is rapid and sensitive and allows for automation and thus multiple samples can be tested at the same time.
Collapse
|
21
|
Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, Rots MG, Ragozin S, Jurkowski TP, Jeltsch A. Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 2012; 425:479-91. [PMID: 23220192 DOI: 10.1016/j.jmb.2012.11.038] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 02/08/2023]
Abstract
The C-terminal domain of the Dnmt3a de novo DNA methyltransferase (Dnmt3a-C) forms a complex with the C-terminal domain of Dnmt3L, which stimulates its catalytic activity. We generated and characterized single-chain (sc) fusion proteins of both these domains with linker lengths between 16 and 30 amino acid residues. The purified sc proteins showed about 10-fold higher DNA methylation activities than Dnmt3a-C in vitro and were more active in bacterial cells as well. After fusing the Dnmt3a-3L sc enzyme to an artificial zinc-finger protein targeting the vascular endothelial cell growth factor A (VEGF-A) promoter, we demonstrate successful targeting of DNA methylation to the VEGF-A promoter in human cells and observed that almost complete methylation of 12 CpG sites in the gene promoter could be achieved. Targeted methylation by the Dnmt3a-3L sc enzymes was about twofold higher than that of Dnmt3a-C, indicating that Dnmt3a-3L sc variants are more efficient as catalytic modules in chimeric DNA methyltransfeases than Dnmt3a-C. Targeted methylation of the VEGF-A promoter with the Dnmt3a-3L sc variant led to a strong silencing of VEGF-A expression, indicating that the artificial DNA methylation of an endogenous promoter is a powerful strategy to achieve silencing of the corresponding gene in human cells.
Collapse
Affiliation(s)
- Abu Nasar Siddique
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rockah-Shmuel L, Tawfik DS. Evolutionary transitions to new DNA methyltransferases through target site expansion and shrinkage. Nucleic Acids Res 2012; 40:11627-37. [PMID: 23074188 PMCID: PMC3526282 DOI: 10.1093/nar/gks944] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
DNA-binding and modifying proteins show high specificity but also exhibit a certain level of promiscuity. Such latent promiscuous activities comprise the starting points for new protein functions, but this hypothesis presents a paradox: a new activity can only evolve if it already exists. How then, do novel activities evolve? DNA methyltransferases, for example, are highly divergent in their target sites, but how transitions toward novel sites occur remains unknown. We performed laboratory evolution of the DNA methyltransferase M.HaeIII. We found that new target sites emerged primarily through expansion of the original site, GGCC, and the subsequent shrinkage of evolved expanded sites. Variants evolved for sites that are promiscuously methylated by M.HaeIII [GG(A/T)CC and GGCGCC] carried mutations in ‘gate-keeper’ residues. They could thereby methylate novel target sites such as GCGC and GGATCC that were neither selected for nor present in M.HaeIII. These ‘generalist’ intermediates were further evolved to obtain variants with novel target specificities. Our results demonstrate the ease by which new DNA-binding and modifying specificities evolve and the mechanism by which they occur at both the protein and DNA levels.
Collapse
Affiliation(s)
- Liat Rockah-Shmuel
- Department of Biological chemistry, Weizmann Institute of Science, Hertzel St, Rehovot 76100, Israel
| | | |
Collapse
|
23
|
DNA methylation inhibitors in cancer: recent and future approaches. Biochimie 2012; 94:2280-96. [PMID: 22967704 DOI: 10.1016/j.biochi.2012.07.025] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 07/30/2012] [Indexed: 12/14/2022]
Abstract
This review presents the different human DNA methyltransferases (DNMTs), their biological roles, their mechanisms of action and their role in cancer. The description of assays for detecting DNMT inhibitors (DNMTi) follows. The different known DNMTi are reported along with their advantages, drawbacks and clinical trials. A discussion on the features of the future DNMT inhibitors will conclude this review.
Collapse
|
24
|
Bashtrykov P, Ragozin S, Jeltsch A. Mechanistic details of the DNA recognition by the Dnmt1 DNA methyltransferase. FEBS Lett 2012; 586:1821-3. [DOI: 10.1016/j.febslet.2012.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
25
|
Albu RF, Zacharias M, Jurkowski TP, Jeltsch A. DNA Interaction of the CcrM DNA Methyltransferase: A Mutational and Modeling Study. Chembiochem 2012; 13:1304-11. [DOI: 10.1002/cbic.201200082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Indexed: 11/06/2022]
|
26
|
Halby L, Champion C, Sénamaud-Beaufort C, Ajjan S, Drujon T, Rajavelu A, Ceccaldi A, Jurkowska R, Lequin O, Nelson WG, Guy A, Jeltsch A, Guianvarc'h D, Ferroud C, Arimondo PB. Rapid Synthesis of New DNMT Inhibitors Derivatives of Procainamide. Chembiochem 2011; 13:157-65. [DOI: 10.1002/cbic.201100522] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Indexed: 11/06/2022]
|
27
|
Albu RF, Jurkowski TP, Jeltsch A. The Caulobacter crescentus DNA-(adenine-N6)-methyltransferase CcrM methylates DNA in a distributive manner. Nucleic Acids Res 2011; 40:1708-16. [PMID: 21926159 PMCID: PMC3287173 DOI: 10.1093/nar/gkr768] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The specificity and processivity of DNA methyltransferases have important implications regarding their biological functions. We have investigated the sequence specificity of CcrM and show here that the enzyme has a high specificity for GANTC sites, with only minor preferences at the central position. It slightly prefers hemimethylated DNA, which represents the physiological substrate. In a previous work, CcrM was reported to be highly processive [Berdis et al. (1998) Proc. Natl Acad. Sci. USA 95: 2874-2879]. However upon review of this work, we identified a technical error in the setup of a crucial experiment in this publication, which prohibits making any statement about the processivity of CcrM. In this study, we performed a series of in vitro experiments to study CcrM processivity. We show that it distributively methylates six target sites on the pUC19 plasmid as well as two target sites located on a 129-mer DNA fragment both in unmethylated and hemimethylated state. Reaction quenching experiments confirmed the lack of processivity. We conclude that the original statement that CcrM is processive is no longer valid.
Collapse
Affiliation(s)
- Razvan F Albu
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | |
Collapse
|
28
|
Rajavelu A, Jurkowska RZ, Fritz J, Jeltsch A. Function and disruption of DNA methyltransferase 3a cooperative DNA binding and nucleoprotein filament formation. Nucleic Acids Res 2011; 40:569-80. [PMID: 21926161 PMCID: PMC3258144 DOI: 10.1093/nar/gkr753] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The catalytic domain of Dnmt3a cooperatively multimerizes on DNA forming nucleoprotein filaments. Based on modeling, we identified the interface of Dnmt3a complexes binding next to each other on the DNA and disrupted it by charge reversal of critical residues. This prevented cooperative DNA binding and multimerization of Dnmt3a on the DNA, as shown by the loss of cooperative complex formation in electrophoretic mobility shift assay, the loss of cooperativity in DNA binding in solution, the loss of a characteristic 8- to 10-bp periodicity in DNA methylation and direct imaging of protein-DNA complexes by scanning force microscopy. Non-cooperative Dnmt3a-C variants bound DNA well and retained methylation activity, indicating that cooperative DNA binding and multimerization of Dnmt3a on the DNA are not required for activity. However, one non-cooperative variant showed reduced heterochromatic localization in mammalian cells. We propose two roles of Dnmt3a cooperative DNA binding in the cell: (i) either nucleofilament formation could be required for periodic DNA methylation or (ii) favorable interactions between Dnmt3a complexes may be needed for the tight packing of Dnmt3a at heterochromatic regions. The complex interface optimized for tight packing would then promote the cooperative binding of Dnmt3a to naked DNA in vitro.
Collapse
Affiliation(s)
- Arumugam Rajavelu
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | |
Collapse
|
29
|
Direct and continuous fluorescence-based measurements of Pyrococcus horikoshii DNA N-6 adenine methyltransferase activity. Anal Biochem 2011; 418:204-12. [PMID: 21839719 DOI: 10.1016/j.ab.2011.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/20/2011] [Indexed: 12/18/2022]
Abstract
N-6 methylation of adenine destabilises duplex DNA and this can increase the proportion of DNA that dissociates into single strands. We have investigated utilising this property to measure the DNA adenine methyltransferase-catalyzed conversion of hemimethylated to fully methylated DNA through a simple, direct, fluorescence-based assay. The effects of methylation on the kinetics and thermodynamics of hybridisation were measured by comparing a fully methylated oligonucleotide product and a hemimethylated oligonucleotide substrate using a 13-bp duplex labeled on adjacent strands with a fluorophore (fluorescein) and quencher (dabcyl). Enzymatic methylation of the hemimethylated GATC site resulted in destabilisation of the duplex, increasing the proportion of dissociated DNA, and producing an observable increase in fluorescence. The assay provides a direct measurement of methylation rate in real time and is highly reproducible, with a coefficient of variance over 48 independent measurements of 3.6%. DNA methylation rates can be measured as low as 3.55 ± 1.84 fmols(-1) in a 96-well plate format, and the assay has been used to kinetically characterise the Pyrococcus horikoshii DNA adenine methyltransferase.
Collapse
|
30
|
Hemeon I, Gutierrez JA, Ho MC, Schramm VL. Characterizing DNA methyltransferases with an ultrasensitive luciferase-linked continuous assay. Anal Chem 2011; 83:4996-5004. [PMID: 21545095 PMCID: PMC3115440 DOI: 10.1021/ac200816m] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA (cytosine-5)-methyltransferases (DNMTs) catalyze the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet) to the 5-position of cytosine residues and thereby silence transcription of regulated genes. DNMTs are important epigenetic targets. However, isolated DNMTs are weak catalysts and are difficult to assay. We report an ultrasensitive luciferase-linked continuous assay that converts the S-adenosyl-L-homocysteine product of DNA methylation to a quantifiable luminescent signal. Results with this assay are compared with the commonly used DNA labeling from [methyl-(3)H]AdoMet. A 5'-methylthioadenosine-adenosylhomocysteine nucleosidase is used to hydrolyze AdoHcy to adenine. Adenine phosphoribosyl transferase converts adenine to AMP and pyruvate orthophosphate dikinase converts AMP to ATP. Firefly luciferase gives a stable luminescent signal that results from continuous AMP recycling to ATP. This assay exhibits a broad dynamic range (0.1-1000 pmol of AdoHcy). The rapid response time permits continuous assays of DNA methylation detected by light output. The assay is suitable for high-throughput screening of chemical libraries for DNMT inhibition activity. The kinetic properties of human and bacterial CpG methyltransferases are characterized using this assay. Human catalytic domain DNMT3b activation by DNMT3L is shown to involve two distinct kinetic states that alter k(cat) but not K(m) for AdoMet. The assay is shown to be robust in the presence of high concentrations of the pyrimidine analogues 5-azacytidine and 5-azacytosine.
Collapse
Affiliation(s)
- Ivan Hemeon
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Jemy A. Gutierrez
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Meng-Chiao Ho
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
31
|
Ceccaldi A, Rajavelu A, Champion C, Rampon C, Jurkowska R, Jankevicius G, Sénamaud-Beaufort C, Ponger L, Gagey N, Dali Ali H, Tost J, Vriz S, Ros S, Dauzonne D, Jeltsch A, Guianvarc'h D, Arimondo PB. C5-DNA Methyltransferase Inhibitors: From Screening to Effects on Zebrafish Embryo Development. Chembiochem 2011; 12:1337-45. [DOI: 10.1002/cbic.201100130] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Indexed: 12/28/2022]
|
32
|
Roberts MD, Lockwood C, Dalbo VJ, Volek J, Kerksick CM. Ingestion of a high-molecular-weight hydrothermally modified waxy maize starch alters metabolic responses to prolonged exercise in trained cyclists. Nutrition 2011; 27:659-65. [PMID: 20951003 DOI: 10.1016/j.nut.2010.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 07/19/2010] [Accepted: 07/19/2010] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We examined whether the ingestion of a hydrothermally modified starch (HMS) would alter metabolic and hormonal responses to prolonged cycling compared with maltodextrin (MAL). METHODS Nine male cyclists (30 ± 2 y, 79.2 ± 2.1 kg, 4.7 ± 0.1 L of O(2)/min, 7.5 ± 1.3 y training) fasted 10 h before cycling for 150 min at 70% peak oxygen consumption and completing a cycling-to-exhaustion trial at 100% peak oxygen consumption. Participants ingested 1g/kg of HMS or MAL 30 min before and within 10 min of completing the bout. Blood samples were provided every 15 min before, during, and 90 min after exercise. Expired gases were collected every 30 min during exercise. In a crossover, randomized, and double-blind fashion, identical testing was completed 1 wk later. RESULTS Primary findings from this study were that 1) increases in serum glucose were greater during MAL (peak 9.5 mM) versus HMS (peak 7.4 mM, P ≤ 0.01), 2) insulin levels were significantly lower during HMS (peak 2.5 μIU/mL) versus MAL (peak 20.3 μIU/mL, P < 0.001), and 3) HMS was associated with greater fat breakdown as indicated by the increased serum non-esterified fatty acids (P < 0.01) and glycerol levels (P < 0.05). CONCLUSION Ingestion of a low-glycemic HMS before prolonged cycling exercise blunted the initial spike in serum glucose and insulin and increased the breakdown in fat compared with MAL.
Collapse
Affiliation(s)
- Michael D Roberts
- Department of Health & Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
| | | | | | | | | |
Collapse
|
33
|
Li BZ, Huang Z, Cui QY, Song XH, Du L, Jeltsch A, Chen P, Li G, Li E, Xu GL. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase. Cell Res 2011; 21:1172-81. [PMID: 21606950 DOI: 10.1038/cr.2011.92] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytosine methylation of genomic DNA controls gene expression and maintains genome stability. How a specific DNA sequence is targeted for methylation by a methyltransferase is largely unknown. Here, we show that histone H3 tails lacking lysine 4 (K4) methylation function as an allosteric activator for methyltransferase Dnmt3a by binding to its plant homeodomain (PHD). In vitro, histone H3 peptides stimulated the methylation activity of Dnmt3a up to 8-fold, in a manner reversely correlated with the level of K4 methylation. The biological significance of allosteric regulation was manifested by molecular modeling and identification of key residues in both the PHD and the catalytic domain of Dnmt3a whose mutations impaired the stimulation of methylation activity by H3 peptides but not the binding of H3 peptides. Significantly, these mutant Dnmt3a proteins were almost inactive in DNA methylation when expressed in mouse embryonic stem cells while their recruitment to genomic targets was unaltered. We therefore propose a two-step mechanism for de novo DNA methylation - first recruitment of the methyltransferase probably assisted by a chromatin- or DNA-binding factor, and then allosteric activation depending on the interaction between Dnmt3a and the histone tails - the latter might serve as a checkpoint for the methylation activity.
Collapse
Affiliation(s)
- Bin-Zhong Li
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rajavelu A, Tulyasheva Z, Jaiswal R, Jeltsch A, Kuhnert N. The inhibition of the mammalian DNA methyltransferase 3a (Dnmt3a) by dietary black tea and coffee polyphenols. BMC BIOCHEMISTRY 2011; 12:16. [PMID: 21510884 PMCID: PMC3102611 DOI: 10.1186/1471-2091-12-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/21/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Black tea is, second only to water, the most consumed beverage globally. Previously, the inhibition of DNA methyltransferase 1 was shown by dietary polyphenols and epi-gallocatechin gallate (EGCG), the main polyphenolic constituent of green tea, and 5-caffeoyl quinic acid, the main phenolic constituent of the green coffee bean. RESULTS We studied the inhibition of DNA methyltransferase 3a by a series of dietary polyphenols from black tea such as theaflavins and thearubigins and chlorogenic acid derivatives from coffee. For theaflavin 3,3 digallate and thearubigins IC50 values in the lower micro molar range were observed, which when compared to pharmacokinetic data available, suggest an effect of physiological relevance. CONCLUSIONS Since Dnnmt3a has been associated with development, cancer and brain function, these data suggest a biochemical mechanism for the beneficial health effect of black tea and coffee and a possible molecular mechanism for the improvement of brain performance and mental health by dietary polyphenols.
Collapse
Affiliation(s)
- Arumugam Rajavelu
- Biochemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Zumrad Tulyasheva
- MoLife program, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Rakesh Jaiswal
- Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Albert Jeltsch
- Biochemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Nikolai Kuhnert
- Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
35
|
Jurkowska RZ, Siddique AN, Jurkowski TP, Jeltsch A. Approaches to Enzyme and Substrate Design of the Murine Dnmt3a DNA Methyltransferase. Chembiochem 2011; 12:1589-94. [DOI: 10.1002/cbic.201000673] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Indexed: 11/11/2022]
|
36
|
Banerjee A, Rao DN. Functional analysis of an acid adaptive DNA adenine methyltransferase from Helicobacter pylori 26695. PLoS One 2011; 6:e16810. [PMID: 21347417 PMCID: PMC3036652 DOI: 10.1371/journal.pone.0016810] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/13/2011] [Indexed: 11/18/2022] Open
Abstract
HP0593 DNA-(N(6)-adenine)-methyltransferase (HP0593 MTase) is a member of a Type III restriction-modification system in Helicobacter pylori strain 26695. HP0593 MTase has been cloned, overexpressed and purified heterologously in Escherichia coli. The recognition sequence of the purified MTase was determined as 5'-GCAG-3'and the site of methylation was found to be adenine. The activity of HP0593 MTase was found to be optimal at pH 5.5. This is a unique property in context of natural adaptation of H. pylori in its acidic niche. Dot-blot assay using antibodies that react specifically with DNA containing m6A modification confirmed that HP0593 MTase is an adenine-specific MTase. HP0593 MTase occurred as both monomer and dimer in solution as determined by gel-filtration chromatography and chemical-crosslinking studies. The nonlinear dependence of methylation activity on enzyme concentration indicated that more than one molecule of enzyme was required for its activity. Analysis of initial velocity with AdoMet as a substrate showed that two molecules of AdoMet bind to HP0593 MTase, which is the first example in case of Type III MTases. Interestingly, metal ion cofactors such as Co(2+), Mn(2+), and also Mg(2+) stimulated the HP0593 MTase activity. Preincubation and isotope partitioning analyses clearly indicated that HP0593 MTase-DNA complex is catalytically competent, and suggested that DNA binds to the MTase first followed by AdoMet. HP0593 MTase shows a distributive mechanism of methylation on DNA having more than one recognition site. Considering the occurrence of GCAG sequence in the potential promoter regions of physiologically important genes in H. pylori, our results provide impetus for exploring the role of this DNA MTase in the cellular processes of H. pylori.
Collapse
Affiliation(s)
- Arun Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
37
|
Abstract
DNA methyltransferases are important enzymes and their inhibition has many potential applications. The investigation of DNA methyltransferases as well as screening for potential inhibitors requires specialized enzyme assays. In this chapter, we describe three DNA methyltransferase assays, each of them based on a different method: (1) An assay using radioactively labeled AdoMet and biotinylated DNA substrates that is ideal for enzymatic characterization of these enzymes. (2) An assay using bisulfite conversion of in vitro methylated DNA that is ideal to determine details of the methylation pattern introduced by DNA-(cytosine C5)-methyltransferases. (3) A novel fluorescence-coupled, restriction-based assay suitable for high-throughput screening of DNA methyltransferase inhibitors.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Biochemistry Lab, School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | | | | | | | | |
Collapse
|
38
|
Bheemanaik S, Sistla S, Krishnamurthy V, Arathi S, Desirazu NR. Kinetics of Methylation by EcoP1I DNA Methyltransferase. Enzyme Res 2010; 2010:302731. [PMID: 21048863 PMCID: PMC2962900 DOI: 10.4061/2010/302731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 06/21/2010] [Indexed: 11/20/2022] Open
Abstract
EcoP1I DNA MTase (M.EcoP1I), an N6-adenine MTase from bacteriophage P1, is a part of the EcoP1I restriction-modification (R-M) system which belongs to the Type III R-M system. It recognizes the sequence 5′-AGACC-3′ and methylates the internal adenine. M.EcoP1I requires Mg2+ for the transfer of methyl groups to DNA. M.EcoP1I is shown to exist as dimer in solution, and even at high salt concentrations (0.5 M) the dimeric M.EcoP1I does not dissociate into monomers suggesting a strong interaction between the monomer subunits. Preincubation and isotope partitioning studies with M.EcoP1I indicate a kinetic mechanism where the duplex DNA binds first followed by AdoMet. Interestingly, M.EcoP1I methylates DNA substrates in the presence of Mn2+ and Ca2+ other than Mg2+ with varying affinities. Amino acid analysis and methylation assays in the presence of metal ions suggest that M.EcoP1I has indeed two metal ion-binding sites [358ID(x)n … ExK401 and 600DxDxD604 motif]. EcoP1I DNA MTase catalyzes the transfer of methyl groups using a distributive mode of methylation on DNA containing more than one recognition site. A chemical modification of EcoP1I DNA MTase using N-ethylmaleimide resulted in an irreversible inactivation of enzyme activity suggesting the possible role of cysteine residues in catalysis.
Collapse
|
39
|
Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, Jeltsch A. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem 2010; 285:26114-20. [PMID: 20547484 DOI: 10.1074/jbc.m109.089433] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Dnmt3a DNA methyltransferase contains in its N-terminal part a PWWP domain that is involved in chromatin targeting. Here, we have investigated the interaction of the PWWP domain with modified histone tails using peptide arrays and show that it specifically recognizes the histone 3 lysine 36 trimethylation mark. H3K36me3 is known to be a repressive modification correlated with DNA methylation in mammals and heterochromatin in Schizosaccharomyces pombe. These results were confirmed by equilibrium peptide binding studies and pulldown experiments with native histones and purified native nucleosomes. The PWWP-H3K36me3 interaction is important for the subnuclear localization of enhanced yellow fluorescent protein-fused Dnmt3a. Furthermore, the PWWP-H3K36me3 interaction increases the activity of Dnmt3a for methylation of nucleosomal DNA as observed using native nucleosomes isolated from human cells after demethylation of the DNA with 5-aza-2'-deoxycytidine as substrate for methylation with Dnmt3a. These data suggest that the interaction of the PWWP domain with H3K36me3 is involved in targeting of Dnmt3a to chromatin carrying that mark, a model that is in agreement with several studies on the genome-wide distribution of DNA methylation and H3K36me3.
Collapse
Affiliation(s)
- Arunkumar Dhayalan
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Elsawy H, Podobinschi S, Chahar S, Jeltsch A. Transition from EcoDam to T4Dam DNA recognition mechanism without loss of activity and specificity. Chembiochem 2010; 10:2488-93. [PMID: 19725089 DOI: 10.1002/cbic.200900441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The EcoDam and T4Dam DNA-(adenine N6)-methyltransferases both methylate the adenine residue in GATC sites. These enzymes are highly related in amino acid sequence, but they deviate in their contact to the first base pair of the target sequence. EcoDam contacts Gua1 with K9 (which corresponds to T4Dam A6), while T4Dam contacts Gua1 with R130 (which corresponds to EcoDam Y138). We have "transplanted" the T4Dam DNA recognition into EcoDam and show that the EcoDam K9A/Y138R double mutant is highly active and specific. We also studied the intermediates of this transition: The EcoDam K9A variant showed low activity and loss of recognition of Gua1 [Horton, et al., J. Mol. Biol. 2006, 358, 559-570]. In contrast, the EcoDam Y138R variant, which carries both Gua1 recognition elements (K9 from EcoDam and R138 corresponding to R130 from T4Dam), is fully active and specific. This result indicates that a smooth evolutionary pathway exists for changing the EcoDam DNA recognition mode to T4Dam without loss of activity and without generation of evolutionary intermediates with reduced activity. We consistently observed increased activity of EcoDam variants containing Y138R; this suggests that the transition from EcoDam (Gua1 recognition through K9) to T4Dam (Gua1 recognition through R130) was driven by selective pressure towards increased catalytic activity.
Collapse
Affiliation(s)
- Hany Elsawy
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28725 Bremen, Germany
| | | | | | | |
Collapse
|
41
|
Wood RJ, McKelvie JC, Maynard-Smith MD, Roach PL. A real-time assay for CpG-specific cytosine-C5 methyltransferase activity. Nucleic Acids Res 2010; 38:e107. [PMID: 20139415 PMCID: PMC2875032 DOI: 10.1093/nar/gkq047] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A real-time assay for CpG-specific cytosine-C5 methyltransferase activity has been developed. The assay applies a break light oligonucleotide in which the methylation of an unmethylated 5′-CG-3′ site is enzymatically coupled to the development of a fluorescent signal. This sensitive assay can measure rates of DNA methylation down to 0.34 ± 0.06 fmol/s. The assay is reproducible, with a coefficient of variation over six independent measurements of 4.5%. Product concentration was accurately measured from fluorescence signals using a linear calibration curve, which achieved a goodness of fit (R2) above 0.98. The oligonucleotide substrate contains three C5-methylated cytosine residues and one unmethylated 5′-CG-3′ site. Methylation yields an oligonucleotide containing the optimal substrate for the restriction enzyme GlaI. Cleavage of the fully methylated oligonucleotide leads to separation of fluorophore from quencher, giving a proportional increase in fluorescence. This method has been used to assay activity of DNMT1, the principle maintenance methyltransferase in human cells, and for the kinetic characterization of the bacterial cytosine-C5 methyltransferase M.SssI. The assay has been shown to be suitable for the real-time monitoring of DNMT1 activity in a high-throughput format, with low background signal and the ability to obtain linear rates of methylation over long periods, making this a promising method of high-throughput screening for inhibitors.
Collapse
Affiliation(s)
- Robert J Wood
- School of Chemistry, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | | | | | | |
Collapse
|
42
|
Chahar S, Elsawy H, Ragozin S, Jeltsch A. Changing the DNA recognition specificity of the EcoDam DNA-(adenine-N6)-methyltransferase by directed evolution. J Mol Biol 2009; 395:79-88. [PMID: 19766657 DOI: 10.1016/j.jmb.2009.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/16/2009] [Accepted: 09/14/2009] [Indexed: 02/03/2023]
Abstract
EcoDam is an adenine-N6 DNA methyltransferase that methylates the GATC sites in the Escherichia coli genome. We have changed the target specificity of EcoDam from GATC to GATT by directed evolution, combining different random mutagenesis methods with restriction protection at GATT sites for selection and screening. By co-evolution of an enzyme library and a substrate library, we identified GATT as the best non-GATC site and discover a double mutation, R124S/P134S, as the first step to increase enzyme activity at GATT sites. After four generations of mutagenesis and selection, we obtained enzyme variants with new specificity for GATT. While the wild-type EcoDam shows no detectable activity at GATT sites in E. coli cells, some variants prefer methylation at GATT over GATC sites by about 10-fold in cells. In vitro DNA methylation kinetics carried out under single-turnover conditions using a hemimethylated GATC and a GATT oligonucleotide substrate confirmed that the evolved proteins prefer methylation of GATT sites to a similar degree. They show up to 1600-fold change in specificity in vitro and methylate the new GATT target site with 20% of the rate of GATC methylation by the wild-type enzyme, indicating good activity. We conclude that the new methyltransferases are fully functional in vivo and in vitro but show a new target-site specificity.
Collapse
Affiliation(s)
- Sanjay Chahar
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28725 Bremen, Germany
| | | | | | | |
Collapse
|
43
|
Vogel N, Schiebel K, Humeny A. Technologies in the Whole-Genome Age: MALDI-TOF-Based Genotyping. ACTA ACUST UNITED AC 2009; 36:253-262. [PMID: 21049076 DOI: 10.1159/000225089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/26/2009] [Indexed: 11/19/2022]
Abstract
With the decipherment of the human genome, new questions have moved into the focus of today's research. One key aspect represents the discovery of DNA variations capable to influence gene transcription, RNA splicing, or regulating processes, and their link to pathology. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) is a powerful tool for the qualitative investigation and relative quantification of variations like single nucleotide polymorphisms, DNA methylation, microsatellite instability, or loss of heterozygosity. After its introduction into proteomics, efforts were made to adopt this technique to DNA analysis. Initially intended for peptide/protein analysis, it held several difficulties for application to nucleic acids. Today, MALDI-TOF-MS has reached worldwide acceptance and application in nucleic acid research, with a wide spectrum of methods being available. One of the most versatile approaches relies on primer extension to genotype single alleles, microsatellite repeat lengths or the methylation status of a given cytosine. Optimized methods comprising intelligent primer design and proper nucleotide selection for primer extension enabled multiplexing of reactions, rendering the analysis more economic due to parallel genotyping of several alleles in a single experiment. Laboratories equipped with MALDI-TOF-MS possess a universal technical platform for the analysis of a large variety of different molecules.
Collapse
Affiliation(s)
- Nicolas Vogel
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
44
|
Frauer C, Leonhardt H. A versatile non-radioactive assay for DNA methyltransferase activity and DNA binding. Nucleic Acids Res 2009; 37:e22. [PMID: 19129216 PMCID: PMC2647308 DOI: 10.1093/nar/gkn1029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We present a simple, non-radioactive assay for DNA methyltransferase activity and DNA binding. As most proteins are studied as GFP fusions in living cells, we used a GFP binding nanobody coupled to agarose beads (GFP nanotrap) for rapid one-step purification. Immobilized GFP fusion proteins were subsequently incubated with different fluorescently labeled DNA substrates. The absolute amounts and molar ratios of GFP fusion proteins and bound DNA substrates were determined by fluorescence spectroscopy. In addition to specific DNA binding of GFP fusion proteins, the enzymatic activity of DNA methyltransferases can also be determined by using suicide DNA substrates. These substrates contain the mechanism-based inhibitor 5-aza-dC and lead to irreversible covalent complex formation. We obtained covalent complexes with mammalian DNA methyltransferase 1 (Dnmt1), which were resistant to competition with non-labeled canonical DNA substrates, allowing differentiation between methyltransferase activity and DNA binding. By comparison, the Dnmt1C1229W catalytic site mutant showed DNA-binding activity, but no irreversible covalent complex formation. With this assay, we could also confirm the preference of Dnmt1 for hemimethylated CpG sequences. The rapid optical read-out in a multi-well format and the possibility to test several different substrates in direct competition allow rapid characterization of sequence-specific binding and enzymatic activity.
Collapse
Affiliation(s)
- Carina Frauer
- Department of Biology, Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
45
|
Roberts MD, Dalbo VJ, Hassell SE, Stout JR, Kerksick CM. Efficacy and safety of a popular thermogenic drink after 28 days of ingestion. J Int Soc Sports Nutr 2008; 5:19. [PMID: 18950510 PMCID: PMC2579279 DOI: 10.1186/1550-2783-5-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/24/2008] [Indexed: 11/10/2022] Open
Abstract
Background We have recently demonstrated that consuming a thermogenic drink (TD) acutely increases energy expenditure and serum markers of lipolysis in healthy, college-aged individuals. The purpose of this study was to determine if consuming TD over 28 days affects its acute thermogenic and lipolytic effects as well as body composition and clinical chemistry safety markers. Methods Sixty healthy, males (mean ± SE; 23 ± 1 years, 177 ± 2 cm, 81.7 ± 2.1 kg, 22.8 ± 1.4% body fat; n = 30) and females (23 ± 1 years, 166 ± 2 cm, 62.1 ± 1.8 kg, 28.3 ± 1.4% body fat; n = 30) reported to the laboratory on day 0 (T1) for determination of body composition, resting energy expenditure (REE) as well as glycerol and free fatty acid (FFA) levels before and after ingesting either 336 ml of TD or a non-caloric, non-caffeinated placebo (PLA) drink. Following day 0, participants supplemented daily with 336 ml·day-1 of either TD or PLA and repeated identical testing procedures on day 28 (T2). Day 28 area under the curve (AUC) values were calculated for REE, FFA, and glycerol. Day 28 acute data and prolonged AUC comparisons between groups were analyzed using ANOVAs with repeated measures. Results Percent body fat (p = 0.02) and fat mass (p = 0.01) decreased in the TD group compared to the PLA group after 28 days. Day 28 FFA AUC values (p = 0.048) were greater in the TD group compared to the PLA group. There was no significant difference in day 28 REE AUC values (p = 0.30) or glycerol AUC values (p = 0.21), although a significant increase in REE values in the PLA group may have confounded these findings. There were no differences between groups concerning blood and clinical safety markers. Conclusion Within-group elevations in FFA and REE values in the TD group were still evident following a 28-day supplementation period which may contribute to the observed decrements in %BF. Further, prolonged TD supplementation did not alter the assessed clinical safety markers. Future studies should examine the synergistic and independent effects of the active ingredients in addition to effects of longer ingestion periods of TD ingestion with or without exercise at promoting and sustaining changes in body composition.
Collapse
Affiliation(s)
- Michael D Roberts
- Department of Health and Exercise Science, University of Oklahoma, 1401 Asp Ave, Norman, OK, USA.
| | | | | | | | | |
Collapse
|
46
|
Jurkowska RZ, Anspach N, Urbanke C, Jia D, Reinhardt R, Nellen W, Cheng X, Jeltsch A. Formation of nucleoprotein filaments by mammalian DNA methyltransferase Dnmt3a in complex with regulator Dnmt3L. Nucleic Acids Res 2008; 36:6656-63. [PMID: 18945701 PMCID: PMC2588524 DOI: 10.1093/nar/gkn747] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The C-terminal domains of Dnmt3a and Dnmt3L form elongated heterotetramers (3L-3a-3a-3L). Analytical ultracentrifugation confirmed the Dnmt3a-C/3L-C complex exists as a 2:2 heterotetramer in solution. The 3a–3a interface is the DNA-binding site, while both interfaces are essential for AdoMet binding and catalytic activity. Hairpin bisulfite analysis shows correlated methylation of two CG sites in a distance of ∼8-10 bp in the opposite DNA strands, which corresponds to the geometry of the two active sites in one Dnmt3a-C/3L-C tetramer. Correlated methylation was also observed for two CG sites at similar distances in the same DNA strand, which can be attributed to the binding of two tetramers next to each other. DNA-binding experiments show that Dnmt3a-C/3L-C complexes multimerize on the DNA. Scanning force microscopy demonstrates filament formation rather than binding of single tetramers and shows that protein–DNA filament formation leads to a 1.5-fold shortening of the DNA length.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Biochemistry Lab, School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Weyrich A, Tang X, Xu G, Schrattenholz A, Hunzinger C, Hennig W. Mammalian DNMTs in the male germ line DNA of Drosophila. Biochem Cell Biol 2008; 86:380-5. [PMID: 18923539 DOI: 10.1139/o08-096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
It is controversial whether DNA methylation plays a functional role in Drosophila. We have studied testis DNA of Drosophila melanogaster Meigen, 1830 with antisera against 5-methylcytosine (5mC) and found no evidence for the presence of significant amounts of 5mC. Reactions occur only with 1 of 3 5mC antisera, but they are restricted to nuclear regions without detectable amounts of DNA. The antisera apparently cross-react with other nuclear components. If the murine de novo DNA methyltransferases, DNMT3A and DNMT3B, are expressed under the control of the spermatocyte-specific beta2-tubulin promoter in testes, DNA methylation is not increased and no effects on the fertility of the fly are seen. DNA methylation has, therefore, no functional relevance in the male germ line of Drosophila.
Collapse
Affiliation(s)
- Alexandra Weyrich
- DAAD-Laboratory, MPG-Guest Laboratory, Shanghai Institutes for Biological Sciences, Chinese Acaademy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
48
|
Kumar R, Srivastava R, Singh RK, Surolia A, Rao DN. Activation and inhibition of DNA methyltransferases by S-adenosyl-l-homocysteine analogues. Bioorg Med Chem 2008; 16:2276-85. [DOI: 10.1016/j.bmc.2007.11.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/23/2007] [Accepted: 11/27/2007] [Indexed: 11/17/2022]
|
49
|
Dalbo VJ, Roberts MD, Stout JR, Kerksick CM. Acute effects of ingesting a commercial thermogenic drink on changes in energy expenditure and markers of lipolysis. J Int Soc Sports Nutr 2008; 5:6. [PMID: 18289388 PMCID: PMC2276475 DOI: 10.1186/1550-2783-5-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 02/20/2008] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND To determine the acute effects of ingesting a thermogenic drink (Celsius, Delray Beach, FL) (TD) on changes in metabolism and lipolysis. METHODS Healthy college-aged male (23.2 +/- 4.0 y, 177.2 +/- 6.1 cm, 81.7 +/- 11.3 kg, 22.8 +/- 7.3 % fat; n = 30) and female (23.4 +/- 3.1 y, 165.6 +/- 8.7 cm, 62.1 +/- 9.9 kg, 28.3 +/- 7.4 % fat; n = 30) participants were matched according to height and weight to consume 336 ml of the TD or a non-caloric, non-caffeinated placebo (PLA). After a 12 h fast, participants reported for pre-consumption measures of height, weight, heart rate, blood pressure, resting energy expenditure (REE), respiratory exchange ratio (RER), glycerol and free-fatty acid (FFA) concentrations. REE and RER were determined at 60, 120, and 180 min post-consumption. Serum glycerol and FFA concentrations were determined at 30, 60, 120 and 180 min post-consumption. RESULTS When compared to PLA, TD significantly increased REE at 60, 120 and 180 min (p < 0.05). FFA concentrations were significantly greater in TD compared to PLA at 30, 60, 120 and 180 min post-consumption (p < 0.05). No between-group differences were found in RER. CONCLUSION Acute TD ingestion significantly increased REE, FFA and glycerol appearance. If sustained, these changes may help to promote weight loss and improve body composition; however, these findings are currently unknown as are the general safety and efficacy of prolonged consumption.
Collapse
Affiliation(s)
- Vincent J Dalbo
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Michael D Roberts
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Jeffrey R Stout
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Chad M Kerksick
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
50
|
Liebert K, Jeltsch A. Detection and quantitation of the activity of DNA methyltransferases using a biotin/avidin microplate assay. Methods Mol Biol 2008; 418:149-156. [PMID: 18287657 DOI: 10.1007/978-1-59745-579-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The biotin-avidin microplate assay is a sensitive method to measure methylation of biotinylated oligonucleotide substrates by DNA methyltransferases (MTases). The methylation reaction is carried out in solution using [methyl-3H]-AdoMet. Afterwards, the oligonucleotides are immobilized on an avidin-coated microplate, where the incorporation of [3H]-labeled methyl groups into the DNA is stopped by addition of unlabeled AdoMet to the binding buffer. Separation of radioactively labeled DNA from unreacted AdoMet and enzyme is performed by washing steps. Subsequently, the radioactivity incorporated into the DNA is released by a nucleolytic digestion of the DNA. By liquid scintillation counting, the amount of DNA methylation can be determined. Advantages of the microplate assay are its high sensitivity which allows the detection of low amounts of DNA methylation, the efficient separation of reaction components resulting in a low background of radioactivity and a high accuracy (+/-10%) and reliability. Furthermore, the assay is very convenient, fast and well suited for automation.
Collapse
Affiliation(s)
- Kirsten Liebert
- School of Engineering and Science, International University Bremen, Bremen, Germany
| | | |
Collapse
|