1
|
Chandramouli C, Varma U, Stevens EM, Xiao RP, Stapleton DI, Mellor KM, Delbridge LMD. Myocardial glycogen dynamics: New perspectives on disease mechanisms. Clin Exp Pharmacol Physiol 2015; 42:415-25. [DOI: 10.1111/1440-1681.12370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 11/26/2022]
Affiliation(s)
| | - Upasna Varma
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
| | - Ellie M Stevens
- Department of Physiology; University of Auckland; Auckland New Zealand
| | - Rui-Ping Xiao
- Institute of Molecular Medicine; Peking University; Beijing China
| | - David I Stapleton
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
- The Florey Institute of Neuroscience; Melbourne Vic. Australia
| | - Kimberley M Mellor
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
- Department of Physiology; University of Auckland; Auckland New Zealand
| | - Lea MD Delbridge
- Department of Physiology; University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|
2
|
Nagendran J, Waller TJ, Dyck JRB. AMPK signalling and the control of substrate use in the heart. Mol Cell Endocrinol 2013; 366:180-93. [PMID: 22750050 DOI: 10.1016/j.mce.2012.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/29/2012] [Accepted: 06/21/2012] [Indexed: 12/21/2022]
Abstract
All mammalian cells rely on adenosine triphosphate (ATP) to maintain function and for survival. The heart has the highest basal ATP demand of any organ due to the necessity for continuous contraction. As such, the ability of the cardiomyocyte to monitor cellular energy status and adapt the supply of substrates to match the energy demand is crucial. One important serine/threonine protein kinase that monitors cellular energy status in the heart is adenosine monophosphate activated protein kinase (AMPK). AMPK is also a key enzyme that controls multiple catabolic and anabolic biochemical pathways in the heart and indirectly plays a crucial role in regulating cardiac function in both physiological and pathophysiological conditions. Herein, we review the involvement of AMPK in myocardial fatty acid and glucose transport and utilization, as it relates to basal cardiac function. We also assess the literature amassed on cardiac AMPK and discuss the controversies surrounding the role of AMPK in physiological and pathophysiological processes in the heart. The work reviewed herein also emphasizes areas that require further investigation for the purpose of eventually translating this information into improved patient care.
Collapse
Affiliation(s)
- Jeevan Nagendran
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
3
|
Wang Y, Zhang Y. Effects of Acute Bouts of Swimming Exercise on AMPKα2 Expression in Mouse Skeletal Muscle. J Exerc Sci Fit 2010. [DOI: 10.1016/s1728-869x(10)60002-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
4
|
Treebak JT, Birk JB, Hansen BF, Olsen GS, Wojtaszewski JFP. A-769662 activates AMPK β1-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle. Am J Physiol Cell Physiol 2009; 297:C1041-52. [DOI: 10.1152/ajpcell.00051.2009] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
5′-AMP-activated protein kinase (AMPK) regulates several aspects of metabolism. Recently, A-769662 was shown to activate AMPK in skeletal muscle. However, no biological effects of AMPK activation by A-769662 in this tissue have been reported. We hypothesized that A-769662 would increase glucose uptake in skeletal muscle. We studied incubated soleus and extensor digitorum longus (EDL) muscles from 129S6/sv and C57BL/6 mice. Glucose uptake increased only in soleus from 129S6/sv when concentrations of A-769662 were 500 μM (∼15%, P < 0.05) and 1 mM (∼60%, P < 0.01). AMPK β1- but not β2-containing complexes were dose dependently activated by A-769662 in muscles from both genotypes (∼100% at 200 μM and 300–600% at 1 mM). The discrepancy between the A-769662-induced AMPK activation pattern and stimulation of glucose uptake suggested that these effects were unrelated. A-769662 increased phosphorylation of Akt in both muscles from both genotypes, with phosphorylation of T308 being significantly higher in soleus than in EDL in 129S6/sv mice ( P < 0.01). In soleus from 129S6/sv mice, insulin receptor substrate 1-associated phosphatidylinositol 3 (PI3)-kinase activity was markedly increased with A-769662, and Akt phosphorylation and glucose uptake were inhibited by wortmannin while phosphorylation of acetyl-CoA carboxylase (S227) was unaffected. Thus, A-769662 activates β1-containing AMPK complexes in skeletal muscle but induces glucose uptake through a PI3-kinase-dependent pathway. Although development of A-769662 has constituted a step forward in the search for AMPK activators targeting specific AMPK trimers, our data suggest that in intact muscle, A-769662 has off-target effects. This may limit use of A-769662 to study the role of AMPK in skeletal muscle metabolism.
Collapse
Affiliation(s)
- Jonas T. Treebak
- Molecular Physiology Group, Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark; and
| | - Jesper B. Birk
- Molecular Physiology Group, Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark; and
| | | | | | - Jørgen F. P. Wojtaszewski
- Molecular Physiology Group, Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark; and
| |
Collapse
|
5
|
Cammisotto PG, Londono I, Gingras D, Bendayan M. Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats. Am J Physiol Renal Physiol 2008; 294:F881-9. [PMID: 18256313 DOI: 10.1152/ajprenal.00373.2007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Diabetic nephropathies are characterized by glycogen accumulation in distal tubular cells, which eventually leads to their apoptosis. The present study aims to determine whether adiponectin and AMPK are involved in the regulation of glycogen synthase (GS) in these structures. Western blots of isolated distal tubules revealed the presence of adiponectin receptor ADIPOR1, catalytic AMPK subunits alpha(1) and alpha(2), their phosphorylated active forms, and the glycogen-binding AMPK subunit beta(2). ADIPOR2 was not detected. Expression levels of ADIPOR1, AMPKalpha(1), AMPKalpha(2), and AMPKbeta(2) were increased in streptozotocin-treated diabetic rats, whereas phosphorylated active AMPK levels were strongly decreased. Immunohistochemistry revealed the presence of ADIPOR1 on the luminal portion of distal tubules and thick ascending limb cells. Catalytic subunits alpha(1) and alpha(2), their phosphorylated active forms, and the glycogen-binding subunit beta(2) were also found in the same cells, confirming immunoblot results. In vitro, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR; 2 mM) and globular adiponectin (10 mug/ml) activated catalytic AMPK in distal tubules isolated from kidneys of normal rats but much more weakly in those from diabetic rats. GS inhibition paralleled AMPK activation in both groups of animals: active GS levels were low in control animals and elevated in diabetic ones. Finally, glucose-6-phosphate, an allosteric activator of GS, was also increased in diabetic rats. These results demonstrate that in distal tubular cells, adiponectin through luminal ADIPOR1 activates AMPK, leading to the inhibition of GS. During hyperglycemia, this regulation is altered, which may explain, at least in part, the accumulation of large glycogen deposits.
Collapse
Affiliation(s)
- Philippe G Cammisotto
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
6
|
Rantzau C, Christopher M, Alford FP. Contrasting effects of exercise, AICAR, and increased fatty acid supply on in vivo and skeletal muscle glucose metabolism. J Appl Physiol (1985) 2007; 104:363-70. [PMID: 18032581 DOI: 10.1152/japplphysiol.00500.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The increased energy required for acute moderate exercise by skeletal muscle (SkM) is derived equally from enhanced fatty acid (FA) oxidation and glucose oxidation. Availability of FA also influences contracting SkM metabolic responses. Whole body glucose turnover and SkM glucose metabolic responses were determined in paired dog studies during 1) a 30-min moderate exercise (maximal oxygen consumption of approximately 60%) test vs. a 60-min low-dose 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion, 2) a 150-min AICAR infusion vs. modest elevation of FA induced by a 150-min combined intralipid-heparin (IL/hep) infusion, and 3) an acute exercise test performed with vs. without IL/hep. The exercise responses differed from those observed with AICAR: plasma FA and glycerol rose sharply with exercise, whereas FA fell and glycerol was unchanged with AICAR; glucose turnover and glycolytic flux doubled with exercise but rose only by 50% with AICAR; SkM glucose-6-phosphate rose and glycogen content decreased with exercise, whereas no changes occurred with AICAR. The metabolic responses to AICAR vs. IL/hep differed: glycolytic flux was stimulated by AICAR but suppressed by IL/hep, and no changes in glucose turnover occurred with IL/hep. Glucose turnover responses to exercise were similar in the IL/hep and non-IL/hep, but SkM lactate and glycogen concentrations rose with IL/hep vs. that shown with exercise alone. In conclusion, the metabolic responses to acute exercise are not mimicked by a single dose of AICAR or altered by short-term enhancement of fatty acid supply.
Collapse
Affiliation(s)
- C Rantzau
- Dept. of Endocrinology and Diabetes, 4th Floor Daly Wing, St Vincent's Health, 35 Victoria St., Fitzroy Victoria 3065, Australia
| | | | | |
Collapse
|
7
|
Akman HO, Sampayo JN, Ross FA, Scott JW, Wilson G, Benson L, Bruno C, Shanske S, Hardie DG, Dimauro S. Fatal infantile cardiac glycogenosis with phosphorylase kinase deficiency and a mutation in the gamma2-subunit of AMP-activated protein kinase. Pediatr Res 2007; 62:499-504. [PMID: 17667862 DOI: 10.1203/pdr.0b013e3181462b86] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A 10-wk-old infant girl with severe hypertrophy of the septal and atrial walls by cardiac ultrasound, developed progressive ventricular wall thickening and died of aspiration pneumonia at 5 mo of age. Postmortem examination revealed ventricular hypertrophy and massive atrial wall thickening due to glycogen accumulation. A skeletal muscle biopsy showed increased free glycogen and decreased activity of phosphorylase b kinase (PHK). The report of a pathogenic mutation (R531Q) in the gene (PRKAG2) encoding the gamma2 subunit of AMP-activated protein kinase (AMPK) in three infants with congenital hypertrophic cardiomyopathy, glycogen storage, and "pseudo PHK deficiency" prompted us to screen this gene in our patient. We found a novel (R384T) heterozygous mutation in PRKAG2, affecting an arginine residue in the N-terminal AMP-binding domain. Like R531Q, this mutation reduces the binding of AMP and ATP to the isolated nucleotide-binding domains, and prevents activation of the heterotrimer by metabolic stress in intact cells. The mutation was not found in DNA from the patient's father, the only available parent, and is likely to have arisen de novo. Our studies confirm that mutations in PRKAG2 can cause fatal infantile cardiomyopathy, often associated with apparent PHK deficiency.
Collapse
Affiliation(s)
- Hasan O Akman
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA, and Department of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Christopher M, Rantzau C, Chen ZP, Snow R, Kemp B, Alford FP. Impact of in vivo fatty acid oxidation blockade on glucose turnover and muscle glucose metabolism during low-dose AICAR infusion. Am J Physiol Endocrinol Metab 2006; 291:E1131-40. [PMID: 16772328 DOI: 10.1152/ajpendo.00518.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AMPK plays a central role in influencing fuel usage and selection. The aim of this study was to analyze the impact of low-dose AMP analog 5-aminoimidazole-4-carboxamide-1-beta-d-ribosyl monophosphate (ZMP) on whole body glucose turnover and skeletal muscle (SkM) glucose metabolism. Dogs were restudied after prior 48-h fatty acid oxidation (FA(OX)) blockade by methylpalmoxirate (MP; 5 x 12 hourly 10 mg/kg doses). During the basal equilibrium period (0-150 min), fasting dogs (n = 8) were infused with [3-(3)H]glucose followed by either 2-h saline or AICAR (1.5-2.0 mg x kg(-1) x min(-1)) infusions. SkM was biopsied at completion of each study. On a separate day, the same protocol was undertaken after 48-h in vivo FA(OX) blockade. The AICAR and AICAR + MP studies were repeated in three chronic alloxan-diabetic dogs. AICAR produced a transient fall in plasma glucose and increase in insulin and a small decline in free fatty acid (FFA). Parallel increases in hepatic glucose production (HGP), glucose disappearance (R(d tissue)), and glycolytic flux (GF) occurred, whereas metabolic clearance rate of glucose (MCR(g)) did not change significantly. Intracellular SkM glucose, glucose 6-phosphate, and glycogen were unchanged. Acetyl-CoA carboxylase (ACC approximately pSer(221)) increased by 50%. In the AICAR + MP studies, the metabolic responses were modified: the glucose was lower over 120 min, only minor changes occurred with insulin and FFA, and HGP and R(d tissue) responses were markedly attenuated, but MCR(g) and GF increased significantly. SkM substrates were unchanged, but ACC approximately pSer(221) rose by 80%. Thus low-dose AICAR leads to increases in HGP and SkM glucose uptake, which are modified by prior FA(ox) blockade.
Collapse
Affiliation(s)
- Michael Christopher
- Department of Endocrinology and Diabetes, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
The heart is capable of utilizing a variety of substrates to produce the necessary ATP for cardiac function. AMP-activated protein kinase (AMPK) has emerged as a key regulator of cellular energy homeostasis and coordinates multiple catabolic and anabolic pathways in the heart. During times of acute metabolic stresses, cardiac AMPK activation seems to be primarily involved in increasing energy-generating pathways to maintain or restore intracellular ATP levels. In acute situations such as mild ischemia or short durations of severe ischemia, activation of cardiac AMPK appears to be necessary for cardiac myocyte function and survival by stimulating ATP generation via increased glycolysis and accelerated fatty acid oxidation. Whereas AMPK activation may be essential for adaptation of cardiac energy metabolism to acute and/or minor metabolic stresses, it is unknown whether AMPK activation becomes maladaptive in certain chronic disease states and/or extreme energetic stresses. However, alterations in cardiac AMPK activity are associated with a number of cardiovascular-related diseases such as pathological cardiac hypertrophy, myocardial ischemia, glycogen storage cardiomyopathy, and Wolff-Parkinson-White syndrome, suggesting the possibility of a maladaptive role. Although the precise role AMPK plays in the diseased heart is still in question, it is clear that AMPK is a major regulator of cardiac energy metabolism. The consequences of alterations in AMPK activity and subsequent cardiac energy metabolism in the healthy and the diseased heart will be discussed.
Collapse
Affiliation(s)
- Vernon W Dolinsky
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | |
Collapse
|
10
|
Jørgensen SB, Richter EA, Wojtaszewski JFP. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol 2006; 574:17-31. [PMID: 16690705 PMCID: PMC1817795 DOI: 10.1113/jphysiol.2006.109942] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 5'-AMP-activated protein kinase (AMPK) is a potent regulator of skeletal muscle metabolism and gene expression. AMPK is activated both in response to in vivo exercise and ex vivo contraction. AMPK is therefore believed to be an important signalling molecule in regulating muscle metabolism during exercise as well as in adaptation of skeletal muscle to exercise training. The first part of this review is focused on different mechanisms regulating AMPK activity during muscle work such as alterations in nucleotide concentrations, availability of energy substrates and upstream AMPK kinases. We furthermore discuss the possible role of AMPK as a master switch in skeletal muscle metabolism with the main focus on AMPK in metabolic regulation during muscle work. Finally, AMPK has a well established role in regulating expression of genes encoding various enzymes in muscle, and this issue is discussed in relation to adaptation of skeletal muscle to exercise training.
Collapse
Affiliation(s)
- Sebastian B Jørgensen
- Department of Human Physiology, Copenhagen Muscle Research Centre, Inst. of Exercise and Sport Sciences, 13-Universitetsparken, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
11
|
Effects of dietary α-lipoic acid on glycolysis of postmortem muscle. Meat Sci 2005; 71:306-11. [DOI: 10.1016/j.meatsci.2005.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 03/23/2005] [Accepted: 03/23/2005] [Indexed: 11/23/2022]
|
12
|
Shang J, Lehrman MA. Activation of glycogen phosphorylase with 5-aminoimidazole-4-carboxamide riboside (AICAR). Assessment of glycogen as a precursor of mannosyl residues in glycoconjugates. J Biol Chem 2004; 279:12076-80. [PMID: 14729664 DOI: 10.1074/jbc.m400431200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The experimental evaluation of the contribution of glycogen phosphorylase (GP) to biochemical pathways is limited to methods that raise cAMP, activating the cAMP-dependent protein kinase/phosphorylase kinase/GP cascade. Such methods convert the unphosphorylated form, "GPb," which catalyzes glycogenolysis only in the presence of appropriate allosteric activators such as AMP, to the phosphorylated, constitutively activated form, "GPa." However, activation of GP in this way is indirect, requires a functional cAMP kinase cascade, and is complicated by other actions of cAMP. Here, we demonstrate a strategy for the experimental manipulation of GP in intact dermal fibroblasts, involving activation by the membrane-permeable adenosine analog 5-aminoimidazole-4-carboxamide riboside (AICAR) and inhibition by caffeine and Pfizer compound CP-91149, which bind to GP at distinct sites. Potential complications because of activation of AMP-activated protein kinase by AICAR were assessed with metformin, which activates this kinase but does not activate GP. Using this strategy, we show that glycogen can be a significant and regulatable precursor of mannosyl units in lipid-linked oligosaccharides and glycoproteins.
Collapse
Affiliation(s)
- Jie Shang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | | |
Collapse
|
13
|
Aschenbach WG, Sakamoto K, Goodyear LJ. 5??? Adenosine Monophosphate-Activated Protein Kinase, Metabolism and Exercise. Sports Med 2004; 34:91-103. [PMID: 14965188 DOI: 10.2165/00007256-200434020-00003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.
Collapse
Affiliation(s)
- William G Aschenbach
- Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
14
|
Longnus SL, Wambolt RB, Parsons HL, Brownsey RW, Allard MF. 5-Aminoimidazole-4-carboxamide 1-beta -D-ribofuranoside (AICAR) stimulates myocardial glycogenolysis by allosteric mechanisms. Am J Physiol Regul Integr Comp Physiol 2003; 284:R936-44. [PMID: 12626360 DOI: 10.1152/ajpregu.00319.2002] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that activation of AMP-activated protein kinase (AMPK) promotes myocardial glycogenolysis by decreasing glycogen synthase (GS) and/or increasing glycogen phosphorylase (GP) activities. Isolated working hearts from halothane-anesthetized male Sprague-Dawley rats perfused in the absence or presence of 0.8 or 1.2 mM 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICAR), an adenosine analog and cell-permeable activator of AMPK, were studied. Glycogen degradation was increased by AICAR, while glycogen synthesis was not affected. AICAR increased myocardial 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranotide (ZMP), the active intracellular form of AICAR, but did not alter the activity of GS and GP measured in tissue homogenates or the content of glucose-6-phosphate and adenine nucleotides in freeze-clamped tissue. Importantly, the calculated intracellular concentration of ZMP achieved in this study was similar to the K(m) value of ZMP for GP determined in homogenates of myocardial tissue. We conclude that the data are consistent with allosteric activation of GP by ZMP being responsible for the glycogenolysis caused by AICAR in the intact rat heart.
Collapse
Affiliation(s)
- Sarah L Longnus
- McDonald Research Laboratories/The iCAPTUR(4)E Centre, Department of Pathology and Laboratory Medicine, University of British Columbia-St.Paul's Hospital, Vancouver, British Columbia V6Z 1Y6
| | | | | | | | | |
Collapse
|
15
|
Sakamoto K, Goodyear LJ. Invited review: intracellular signaling in contracting skeletal muscle. J Appl Physiol (1985) 2002; 93:369-83. [PMID: 12070227 DOI: 10.1152/japplphysiol.00167.2002] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Physical exercise is a significant stimulus for the regulation of multiple metabolic and transcriptional processes in skeletal muscle. For example, exercise increases skeletal muscle glucose uptake, and, after exercise, there are increases in the rates of both glucose uptake and glycogen synthesis. A single bout of exercise can also induce transient changes in skeletal muscle gene transcription and can alter rates of protein metabolism, both of which may be mechanisms for chronic adaptations to repeated bouts of exercise. A central issue in exercise biology is to elucidate the underlying molecular signaling mechanisms that regulate these important metabolic and transcriptional events in skeletal muscle. In this review, we summarize research from the past several years that has demonstrated that physical exercise can regulate multiple intracellular signaling cascades in skeletal muscle. It is now well established that physical exercise or muscle contractile activity can activate three of the mitogen-activated protein kinase signaling pathways, including the extracellular signal-regulated kinase 1 and 2, the c-Jun NH(2)-terminal kinase, and the p38. Exercise can also robustly increase activity of the AMP-activated protein kinase, as well as several additional molecules, including glycogen synthase kinase 3, Akt, and the p70 S6 kinase. A fundamental goal of signaling research is to determine the biological consequences of exercise-induced signaling through these molecules, and this review also provides an update of progress in this area.
Collapse
Affiliation(s)
- Kei Sakamoto
- Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
16
|
Aschenbach WG, Hirshman MF, Fujii N, Sakamoto K, Howlett KF, Goodyear LJ. Effect of AICAR treatment on glycogen metabolism in skeletal muscle. Diabetes 2002; 51:567-73. [PMID: 11872652 DOI: 10.2337/diabetes.51.3.567] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is proposed to stimulate fat and carbohydrate catabolism to maintain cellular energy status. Recent studies demonstrate that pharmacologic activation of AMPK and mutations in the enzyme are associated with elevated muscle glycogen content in vivo. Our purpose was to determine the mechanism for increased muscle glycogen associated with AMPK activity in vivo. AMPK activity and glycogen metabolism were studied in red and white gastrocnemius muscles from rats treated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) in vivo, and also in muscles incubated with AICAR in vitro. In vivo AICAR treatment reduced blood glucose and increased blood lactate compared with basal values. AICAR increased muscle alpha2 AMPK activity, glycogen, and glucose-6-phosphate concentrations. Glycogen synthase activity was increased in the red gastrocnemius but was decreased in the white gastrocnemius. Glycogen phosphorylase activity increased in both muscles, with an inhibition initially observed in the red gastrocnemius. In vitro incubation with AICAR activated alpha2 AMPK but had no effect on either glycogen synthase or glycogen phosphorylase. These results suggest that AICAR treatment does not promote glycogen accumulation in skeletal muscle in vivo by altering glycogen synthase and glycogen phosphorylase. Rather, the increased glycogen is due to the well-known effects of AICAR to increase glucose uptake.
Collapse
Affiliation(s)
- William G Aschenbach
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
17
|
Wojtaszewski JFP, Jørgensen SB, Hellsten Y, Hardie DG, Richter EA. Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes 2002; 51:284-92. [PMID: 11812734 DOI: 10.2337/diabetes.51.2.284] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
5'-AMP-activated protein kinase (AMPK) functions as a metabolic switch in mammalian cells and can be artificially activated by 5-aminoimidazole-4-carboxamide (AICA)-riboside. AMPK activation during muscle contraction is dependent on muscle glycogen concentrations, but whether glycogen also modifies the activation of AMPK and its possible downstream effectors (glycogen synthase and glucose transport) by AICA-riboside in resting muscle is not known. Thus, we have altered muscle glycogen levels in rats by a combination of swimming exercise and diet and investigated the effects of AICA-riboside in the perfused rat hindlimb muscle. Two groups of rats, one with super-compensated muscle glycogen content (approximately 200-300% of normal; high glycogen [HG]) and one with moderately lowered muscle glycogen content (approximately 80% of normal; low glycogen [LG]), were generated. In both groups, the degree of activation of the alpha2 isoform of AMPK by AICA-riboside depended on muscle type (white gastrocnemius >> red gastrocnemius > soleus). Basal and AICA-riboside-induced alpha2-AMPK activity were markedly lowered in the HG group (approximately 50%) compared with the LG group. Muscle 2-deoxyglucose uptake was also increased and glycogen synthase activity decreased by AICA-riboside. Especially in white gastrocnemius, these effects, as well as the absolute activity levels of AMPK-alpha2, were markedly reduced in the HG group compared with the LG group. The inactivation of glycogen synthase by AICA-riboside was accompanied by decreased gel mobility and was eliminated by protein phosphatase treatment. We conclude that acute AICA-riboside treatment leads to phosphorylation and deactivation of glycogen synthase in skeletal muscle. Although the data do not exclude a role of other kinases/phosphatases, they suggest that glycogen synthase may be a target for AMPK in vivo. Both basal and AICA-riboside-induced AMPK-alpha2 and glycogen synthase activities, as well as glucose transport, are depressed when the glycogen stores are plentiful. Because the glycogen level did not affect adenine nucleotide concentrations, our data suggest that glycogen may directly affect the activation state of AMPK in skeletal muscle.
Collapse
Affiliation(s)
- Jørgen F P Wojtaszewski
- Copenhagen Muscle Research Centre, Institute of Exercise and Sports Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|