1
|
Santos ALS, Braga-Silva LA, Gonçalves DS, Ramos LS, Oliveira SSC, Souza LOP, Oliveira VS, Lins RD, Pinto MR, Muñoz JE, Taborda CP, Branquinha MH. Repositioning Lopinavir, an HIV Protease Inhibitor, as a Promising Antifungal Drug: Lessons Learned from Candida albicans-In Silico, In Vitro and In Vivo Approaches. J Fungi (Basel) 2021; 7:jof7060424. [PMID: 34071195 PMCID: PMC8229492 DOI: 10.3390/jof7060424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
The repurposing strategy was applied herein to evaluate the effects of lopinavir, an aspartic protease inhibitor currently used in the treatment of HIV-infected individuals, on the globally widespread opportunistic human fungal pathogen Candida albicans by using in silico, in vitro and in vivo approaches in order to decipher its targets on fungal cells and its antifungal mechanisms of action. Secreted aspartic proteases (Saps) are the obviously main target of lopinavir. To confirm this hypothesis, molecular docking assays revealed that lopinavir bound to the Sap2 catalytic site of C. albicans as well as inhibited the Sap hydrolytic activity in a typically dose-dependent manner. The inhibition of Saps culminated in the inability of C. albicans yeasts to assimilate the unique nitrogen source (albumin) available in the culture medium, culminating with fungal growth inhibition (IC50 = 39.8 µM). The antifungal action of lopinavir was corroborated by distinct microscopy analyses, which evidenced drastic and irreversible changes in the morphology that justified the fungal death. Furthermore, our results revealed that lopinavir was able to (i) arrest the yeasts-into-hyphae transformation, (ii) disturb the synthesis of neutral lipids, including ergosterol, (iii) modulate the surface-located molecules, such as Saps and mannose-, sialic acid- and N-acetylglucosamine-containing glycoconjugates, (iv) diminish the secretion of hydrolytic enzymes, such as Saps and esterase, (v) negatively influence the biofilm formation on polystyrene surface, (vi) block the in vitro adhesion to epithelial cells, (vii) contain the in vivo infection in both immunocompetent and immunosuppressed mice and (viii) reduce the Sap production by yeasts recovered from kidneys of infected animals. Conclusively, the exposed results highlight that lopinavir may be used as a promising repurposing drug against C. albicans infection as well as may be used as a lead compound for the development of novel antifungal drugs.
Collapse
Affiliation(s)
- André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.A.B.-S.); (D.S.G.); (L.S.R.); (S.S.C.O.); (L.O.P.S.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
- Correspondence: (A.L.S.S.); (M.H.B.); Tel.: +55-21-3938-0366 (A.L.S.S.)
| | - Lys A. Braga-Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.A.B.-S.); (D.S.G.); (L.S.R.); (S.S.C.O.); (L.O.P.S.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Diego S. Gonçalves
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.A.B.-S.); (D.S.G.); (L.S.R.); (S.S.C.O.); (L.O.P.S.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Lívia S. Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.A.B.-S.); (D.S.G.); (L.S.R.); (S.S.C.O.); (L.O.P.S.)
| | - Simone S. C. Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.A.B.-S.); (D.S.G.); (L.S.R.); (S.S.C.O.); (L.O.P.S.)
| | - Lucieri O. P. Souza
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.A.B.-S.); (D.S.G.); (L.S.R.); (S.S.C.O.); (L.O.P.S.)
| | - Vanessa S. Oliveira
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife 50740-465, Brazil; (V.S.O.); (R.D.L.)
| | - Roberto D. Lins
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife 50740-465, Brazil; (V.S.O.); (R.D.L.)
| | - Marcia R. Pinto
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense (UFF), Niterói 24210-130, Brazil;
| | - Julian E. Muñoz
- MICROS Group, Medicine Traslacional Institute, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Carlos P. Taborda
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo 05508-060, Brazil;
- Laboratório de Micologia Médica—LIM53/IMTSP, Universidade de São Paulo (USP), São Paulo 05508-000, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.A.B.-S.); (D.S.G.); (L.S.R.); (S.S.C.O.); (L.O.P.S.)
- Correspondence: (A.L.S.S.); (M.H.B.); Tel.: +55-21-3938-0366 (A.L.S.S.)
| |
Collapse
|
2
|
Presence of low virulence chytrid fungi could protect European amphibians from more deadly strains. Nat Commun 2020; 11:5393. [PMID: 33106491 PMCID: PMC7589487 DOI: 10.1038/s41467-020-19241-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 10/05/2020] [Indexed: 11/14/2022] Open
Abstract
Wildlife diseases are contributing to the current Earth’s sixth mass extinction; one disease, chytridiomycosis, has caused mass amphibian die-offs. While global spread of a hypervirulent lineage of the fungus Batrachochytrium dendrobatidis (BdGPL) causes unprecedented loss of vertebrate diversity by decimating amphibian populations, its impact on amphibian communities is highly variable across regions. Here, we combine field data with in vitro and in vivo trials that demonstrate the presence of a markedly diverse variety of low virulence isolates of BdGPL in northern European amphibian communities. Pre-exposure to some of these low virulence isolates protects against disease following subsequent exposure to highly virulent BdGPL in midwife toads (Alytes obstetricans) and alters infection dynamics of its sister species B. salamandrivorans in newts (Triturus marmoratus), but not in salamanders (Salamandra salamandra). The key role of pathogen virulence in the complex host-pathogen-environment interaction supports efforts to limit pathogen pollution in a globalized world. The pathogen Batrachochytrium dendrobatidis (BD) associated with widespread amphibian declines is present in Europe but has not consistently caused disease-induced declines in that region. Here, the authors suggest that an endemic strain of BD with low virulence may protect the hosts upon co-infection with more virulent strains.
Collapse
|
3
|
Vaginal lactobacilli inhibit growth and hyphae formation of Candida albicans. Sci Rep 2019; 9:8121. [PMID: 31148560 PMCID: PMC6544633 DOI: 10.1038/s41598-019-44579-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Lactobacillus species are the predominant vaginal microbiota found in healthy women of reproductive age and help to prevent pathogen infection by producing lactic acid, H2O2 and anti-microbial compounds. Identification of novel vaginal Lactobacillus isolates that exhibit efficient colonisation and secrete anti-Candida factors is a promising strategy to prevent vulvovaginal candidiasis. The azole antifungal agents used to treat vulvovaginal candidiasis elicit adverse effects such as allergic responses and exhibit drug interactions. Candida strains with resistance to antifungal treatments are often reported. In this study, we isolated Lactobacillus species from healthy Korean women and investigated their antifungal effects against C. albicans in vitro and in vivo. Lactobacillus conditioned supernatant (LCS) of L. crispatus and L. fermentum inhibited C. albicans growth in vitro. A Lactobacillus-derived compound, which was not affected by proteolytic enzyme digestion and heat inactivation, inhibited growth and hyphal induction of C. albicans after adjustment to neutral pH. Combination treatment with neutral LCSs of L. crispatus and L. fermentum effectively inhibited propagation of C. albicans in a murine in vivo model of vulvovaginal candidiasis.
Collapse
|
4
|
Ahmadi N, Ahmadi A, Kheirali E, Hossein Yadegari M, Bayat M, Shajiei A, Amini AA, Ashrafi S, Abolhassani M, Faezi S, Yazdanparast SA, Mahdavi M. Systemic infection with Candida albicans in breast tumor bearing mice: Cytokines dysregulation and induction of regulatory T cells. J Mycol Med 2019; 29:49-55. [DOI: 10.1016/j.mycmed.2018.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 02/04/2023]
|
5
|
Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence. PLoS Pathog 2016; 12:e1006051. [PMID: 27977806 PMCID: PMC5158083 DOI: 10.1371/journal.ppat.1006051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/09/2016] [Indexed: 12/29/2022] Open
Abstract
The opportunistic fungal pathogen Cryptococcus neoformans is a major cause of mortality in immunocompromised individuals, resulting in more than 600,000 deaths per year. Many human fungal pathogens secrete peptidases that influence virulence, but in most cases the substrate specificity and regulation of these enzymes remains poorly understood. The paucity of such information is a roadblock to our understanding of the biological functions of peptidases and whether or not these enzymes are viable therapeutic targets. We report here an unbiased analysis of secreted peptidase activity and specificity in C. neoformans using a mass spectrometry-based substrate profiling strategy and subsequent functional investigations. Our initial studies revealed that global peptidase activity and specificity are dramatically altered by environmental conditions. To uncover the substrate preferences of individual enzymes and interrogate their biological functions, we constructed and profiled a ten-member gene deletion collection of candidate secreted peptidases. Through this deletion approach, we characterized the substrate specificity of three peptidases within the context of the C. neoformans secretome, including an enzyme known to be important for fungal entry into the brain. We selected a previously uncharacterized peptidase, which we term Major aspartyl peptidase 1 (May1), for detailed study due to its substantial contribution to extracellular proteolytic activity. Based on the preference of May1 for proteolysis between hydrophobic amino acids, we screened a focused library of aspartyl peptidase inhibitors and identified four high-affinity antagonists. Finally, we tested may1Δ strains in a mouse model of C. neoformans infection and found that strains lacking this enzyme are significantly attenuated for virulence. Our study reveals the secreted peptidase activity and specificity of an important human fungal pathogen, identifies responsible enzymes through genetic tests of their function, and demonstrates how this information can guide the development of high affinity small molecule inhibitors. Many pathogenic organisms secrete peptidases. The activity of these enzymes often contributes to virulence, making their study crucial for understanding host-pathogen biology and developing therapeutics. In this report, we employed an unbiased, activity-based profiling assay to examine the secreted peptidases of a fungal pathogen, Cryptococcus neoformans, which is responsible for 40% of AIDS-related deaths. We discovered which peptidases are secreted, identified their substrate specificity, and interrogated their biological functions. Through this analysis, we identified a principal enzyme responsible for the extracellular peptidase activity of C. neoformans, May1, and demonstrated its importance for growth in acidic environments. Characterization of its substrate preferences allowed us to identify compounds that are potent substrate-based inhibitors of May1 activity. Finally, we found that the presence of this enzyme promotes virulence in a mouse model of infection. Our comprehensive study reveals the expression, regulation and function of C. neoformans secreted peptidases, including evidence for the role of a novel aspartyl peptidase in virulence.
Collapse
|
6
|
Berkovits C, Tóth A, Szenzenstein J, Deák T, Urbán E, Gácser A, Nagy K. Analysis of oral yeast microflora in patients with oral squamous cell carcinoma. SPRINGERPLUS 2016; 5:1257. [PMID: 27536540 PMCID: PMC4974209 DOI: 10.1186/s40064-016-2926-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 07/27/2016] [Indexed: 12/02/2022]
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, in this study, the association between OSCC and oral yeast carriage was investigated. Findings 20 patients having OSCC as well as 40 healthy controls were tested for the presence of yeasts in the oral cavity. Fungal burdens were examined by colony forming unit determinations, while the different yeast genera in patient samples were identified by matrix-associated laser desorption/ionization-time of flight-mass spectrometry. We found that the level of oral yeast carriage was significantly higher in patients with OSCC that was accompanied by a higher diversity of yeasts in the oral cavity of these patients. We also examined the extracellular enzyme production of isolated Candida spp.; however, we found that there was no association between the lipase/protease producing capacity of Candida strains and the higher colonisation rate of neoplastic epithelium. Conclusions In conclusion, our results corroborate the findings of previous studies regarding the association between oral yeast carriage and epithelial carcinoma.
Collapse
Affiliation(s)
- Csaba Berkovits
- Department of Oral Surgery, University of Szeged, Tisza Lajos krt. 64, Szeged, 6720 Hungary
| | - Adél Tóth
- Department of Microbiology, University of Szeged, Közép fasor 52, Szeged, 6726 Hungary
| | - Judit Szenzenstein
- Department of Microbiology, University of Szeged, Közép fasor 52, Szeged, 6726 Hungary
| | - Tünde Deák
- Institute of Clinical Microbiology, University of Szeged, Semmelweis u. 6, Szeged, 6725 Hungary
| | - Edit Urbán
- Institute of Clinical Microbiology, University of Szeged, Semmelweis u. 6, Szeged, 6725 Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Közép fasor 52, Szeged, 6726 Hungary
| | - Katalin Nagy
- Department of Oral Surgery, University of Szeged, Tisza Lajos krt. 64, Szeged, 6720 Hungary
| |
Collapse
|
7
|
Pryszcz LP, Németh T, Gácser A, Gabaldón T. Genome comparison of Candida orthopsilosis clinical strains reveals the existence of hybrids between two distinct subspecies. Genome Biol Evol 2016; 6:1069-78. [PMID: 24747362 PMCID: PMC4040990 DOI: 10.1093/gbe/evu082] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Candida parapsilosis species complex comprises a group of emerging human pathogens of varying virulence. This complex was recently subdivided into three different species: C. parapsilosis sensu stricto, C. metapsilosis, and C. orthopsilosis. Within the latter, at least two clearly distinct subspecies seem to be present among clinical isolates (Type 1 and Type 2). To gain insight into the genomic differences between these subspecies, we undertook the sequencing of a clinical isolate classified as Type 1 and compared it with the available sequence of a Type 2 clinical strain. Unexpectedly, the analysis of the newly sequenced strain revealed a highly heterozygous genome, which we show to be the consequence of a hybridization event between both identified subspecies. This implicitly suggests that C. orthopsilosis is able to mate, a so-far unanswered question. The resulting hybrid shows a chimeric genome that maintains a similar gene dosage from both parental lineages and displays ongoing loss of heterozygosity. Several of the differences found between the gene content in both strains relate to virulent-related families, with the hybrid strain presenting a higher copy number of genes coding for efflux pumps or secreted lipases. Remarkably, two clinical strains isolated from distant geographical locations (Texas and Singapore) are descendants of the same hybrid line, raising the intriguing possibility of a relationship between the hybridization event and the global spread of a virulent clone.
Collapse
Affiliation(s)
- Leszek P Pryszcz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | | | | | | |
Collapse
|
8
|
Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. Proc Natl Acad Sci U S A 2015; 112:7478-83. [PMID: 25944934 DOI: 10.1073/pnas.1507082112] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pseudogymnoascus destructans is the causative agent of white-nose syndrome, a disease that has caused the deaths of millions of bats in North America. This psychrophilic fungus proliferates at low temperatures and targets hibernating bats, resulting in their premature arousal from stupor with catastrophic consequences. Despite the impact of white-nose syndrome, little is known about the fungus itself or how it infects its mammalian host. P. destructans is not amenable to genetic manipulation, and therefore understanding the proteins involved in infection requires alternative approaches. Here, we identify hydrolytic enzymes secreted by P. destructans, and use a novel and unbiased substrate profiling technique to define active peptidases. These experiments revealed that endopeptidases are the major proteolytic activities secreted by P. destructans, and that collagen, the major structural protein in mammals, is actively degraded by the secretome. A serine endopeptidase, hereby-named Destructin-1, was subsequently identified, and a recombinant form overexpressed and purified. Biochemical analysis of Destructin-1 showed that it mediated collagen degradation, and a potent inhibitor of peptidase activity was identified. Treatment of P. destructans-conditioned media with this antagonist blocked collagen degradation and facilitated the detection of additional secreted proteolytic activities, including aminopeptidases and carboxypeptidases. These results provide molecular insights into the secretome of P. destructans, and identify serine endopeptidases that have the clear potential to facilitate tissue invasion and pathogenesis in the mammalian host.
Collapse
|
9
|
Bocheńska O, Rąpała-Kozik M, Wolak N, Braś G, Kozik A, Dubin A, Aoki W, Ueda M, Mak P. Secreted aspartic peptidases of Candida albicans liberate bactericidal hemocidins from human hemoglobin. Peptides 2013; 48:49-58. [PMID: 23927842 DOI: 10.1016/j.peptides.2013.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
Abstract
Secreted aspartic peptidases (Saps) are a group of ten acidic hydrolases considered as key virulence factors of Candida albicans. These enzymes supply the fungus with nutrient amino acids as well as are able to degrade the selected host's proteins involved in the immune defense. Our previous studies showed that the human menstrual discharge is exceptionally rich in bactericidal hemoglobin (Hb) fragments - hemocidins. However, to date, the genesis of such peptides is unclear. The presented study demonstrates that the action of C. albicans isozymes Sap1-Sap6, Sap8 and Sap9, but not Sap7 and Sap10, toward human hemoglobin leads to limited proteolysis of this protein and generates a variety of antimicrobial hemocidins. We have identified these peptides and checked their activity against selected microorganisms representative for human vagina. We have also demonstrated that the process of Hb hydrolysis is most effective at pH 4.0, characteristic for vagina, and the liberated peptides showed pronounced killing activity toward Lactobacillus acidophilus, and to a lower degree, Escherichia coli. However, only a very weak activity toward Staphylococcus aureus and C. albicans was noticed. These findings provide interesting new insights into pathophysiology of human vaginal candidiasis and suggest that C. albicans may be able to compete with the other microorganisms of the same physiological niche using the microbicidal peptides generated from the host protein.
Collapse
Affiliation(s)
- Oliwia Bocheńska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Németh T, Tóth A, Szenzenstein J, Horváth P, Nosanchuk JD, Grózer Z, Tóth R, Papp C, Hamari Z, Vágvölgyi C, Gácser A. Characterization of virulence properties in the C. parapsilosis sensu lato species. PLoS One 2013; 8:e68704. [PMID: 23874732 PMCID: PMC3706360 DOI: 10.1371/journal.pone.0068704] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/30/2013] [Indexed: 11/18/2022] Open
Abstract
The C. parapsilosis sensu lato group involves three closely related species, C. parapsilosis sensu stricto, C. orthopsilosis and C. metapsilosis. Although their overall clinical importance is dramatically increasing, there are few studies regarding the virulence properties of the species of the psilosis complex. In this study, we tested 63 C. parapsilosis sensu stricto, 12 C. metapsilosis and 18 C. orthopsilosis isolates for the ability to produce extracellular proteases, secrete lipases and form pseudohyphae. Significant differences were noted between species, with the C. metapsilosis strains failing to secrete lipase or to produce pseudohyphae. Nine different clinical isolates each of C. parapsilosis sensu stricto, C. orthopsilosis and C. metapsilosis were co-cultured with immortalized murine or primary human macrophages. C. parapsilosis sensu stricto isolates showed a significantly higher resistance to killing by primary human macrophages compared to C. orthopsilosis and C. metapsilosis isolates. In contrast, the killing of isolates by J774.2 mouse macrophages did not differ significantly between species. However, C. parapsilosis sensu stricto isolates induced the most damage to murine and human macrophages, and C. metapsilosis strains were the least toxic. Furthermore, strains that produced lipase or pseudohyphae were most resistant to macrophage-mediated killing and produced the most cellular damage. Finally, we used 9 isolates of each of the C. parapsilosis sensus lato species to examine their impact on the survival of Galleriamellonella larvae. The mortality rate of G. mellonella larvae infected with C. metapsilosis isolates was significantly lower than those infected with C. parapsilosis sensu stricto or C. orthopsilosis strains. Taken together, our findings demonstrate that C. metapsilosis is indeed the least virulent member of the psilosis group, and also highlight the importance of pseudohyphae and secreted lipases during fungal-host interactions.
Collapse
Affiliation(s)
- Tibor Németh
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Adél Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | | | - Péter Horváth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Zsuzsanna Grózer
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- Department of Microbiology, University of Szeged, Szeged, Hungary
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Zsuzsanna Hamari
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
- * E-mail:
| |
Collapse
|
11
|
Pietrella D, Pandey N, Gabrielli E, Pericolini E, Perito S, Kasper L, Bistoni F, Cassone A, Hube B, Vecchiarelli A. Secreted aspartic proteases of Candida albicans activate the NLRP3 inflammasome. Eur J Immunol 2013; 43:679-92. [PMID: 23280543 DOI: 10.1002/eji.201242691] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 12/06/2012] [Accepted: 12/20/2012] [Indexed: 01/12/2023]
Abstract
In a recent report, we demonstrated that distinct members of the secreted aspartic protease (Sap) family of Candida albicans are able to induce secretion of proinflammatory cytokines by human monocytes, independently of their proteolytic activity and specific pH optima. In particular, C. albicans Sap2 and Sap6 potently induced IL-1β, TNF-α, and IL-6 production. Here, we demonstrate that Sap2 and Sap6 proteins trigger IL-1β and IL-18 production through inflammasome activation. This occurs via NLRP3 and caspase-1 activation, which cleaves pro-IL-1β into secreted bioactive IL-1β, a cytokine that was induced by Saps in monocytes, in monocyte-derived macrophages and in dendritic cells. Downregulation of NLRP3 by RNA interference strongly reduced the secretion of bioactive IL-1β. Inflammasome activation required Sap internalization via a clathrin-dependent mechanism, intracellular induction of K(+) efflux, and ROS production. Inflammasome activation of monocytes induced by Sap2 and Sap6 differed from that induced by LPS-ATP in several aspects. Our data reveal novel immunoregulatory mechanisms of C. albicans and suggest that Saps contribute to the pathogenesis of candidiasis by fostering rather than evading host immunity.
Collapse
Affiliation(s)
- Donatella Pietrella
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Specian AFL, Furlaneto-Maia L, Andrade CGTJ, Furlaneto MC. Ultrastructural Analysis of in Vitro Adherence and Production of Acid Proteases by Clinical Isolates of <i>Candida parapsilosis</i> Sensu Stricto Following Growth in the Presence of Keratinous Substrates from Human Source. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.38a001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Rosenblum EB, Poorten TJ, Joneson S, Settles M. Substrate-specific gene expression in Batrachochytrium dendrobatidis, the chytrid pathogen of amphibians. PLoS One 2012. [PMID: 23185485 PMCID: PMC3502224 DOI: 10.1371/journal.pone.0049924] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Determining the mechanisms of host-pathogen interaction is critical for understanding and mitigating infectious disease. Mechanisms of fungal pathogenicity are of particular interest given the recent outbreaks of fungal diseases in wildlife populations. Our study focuses on Batrachochytrium dendrobatidis (Bd), the chytrid pathogen responsible for amphibian declines around the world. Previous studies have hypothesized a role for several specific families of secreted proteases as pathogenicity factors in Bd, but the expression of these genes has only been evaluated in laboratory growth conditions. Here we conduct a genome-wide study of Bd gene expression under two different nutrient conditions. We compare Bd gene expression profiles in standard laboratory growth media and in pulverized host tissue (i.e., frog skin). A large proportion of genes in the Bd genome show increased expression when grown in host tissue, indicating the importance of studying pathogens on host substrate. A number of gene classes show particularly high levels of expression in host tissue, including three families of secreted proteases (metallo-, serine- and aspartyl-proteases), adhesion genes, lipase-3 encoding genes, and a group of phylogenetically unusual crinkler-like effectors. We discuss the roles of these different genes as putative pathogenicity factors and discuss what they can teach us about Bd’s metabolic targets, host invasion, and pathogenesis.
Collapse
Affiliation(s)
- Erica Bree Rosenblum
- Department of Environmental Science Policy and Management, University of California, Berkeley, California, United States of America.
| | | | | | | |
Collapse
|
14
|
Candida and candidiasis in HIV-infected patients: where commensalism, opportunistic behavior and frank pathogenicity lose their borders. AIDS 2012; 26:1457-72. [PMID: 22472853 DOI: 10.1097/qad.0b013e3283536ba8] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this era of efficacious antiretroviral therapy and consequent immune reconstitution, oropharyngeal and esophageal candidiasis (OPC and OEC) still remain two clinically relevant presentations in the global HIV setting. Both diseases are predominantly caused by Candida albicans, a polymorphic fungus which is a commensal microbe in the healthy individual but can become an aggressive pathogen in a debilitated host. Actually, C. albicans commensalism is not the result of a benign behavior of one of the many components of human microbiota, but rather the result of host's potent innate and adaptive immune responses that restrict the growth of a potentially dangerous microrganism on the epithelia. An important asset guarding against the fungus is the Th17 functional subset of T helper cells. The selective loss of these cells with the progression of HIV infection causes the decay of fungal containment on the oral epithelium and allows C. albicans to express its pathogenic potential. An important part of this potential is represented by mechanisms to evade host immunity and enhance inflammation and immunoactivation. In C. albicans, these mechanisms are mostly incorporated into and expressed by characteristic morphogenic transitions such as the yeast-to-hyphal growth and the white-to-opaque switch. In addition, HIV infection generates an 'environment' selecting for overexpression of the virulence potential by the fungus, particularly concerning the secreted aspartyl proteinases (Saps). These enzymes can degrade critical host defense components such as complement and epithelial defensive proteins such as histatin-5 and E-cadherin. It appears that part of this enhanced Candida virulence could be induced by the binding of the fungus to HIV and/or induced by HIV proteins such as GP160 and tat. Both OPC and OEC can be controlled by old and new antimycotics, but in the absence of host collaboration, anticandidal therapy may become ineffective in the long run. For these reasons, new therapeutics targeting virulence factors and specific immune interventions are being addressed. Among these new approaches, vaccination is a promising one. Two subunit vaccines based on antigens dominantly expressed by C. albicans in vivo, that is the Als3 adhesin and Sap2, have recently undergone phase 1 clinical trials. Overall, studies of Candida and candidiasis in the HIV-positive patient while certainly contributing to a more effective control of the microorganism may also provide useful information on HIV-host relationship itself that can assist the fight against the virus.
Collapse
|
15
|
Horváth P, Nosanchuk JD, Hamari Z, Vágvölgyi C, Gácser A. The identification of gene duplication and the role of secreted aspartyl proteinase 1 in Candida parapsilosis virulence. J Infect Dis 2012; 205:923-33. [PMID: 22301631 DOI: 10.1093/infdis/jir873] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we analyzed the role of Candida parapsilosis-secreted aspartyl proteinase isoenzyme 1 (SAPP1) in virulence. The in silico analysis of SAPP1 sequence revealed a 2871 base pair-duplicated region (SAPP1a and SAPP1b) in the genome of C. parapsilosis. We generated homozygous ΔΔsapp1a, ΔΔsapp1b, and ΔΔsapp1a-ΔΔsapp1b mutants. Notably, Sapp1 production in an inducer medium was reduced by approximately 50% in the ΔΔsapp1a and ΔΔsapp1b mutants, but the other validated SAPP gene (SAPP2) was not affected. In contrast, Sapp2 production was increased in the ΔΔsapp1a-ΔΔsapp1b mutant relative to wild-type (WT) yeast. The ΔΔsapp1a-ΔΔsapp1b strain was hypersusceptible to human serum and was attenuated in its capacity to damage host-effector cells. The phagocytosis and killing of ΔΔsapp1a-ΔΔsapp1b yeasts by human peripheral blood mononuclear cells (PBMCs) and PBMC-derived macrophages (PBMC-DM) was significantly enhanced relative to WT. Phagolysosomal fusion in PBMC-DMs occurred more than twice as frequently with ingested ΔΔsapp1a-ΔΔsapp1b yeast cells compared with WT.
Collapse
Affiliation(s)
- Péter Horváth
- Department of Microbiology, University of Szeged, Közép fasor, Szeged, Hungary
| | | | | | | | | |
Collapse
|
16
|
Joneson S, Stajich JE, Shiu SH, Rosenblum EB. Genomic transition to pathogenicity in chytrid fungi. PLoS Pathog 2011; 7:e1002338. [PMID: 22072962 PMCID: PMC3207900 DOI: 10.1371/journal.ppat.1002338] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 09/05/2011] [Indexed: 11/20/2022] Open
Abstract
Understanding the molecular mechanisms of pathogen emergence is central to mitigating the impacts of novel infectious disease agents. The chytrid fungus Batrachochytrium dendrobatidis (Bd) is an emerging pathogen of amphibians that has been implicated in amphibian declines worldwide. Bd is the only member of its clade known to attack vertebrates. However, little is known about the molecular determinants of - or evolutionary transition to - pathogenicity in Bd. Here we sequence the genome of Bd's closest known relative - a non-pathogenic chytrid Homolaphlyctis polyrhiza (Hp). We first describe the genome of Hp, which is comparable to other chytrid genomes in size and number of predicted proteins. We then compare the genomes of Hp, Bd, and 19 additional fungal genomes to identify unique or recent evolutionary elements in the Bd genome. We identified 1,974 Bd-specific genes, a gene set that is enriched for protease, lipase, and microbial effector Gene Ontology terms. We describe significant lineage-specific expansions in three Bd protease families (metallo-, serine-type, and aspartyl proteases). We show that these protease gene family expansions occurred after the divergence of Bd and Hp from their common ancestor and thus are localized to the Bd branch. Finally, we demonstrate that the timing of the protease gene family expansions predates the emergence of Bd as a globally important amphibian pathogen.
Collapse
Affiliation(s)
- Suzanne Joneson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Erica Bree Rosenblum
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
17
|
Mannan structural complexity is decreased when Candida albicans is cultivated in blood or serum at physiological temperature. Carbohydr Res 2011; 346:2752-9. [PMID: 22030461 DOI: 10.1016/j.carres.2011.09.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/19/2011] [Accepted: 09/24/2011] [Indexed: 11/20/2022]
Abstract
The Candida albicans cell wall provides an architecture that allows for the organism to survive environmental stress as well as interaction with host tissues. Previous work has focused on growing C. albicans on media such as Sabouraud or YPD at 30°C. Because C. albicans normally colonizes a host, we hypothesized that cultivation on blood or serum at 37°C would result in structural changes in cell wall mannan. C. albicans SC5314 was inoculated onto YPD, 5% blood, or 5% serum agar media three successive times at 30°C and 37°C, then cultivated overnight at 30°C in YPD. The mannan was extracted and characterized using 1D and 2D (1)H NMR techniques. At 30°C cells grown in blood and serum contain less acid-stable terminal β-(1→2)-linked d-mannose and α-(1→2)-linked d-mannose-containing side chains, while the acid-labile side chains of mannan grown in blood and serum contain fewer β-Man-(1→2)-α-Man-(1→ side chains. The decrement in acid-stable mannan side chains is greater at 37°C than at 30°C. Cells grown on blood at 37°C show fewer →6)-α-Man-(1→ structural motifs in the acid-stable polymer backbone. The data indicate that C. albicans, grown on media containing host-derived components, produces less complex mannan. This is accentuated when the cells are cultured at 37°C. This study demonstrates that the C. albicans cell wall is a dynamic and adaptive organelle, which alters its structural phenotype in response to growth in host-derived media at physiological temperature.
Collapse
|
18
|
Seider K, Brunke S, Schild L, Jablonowski N, Wilson D, Majer O, Barz D, Haas A, Kuchler K, Schaller M, Hube B. The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. THE JOURNAL OF IMMUNOLOGY 2011; 187:3072-86. [PMID: 21849684 DOI: 10.4049/jimmunol.1003730] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although Candida glabrata is an important human pathogenic yeast, its pathogenicity mechanisms are largely unknown. Immune evasion strategies seem to play key roles during infection, since very little inflammation is observed in mouse models. Furthermore, C. glabrata multiplies intracellularly after engulfment by macrophages. In this study, we sought to identify the strategies that enable C. glabrata to survive phagosome biogenesis and antimicrobial activities within human monocyte-derived macrophages. We show that, despite significant intracellular proliferation, macrophage damage or apoptosis was not apparent, and production of reactive oxygen species was inhibited. Additionally, with the exception of GM-CSF, levels of pro- and anti-inflammatory cytokines were only marginally increased. We demonstrate that adhesion to and internalization by macrophages occur within minutes, and recruitment of endosomal early endosomal Ag 1 and lysosomal-associated membrane protein 1 indicates phagosome maturation. However, phagosomes containing viable C. glabrata, but not heat-killed yeasts, failed to recruit cathepsin D and were only weakly acidified. This inhibition of acidification did not require fungal viability, but it had a heat-sensitive surface attribute. Therefore, C. glabrata modifies the phagosome into a nonacidified environment and multiplies until the host cells finally lyse and release the fungi. Our results suggest persistence of C. glabrata within macrophages as a possible immune evasion strategy.
Collapse
Affiliation(s)
- Katja Seider
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Baldo A, Monod M, Mathy A, Cambier L, Bagut ET, Defaweux V, Symoens F, Antoine N, Mignon B. Mechanisms of skin adherence and invasion by dermatophytes. Mycoses 2011; 55:218-23. [PMID: 21831104 DOI: 10.1111/j.1439-0507.2011.02081.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dermatophytes are keratinophilic fungi that can be pathogenic for humans and animals by infecting the stratum corneum, nails, claws or hair. The first infection step consists of adherence of arthroconidia to the stratum corneum. The mechanisms and the kinetics of adherence have been investigated using different in vitro and ex vivo experimental models, most notably showing the role of a secreted serine protease from Microsporum canis in fungal adherence to feline corneocytes. After germination of the arthroconidia, dermatophytes invade keratinised structures that have to be digested into short peptides and amino acids to be assimilated. Although many proteases, including keratinolytic ones, have been characterised, the understanding of dermatophyte invasion mechanisms remains speculative. To date, research on mechanisms of dermatophyte infection focused mainly on both secreted endoproteases and exoproteases, but their precise role in both fungal adherence and skin invasion should be further explored.
Collapse
Affiliation(s)
- A Baldo
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schulz B, Weber K, Schmidt A, Borg-von Zepelin M, Ruhnke M. Difference in virulence between fluconazole-susceptible and fluconazole-resistant Candida albicans in a mouse model. Mycoses 2011; 54:e522-30. [DOI: 10.1111/j.1439-0507.2010.01970.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Kruppa M, Greene RR, Noss I, Lowman DW, Williams DL. C. albicans increases cell wall mannoprotein, but not mannan, in response to blood, serum and cultivation at physiological temperature. Glycobiology 2011; 21:1173-80. [PMID: 21515585 DOI: 10.1093/glycob/cwr051] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cell wall of Candida albicans is central to the yeasts ability to withstand osmotic challenge, to adhere to host cells, to interact with the innate immune system and ultimately to the virulence of the organism. Little is known about the effect of culture conditions on the cell wall structure and composition of C. albicans. We examined the effect of different media and culture temperatures on the molecular weight (Mw), polymer distribution and composition of cell wall mannan and mannoprotein complex. Strain SC5314 was inoculated from frozen stock onto yeast peptone dextrose (YPD), blood or 5% serum agar media at 30 or 37°C prior to mannan/mannoprotein extraction. Cultivation of the yeast in blood or serum at physiologic temperature resulted in an additive effect on Mw, however, cultivation media had the greatest impact on Mw. Mannan from a yeast grown on blood or serum at 30°C showed a 38.9 and 28.6% increase in Mw, when compared with mannan from YPD-grown yeast at 30°C. Mannan from the yeast pregrown on blood or serum at 37°C showed increased Mw (8.8 and 26.3%) when compared with YPD mannan at 37°C. The changes in Mw over the entire polymer distribution were due to an increase in the amount of mannoprotein (23.8-100%) and a decrease in cell wall mannan (5.7-17.3%). We conclude that C. albicans alters the composition of its cell wall, and thus its phenotype, in response to cultivation in blood, serum and/or physiologic temperature by increasing the amount of the mannoprotein and decreasing the amount of the mannan in the cell wall.
Collapse
Affiliation(s)
- Michael Kruppa
- Department of Microbiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| | | | | | | | | |
Collapse
|
22
|
Lima-Neto RG, Beltrão EIC, Oliveira PC, Neves RP. Adherence of Candida albicans and Candida parapsilosis to epithelial cells correlates with fungal cell surface carbohydrates. Mycoses 2011; 54:23-9. [PMID: 19735440 DOI: 10.1111/j.1439-0507.2009.01757.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Many studies have described the adherence of Candida albicans to epithelial cells but little is known about Candida parapsilosis adhesion and its role in host cell surface recognition. This study was designed to evaluate the correlation between the adherence of 20 C. albicans and 12 C. parapsilosis strains to human buccal epithelial cells and the expression of fungal cell surface carbohydrates using lectin histochemistry. Adherence assays were carried out by incubating epithelial cells in yeast suspensions (10(7) cells ml(-1) ) and peroxidase conjugated lectins (Con A, WGA, UEA I and PNA at 25 μg ml(-1) ) were used for lectin histochemistry. The results showed that adherence was overall greater for C. albicans than for C. parapsilosis (P < 0.01) and that the individual strain differences correlated with a high content of cell surface α-l-fucose residues as indicated by the UEA I staining pattern. Based on the saccharide specificity of the lectins used, these results suggest that l-fucose residues on cell surface glycoconjugates may represent recognition molecules for interactions between the yeast strain studied and the host (r = 0.6985, P = 0.0045). In addition, our results indicated the presence of α-d-glucose/α-d-mannose, N-acetyl-D-glucosamine/N-acetylneuraminic acid and D-galactose/N-acetyl-D-galactosamine in fungal cell wall.
Collapse
Affiliation(s)
- Reginaldo G Lima-Neto
- Laboratório de Micologia Médica, Centro de Ciências Biológicas (CCB), Universidade Federal de Pernambuco (UFPE), Cidade universitária, Av. Morais Rego s/n, 50670-910, Recife, Brazil.
| | | | | | | |
Collapse
|
23
|
Jami MS, García-Estrada C, Barreiro C, Cuadrado AA, Salehi-Najafabadi Z, Martín JF. The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology. Mol Cell Proteomics 2010; 9:2729-44. [PMID: 20823121 DOI: 10.1074/mcp.m110.001412] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The filamentous fungus Penicillium chrysogenum is well-known by its ability to synthesize β-lactam antibiotics as well as other secondary metabolites. Like other filamentous fungi, this microorganism is an excellent host for secretion of extracellular proteins because of the high capacity of its protein secretion machinery. In this work, we have characterized the extracellular proteome reference map of P. chrysogenum Wisconsin 54-1255 by two-dimensional gel electrophoresis. This method allowed the correct identification of 279 spots by peptide mass fingerprinting and tandem MS. These 279 spots included 328 correctly identified proteins, which corresponded to 131 different proteins and their isoforms. One hundred and two proteins out of 131 were predicted to contain either classical or nonclassical secretion signal peptide sequences, providing evidence of the authentic extracellular location of these proteins. Proteins with higher representation in the extracellular proteome were those involved in plant cell wall degradation (polygalacturonase, pectate lyase, and glucan 1,3-β-glucosidase), utilization of nutrients (extracellular acid phosphatases and 6-hydroxy-d-nicotine oxidase), and stress response (catalase R). This filamentous fungus also secretes enzymes specially relevant for food industry, such as sulfydryl oxidase, dihydroxy-acid dehydratase, or glucoamylase. The identification of several antigens in the extracellular proteome also highlights the importance of this microorganism as one of the main indoor allergens. Comparison of the extracellular proteome among three strains of P. chrysogenum, the wild-type NRRL 1951, the Wis 54-1255 (an improved, moderate penicillin producer), and the AS-P-78 (a penicillin high-producer), provided important insights to consider improved strains of this filamentous fungus as versatile cell-factories of interest, beyond antibiotic production, for other aspects of white biotechnology.
Collapse
Affiliation(s)
- Mohammad-Saeid Jami
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
24
|
The Inflammatory response induced by aspartic proteases of Candida albicans is independent of proteolytic activity. Infect Immun 2010; 78:4754-62. [PMID: 20713630 DOI: 10.1128/iai.00789-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The secretion of aspartic proteases (Saps) has long been recognized as a virulence-associated trait of the pathogenic yeast Candida albicans. In this study, we report that different recombinant Saps, including Sap1, Sap2, Sap3, and Sap6, have differing abilities to induce secretion of proinflammatory cytokines by human monocytes. In particular Sap1, Sap2, and Sap6 significantly induced interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and IL-6 production. Sap3 was able to stimulate the secretion of IL-1β and TNF-α. All Saps tested were able to induce Ca(2+) influx in monocytes. Treatment of these Saps with pepstatin A did not have any effect on cytokine secretion, indicating that their stimulatory potential was independent from their proteolytic activity. The capacity of Saps to induce inflammatory cytokine production was also independent from protease-activated receptor (PAR) activation and from the optimal pH for individual Sap activity. The interaction of Saps with monocytes induced Akt activation and phosphorylation of IκBα, which mediates translocation of NF-κB into the nucleus. Overall, these results suggest that individual Sap proteins can induce an inflammatory response and that this phenomenon is independent from the pH of a specific host niche and from Sap enzymatic activity. The inflammatory response is partially dependent on Sap denaturation and is triggered by the Akt/NF-κB activation pathway. Our data suggest a novel, activity-independent aspect of Saps during interactions of C. albicans with the host.
Collapse
|
25
|
Abstract
Dermatophytoses are infections caused by keratinophilic fungi known as dermatophytes. Several steps are required for infection to take place: contact, adherence, and invasion of keratin layers. The severity of the infection depends on the type of agent, environmental factors, and the host immunologic status. Tinea versicolor is caused by the Malassezia spp yeasts, which are microorganisms that belong to normal biota in seborrheic areas, but some contributing factors, such as the application of oily preparations, creams, an increase in ambient humidity, corticosteroid abuse, or genetic predisposition can induce its overgrowth in both filamentous and yeast structures. Exposure to sunlight stimulates the production of azelaic acid, which causes the appearance of hypopigmented spots. Currently, there is no scientific explanation for hyperpigmented lesions.
Collapse
Affiliation(s)
- Luis J Mendez-Tovar
- Laboratory of Dermatology and Medical Mycology Research, Specialties Hospital, National Medical Center, IMSS, Apdo postal A-032, Coahuila No 5 Col Roma, 06703, México, DF, México.
| |
Collapse
|
26
|
Baldo A, Mathy A, Tabart J, Camponova P, Vermout S, Massart L, Maréchal F, Galleni M, Mignon B. Secreted subtilisin Sub3 from Microsporum canis
is required for adherence to but not for invasion of the epidermis. Br J Dermatol 2009; 162:990-7. [DOI: 10.1111/j.1365-2133.2009.09608.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Pinho RT, Beltramini LM, Alves CR, De-Simone SG. Trypanosoma cruzi: Isolation and characterization of aspartyl proteases. Exp Parasitol 2009; 122:128-33. [DOI: 10.1016/j.exppara.2009.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 08/18/2008] [Accepted: 02/06/2009] [Indexed: 11/28/2022]
|
28
|
Abstract
SUMMARY Candida parapsilosis is an emerging major human pathogen that has dramatically increased in significance and prevalence over the past 2 decades, such that C. parapsilosis is now one of the leading causes of invasive candidal disease. Individuals at the highest risk for severe infection include neonates and patients in intensive care units. C. parapsilosis infections are especially associated with hyperalimentation solutions, prosthetic devices, and indwelling catheters, as well as the nosocomial spread of disease through the hands of health care workers. Factors involved in disease pathogenesis include the secretion of hydrolytic enzymes, adhesion to prosthetics, and biofilm formation. New molecular genetic tools are providing additional and much-needed information regarding C. parapsilosis virulence. The emerging information will provide a deeper understanding of C. parapsilosis pathogenesis and facilitate the development of new therapeutic approaches for treating C. parapsilosis infections.
Collapse
Affiliation(s)
- David Trofa
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
29
|
Schindler B, Segal E. Candida albicans metabolite affects the cytoskeleton and phagocytic activity of murine macrophages. Med Mycol 2008; 46:251-8. [PMID: 18404553 DOI: 10.1080/13693780701837157] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Candida albicans is the most common opportunistic fungal pathogen of humans, causing systemic disease in immunocompromised patients. Host resistance to C. albicans infections is mediated predominantly by neutrophils and monocytes/macrophages. We have previously shown that exposure of a human epithelial cell line (HEp2) to C. albicans or to a culture filtrate of C. albicans caused actin rearrangement in the HEp2 cells. Since shifting of actin from the filamentous to the globular form may be crucial to the activity of phagocytes, we assessed in the present study the effect of the C. albicans metabolite (lyophilized culture filtrate) on the cytoskeleton of murine peritoneal macrophages and on their phagocytic activity. Our results showed a significant decrease in phagocytosis of C. albicans, ranging from 53-63% and a 25% reduction for C. glabrata cells. Using confocal laser scanning microscopy an actin rearrangement in the macrophages could be demonstrated that may be associated with the decrease of phagocytosis. We also tested the effect of mannan and of the secreted aspartic proteinase (Sap) inhibitor--pepstatin, on the activity of the metabolite in order to define the putative component and found no influence. In conclusion, our data indicate that a C. albicans metabolite affects phagocytic activity of macrophages, probably by alterations in their cytoskeleton.
Collapse
Affiliation(s)
- Ben Schindler
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
30
|
Vermout S, Tabart J, Baldo A, Mathy A, Losson B, Mignon B. Pathogenesis of dermatophytosis. Mycopathologia 2008; 166:267-75. [PMID: 18478361 DOI: 10.1007/s11046-008-9104-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 01/15/2008] [Accepted: 01/30/2008] [Indexed: 01/25/2023]
Abstract
Despite the superficial localization of most dermatophytosis, host-fungus relationship in these infections is complex and still poorly elucidated. Though many efforts have been accomplished to characterize secreted dermatophytic proteases at the molecular level, only punctual insights have been afforded into other aspects of the pathogenesis of dermatophytosis, such as fungal adhesion, regulation of gene expression during the infection process, and immunomodulation by fungal factors. However, new genetic tools were recently developed, allowing a more rapid and high-throughput functional investigation of dermatophyte genes and the identification of new putative virulence factors. In addition, sophisticated in vitro infection models are now used and will open the way to a more comprehensive view of the interactions between these fungi and host epidermal cells, especially keratinocytes.
Collapse
Affiliation(s)
- Sandy Vermout
- Department of Infectious & Parasitic Diseases, Parasitology, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster, 20, 4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
31
|
Gácser A, Trofa D, Schäfer W, Nosanchuk JD. Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J Clin Invest 2007; 117:3049-58. [PMID: 17853941 PMCID: PMC1974868 DOI: 10.1172/jci32294] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 06/20/2007] [Indexed: 01/12/2023] Open
Abstract
Candida parapsilosis is a major cause of human disease, yet little is known about the pathogen's virulence. We have developed an efficient gene deletion system for C. parapsilosis based on the repeated use of the dominant nourseothricin resistance marker (caSAT1) and its subsequent deletion by FLP-mediated, site-specific recombination. Using this technique, we deleted the lipase locus in the C. parapsilosis genome consisting of adjacent genes CpLIP1 and CpLIP2. Additionally we reconstructed the CpLIP2 gene, which restored lipase activity. Lipolytic activity was absent in the null mutants, whereas the WT, heterozygous, and reconstructed mutants showed similar lipase production. Biofilm formation was inhibited with lipase-negative mutants and their growth was significantly reduced in lipid-rich media. The knockout mutants were more efficiently ingested and killed by J774.16 and RAW 264.7 macrophage-like cells. Additionally, the lipase-negative mutants were significantly less virulent in infection models that involve inoculation of reconstituted human oral epithelium or murine intraperitoneal challenge. These studies represent what we believe to be the first targeted disruption of a gene in C. parapsilosis and show that C. parapsilosis-secreted lipase is involved in disease pathogenesis. This efficient system for targeted gene deletion holds great promise for rapidly enhancing our knowledge of the biology and virulence of this increasingly common invasive fungal pathogen.
Collapse
Affiliation(s)
- Attila Gácser
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Yeshiva University, New York, New York, USA.
| | | | | | | |
Collapse
|
32
|
Genuis SJ. Clinical medicine and the budding science of indoor mold exposure. Eur J Intern Med 2007; 18:516-23. [PMID: 17967332 DOI: 10.1016/j.ejim.2007.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/30/2007] [Accepted: 05/06/2007] [Indexed: 12/01/2022]
Abstract
Recent research and increasing discussion in the medical literature have brought attention to public health concerns associated with mold exposure. Many kinds of mold and their mold-associated products have the potential to disrupt human molecular biochemistry and physiology, resulting in various types of acute and chronic affliction. As environmental health has not been a focus for medical education, some clinicians are not fully aware of the scope of mold-related health problems and are inadequately equipped to investigate and manage possible cases of mold exposure. As a result, manifestations of mold-related illness often remain misdiagnosed and ineffectually treated. It is important for physicians to be aware of the pathogenesis, the manifestations, the investigations and the management of possible mold exposure. An overview of mold-related health problems and two case histories are presented for consideration.
Collapse
|
33
|
Gácser A, Stehr F, Kröger C, Kredics L, Schäfer W, Nosanchuk JD. Lipase 8 affects the pathogenesis of Candida albicans. Infect Immun 2007; 75:4710-8. [PMID: 17646357 PMCID: PMC2044512 DOI: 10.1128/iai.00372-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The production of lipases can affect microbial fitness and virulence. We examined the role of the lipase 8 (LIP8) gene in the virulence of Candida albicans by constructing Deltalip8 strains by the URA-blaster disruption method. Reverse transcription-PCR experiments demonstrated the absence of LIP8 expression in the homozygous knockout mutants. Reconstituted strains and overexpression mutants were generated by introducing a LIP8 open reading frame under control of a constitutive actin promoter. Knockout mutants produced more mycelium, particularly at higher temperatures and pH >or=7. Diminished LIP8 expression resulted in reduced growth in lipid-containing media. Mutants deficient in the LIP8 gene were significantly less virulent in a murine intravenous infection model. The results clearly indicate that Lip8p is an important virulence factor of C. albicans.
Collapse
Affiliation(s)
- Attila Gácser
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Cheng G, Wozniak K, Wallig MA, Fidel PL, Trupin SR, Hoyer LL. Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun 2005; 73:1656-63. [PMID: 15731066 PMCID: PMC1064955 DOI: 10.1128/iai.73.3.1656-1663.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 09/13/2004] [Accepted: 10/22/2004] [Indexed: 11/20/2022] Open
Abstract
Expression of the eight genes in the Candida albicans agglutinin-like sequence (ALS) family was studied by reverse transcription-PCR of RNA isolated from clinical vaginal fluid specimens and vaginal candidiasis model systems. Although expression of all ALS genes was detected across the set of clinical specimens, ALS1, ALS2, ALS3, and ALS9 transcripts were detected most frequently, and expression of ALS4 and ALS5 was detected least frequently. Laboratory strain 3153A and two C. albicans strains isolated from the clinical specimens were studied using two models of vaginal candidiasis to determine how closely these models mimicked the clinical specimens at the level of gene expression. ALS gene expression patterns in a murine vaginitis model were identical to those from the clinical specimens. Expression of more ALS genes was detected in specimens collected 7 days after infection compared to those collected at 4 days. Similar patterns of ALS gene expression were observed when the three C. albicans strains were tested in the reconstituted human vaginal epithelium model. In this model, expression of ALS4, ALS5, ALS6, and ALS7 was least frequently detected. Negative or weakened signals for ALS4 expression were observed at early time points, suggesting that ALS4 expression, which was strong in the inoculum cells, was down-regulated upon contact of C. albicans with vaginal epithelial cells in this model. The data presented here support the conclusion of host-site-specific influences on ALS gene expression and validate the use of the experimental models for evaluating the phenotype of als/als mutant strains.
Collapse
Affiliation(s)
- Georgina Cheng
- Department of Veterinary Pathobiology, University of Illinois, Urbana, 2522 VMBSB, 2001 S. Lincoln Avenue, Urbana, IL 61802, USA
| | | | | | | | | | | |
Collapse
|
35
|
Jousson O, Léchenne B, Bontems O, Capoccia S, Mignon B, Barblan J, Quadroni M, Monod M. Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum. MICROBIOLOGY-SGM 2004; 150:301-310. [PMID: 14766908 DOI: 10.1099/mic.0.26690-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dermatophytes are human and animal pathogenic fungi which cause cutaneous infections and grow exclusively in the stratum corneum, nails and hair. In a culture medium containing soy proteins as sole nitrogen source a substantial proteolytic activity was secreted by Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis. This proteolytic activity was 55-75 % inhibited by o-phenanthroline, attesting that metalloproteases were secreted by all three species. Using a consensus probe constructed on previously characterized genes encoding metalloproteases (MEP) of the M36 fungalysin family in Aspergillus fumigatus, Aspergillus oryzae and M. canis, a five-member MEP family was isolated from genomic libraries of T. rubrum, T. mentagrophytes and M. canis. A phylogenetic analysis of genomic and protein sequences revealed a robust tree consisting of five main clades, each of them including a MEP sequence type from each dermatophyte species. Each MEP type was remarkably conserved across species (72-97 % amino acid sequence identity). The tree topology clearly indicated that the multiplication of MEP genes in dermatophytes occurred prior to species divergence. In culture medium containing soy proteins as a sole nitrogen source secreted Meps accounted for 19-36 % of total secreted protein extracts; characterization of protein bands by proteolysis and mass spectrometry revealed that the three dermatophyte species secreted two Meps (Mep3 and Mep4) encoded by orthologous genes.
Collapse
Affiliation(s)
- Olivier Jousson
- Dermatology Service (DHURDV), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Barbara Léchenne
- Dermatology Service (DHURDV), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Olympia Bontems
- Dermatology Service (DHURDV), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sabrina Capoccia
- Dermatology Service (DHURDV), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Bernard Mignon
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Belgium
| | - Jachen Barblan
- Protein Analysis Facility, Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Manfredo Quadroni
- Protein Analysis Facility, Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Michel Monod
- Dermatology Service (DHURDV), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
36
|
Green CB, Cheng G, Chandra J, Mukherjee P, Ghannoum MA, Hoyer LL. RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. MICROBIOLOGY-SGM 2004; 150:267-275. [PMID: 14766904 DOI: 10.1099/mic.0.26699-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An RT-PCR assay was developed to analyse expression patterns of genes in the Candida albicans ALS (agglutinin-like sequence) family. Inoculation of a reconstituted human buccal epithelium (RHE) model of mucocutaneous candidiasis with strain SC5314 showed destruction of the epithelial layer by C. albicans and also formation of an upper fungal layer that had characteristics similar to a biofilm. RT-PCR analysis of total RNA samples extracted from C. albicans-inoculated buccal RHE showed that ALS1, ALS2, ALS3, ALS4, ALS5 and ALS9 were consistently detected over time as destruction of the RHE progressed. Detection of transcripts from ALS7, and particularly from ALS6, was more sporadic, but not associated with a strictly temporal pattern. The expression pattern of ALS genes in C. albicans cultures used to inoculate the RHE was similar to that observed in the RHE model, suggesting that contact of C. albicans with buccal RHE does little to alter ALS gene expression. RT-PCR analysis of RNA samples extracted from model denture and catheter biofilms showed similar gene expression patterns to the buccal RHE specimens. Results from the RT-PCR analysis of biofilm RNA specimens were consistent between various C. albicans strains during biofilm development and were comparable to gene expression patterns in planktonic cells. The RT-PCR assay described here will be useful for analysis of human clinical specimens and samples from other disease models. The method will provide further insight into the role of ALS genes and their encoded proteins in the diverse interactions between C. albicans and its host.
Collapse
Affiliation(s)
- Clayton B Green
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Georgina Cheng
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Jyotsna Chandra
- Center for Medical Mycology, Department of Dermatology, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Pranab Mukherjee
- Center for Medical Mycology, Department of Dermatology, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mahmoud A Ghannoum
- Center for Medical Mycology, Department of Dermatology, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lois L Hoyer
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
37
|
Borg-von Zepelin M, Monod M. [What happens in fungal infections at the molecular level? Fungal pathogens]. PHARMAZIE IN UNSERER ZEIT 2003; 32:110-6. [PMID: 12677963 DOI: 10.1002/pauz.200390027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|