1
|
Ragucci S, Campanile MG, Russo V, Landi N, Hussain HZF, Canonico E, Russo R, Russo M, Arcella A, Chambery A, Di Maro A. Hortensin 4, main type 1 ribosome inactivating protein from red mountain spinach seeds: Structural characterization and biological action. Int J Biol Macromol 2025; 307:142085. [PMID: 40086539 DOI: 10.1016/j.ijbiomac.2025.142085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
Here, we report the primary structure of hortensin 4, main type 1 ribosome inactivating protein (RIP) isolated from Atriplex hortensis seeds. The complete sequencing was achieved by a combination of mass spectrometry coupled with Edman degradation. The amino acid sequence of hortensin 4 matches with that of Atriplex patens type 1 RIP, deduced from the cDNA sequence (AC: ABJ90432.1). The protein consists of 254 amino acid residues, without cysteinyl residues and a N-Acetylhexosamine chain at position Asn231. Structural studies (CD spectrum and 3D model) show a protein core typical of RIPs, and the amino acid residues of active site are conserved. In addition, to get insight into the protective effects of hortensin 4 against pathogens and its putative biotechnological applications, we evaluated the: i) N-glycosylase activity against the tobacco mosaic virus (TMV) RNA; (ii) antifungal activity towards Trichoderma harzianum and Botrytis cinerea, by damaging fungal ribosomes; and (iii) inhibition of human primary glioblastoma NULU cells proliferation, with cytotoxicity enhanced in the presence of temozolomide, used as a chemotherapeutic agent. Altogether, the multiple biological activities of hortensin 4 could be exploited both to improve the resistance to various pathogens by engineering transgenic plants and to develop useful tools for cancer therapy.
Collapse
Affiliation(s)
- Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Giuseppina Campanile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Veronica Russo
- IRCCS Istituto Neurologico Mediterraneo 'NEUROMED', Via Atinense 18, 86077 Pozzilli, Italy
| | - Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy; Institute of Crystallography, National Research Council of Italy, Via Vivaldi 43, 81100 Caserta, Italy
| | - Hafiza Z F Hussain
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Enza Canonico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Miriam Russo
- IRCCS Istituto Neurologico Mediterraneo 'NEUROMED', Via Atinense 18, 86077 Pozzilli, Italy
| | - Antonietta Arcella
- IRCCS Istituto Neurologico Mediterraneo 'NEUROMED', Via Atinense 18, 86077 Pozzilli, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
2
|
Landi N, Ragucci S, Citores L, Clemente A, Hussain HZF, Iglesias R, Ferreras JM, Di Maro A. Isolation, Characterization and Biological Action of Type-1 Ribosome-Inactivating Proteins from Tissues of Salsola soda L. Toxins (Basel) 2022; 14:toxins14080566. [PMID: 36006228 PMCID: PMC9412391 DOI: 10.3390/toxins14080566] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are known as RNA N-glycosylases. They depurinate the major rRNA, damaging ribosomes and inhibiting protein synthesis. Here, new single-chain (type-1) RIPs named sodins were isolated from the seeds (five proteins), edible leaves (one protein) and roots (one protein) of Salsola soda L. Sodins are able to release Endo's fragment when incubated with rabbit and yeast ribosomes and inhibit protein synthesis in cell-free systems (IC50 = 4.83-79.31 pM). In addition, sodin 5, the major form isolated from seeds, as well as sodin eL and sodin R, isolated from edible leaves and roots, respectively, display polynucleotide:adenosine glycosylase activity and are cytotoxic towards the Hela and COLO 320 cell lines (IC50 = 0.41-1200 nM), inducing apoptosis. The further characterization of sodin 5 reveals that this enzyme shows a secondary structure similar to other type-1 RIPs and a higher melting temperature (Tm = 76.03 ± 0.30 °C) and is non-glycosylated, as other sodins are. Finally, we proved that sodin 5 possesses antifungal activity against Penicillium digitatum.
Collapse
Affiliation(s)
- Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain
| | - Angela Clemente
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Hafiza Z. F. Hussain
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
- Correspondence:
| |
Collapse
|
3
|
Ribotoxic Proteins, Known as Inhibitors of Protein Synthesis, from Mushrooms and Other Fungi According to Endo's Fragment Detection. Toxins (Basel) 2022; 14:toxins14060403. [PMID: 35737065 PMCID: PMC9227437 DOI: 10.3390/toxins14060403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
rRNA N-glycosylases (EC 3.2.2.22) remove a specific adenine (A4324, rat 28S rRNA) in the sarcin ricin loop (SRL) involved into ribosome interaction with elongation factors, causing the inhibition of translation, for which they are known as plant 'ribosome inactivating proteins' (RIPs). However, protein synthesis inactivation could be the result of other enzymes, which often have rRNA as the target. In this scenario, Endo's assay is the most used method to detect the enzymes that are able to hydrolyze a phosphodiester bond or cleave a single N-glycosidic bond (rRNA N-glycosylases). Indeed, the detection of a diagnostic fragment from rRNA after enzymatic action, with or without acid aniline, allows one to discriminate between the N-glycosylases or hydrolases, which release the β-fragment after acid aniline treatment or α-fragment without acid aniline treatment, respectively. This assay is of great importance in the mushroom kingdom, considering the presence of enzymes that are able to hydrolyze phosphodiester bonds (e.g., ribonucleases, ribotoxins and ribotoxin-like proteins) or to remove a specific adenine (rRNA N-glycosylases). Thus, here we used the β-fragment experimentally detected by Endo's assay as a hallmark to revise the literature available on enzymes from mushrooms and other fungi, whose action consists of protein biosynthesis inhibition.
Collapse
|
4
|
Cytotoxicity Effect of Quinoin, Type 1 Ribosome-Inactivating Protein from Quinoa Seeds, on Glioblastoma Cells. Toxins (Basel) 2021; 13:toxins13100684. [PMID: 34678977 PMCID: PMC8537469 DOI: 10.3390/toxins13100684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are found in several edible plants and are well characterized. Many studies highlight their use in cancer therapy, alone or as immunoconjugates, linked to monoclonal antibodies directed against target cancer cells. In this context, we investigate the cytotoxicity of quinoin, a novel type 1 RIP from quinoa seeds, on human continuous and primary glioblastoma cell lines. The cytotoxic effect of quinoin was assayed on human continuous glioblastoma U87Mg cells. Moreover, considering that common conventional glioblastoma multiforme (GBM) cell lines are genetically different from the tumors from which they derive, the cytotoxicity of quinoin was subsequently tested towards primary cells NULU and ZAR (two cell lines established from patients’ gliomas), also in combination with the chemotherapeutic agent temozolomide (TMZ), currently used in glioblastoma treatment. The present study demonstrated that quinoin (2.5 and 5.0 nM) strongly reduced glioblastoma cells’ growth. The mechanisms responsible for the inhibitory action of quinoin are different in the tested primary cell lines, reproducing the heterogeneous response of glioblastoma cells. Interestingly, primary cells treated with quinoin in combination with TMZ were more sensitive to the treatment. Overall, our data highlight that quinoin could represent a novel tool for glioblastoma therapy and a possible adjuvant for the treatment of the disease in combination with TMZ, alone or as possible immunoconjugates/nanoconstructs.
Collapse
|
5
|
Ragucci S, Landi N, Russo R, Valletta M, Pedone PV, Chambery A, Di Maro A. Ageritin from Pioppino Mushroom: The Prototype of Ribotoxin-Like Proteins, a Novel Family of Specific Ribonucleases in Edible Mushrooms. Toxins (Basel) 2021; 13:263. [PMID: 33917246 PMCID: PMC8068006 DOI: 10.3390/toxins13040263] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022] Open
Abstract
Ageritin is a specific ribonuclease, extracted from the edible mushroom Cyclocybe aegerita (synonym Agrocybe aegerita), which cleaves a single phosphodiester bond located within the universally conserved alpha-sarcin loop (SRL) of 23-28S rRNAs. This cleavage leads to the inhibition of protein biosynthesis, followed by cellular death through apoptosis. The structural and enzymatic properties show that Ageritin is the prototype of a novel specific ribonucleases family named 'ribotoxin-like proteins', recently found in fruiting bodies of other edible basidiomycetes mushrooms (e.g., Ostreatin from Pleurotus ostreatus, Edulitins from Boletus edulis, and Gambositin from Calocybe gambosa). Although the putative role of this toxin, present in high amount in fruiting body (>2.5 mg per 100 g) of C. aegerita, is unknown, its antifungal and insecticidal actions strongly support a role in defense mechanisms. Thus, in this review, we focus on structural, biological, antipathogenic, and enzymatic characteristics of this ribotoxin-like protein. We also highlight its biological relevance and potential biotechnological applications in agriculture as a bio-pesticide and in biomedicine as a therapeutic and diagnostic agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100-Caserta, Italy; (S.R.); (N.L.); (R.R.); (M.V.); (P.V.P.); (A.C.)
| |
Collapse
|
6
|
Landi N, Ruocco MR, Ragucci S, Aliotta F, Nasso R, Pedone PV, Di Maro A. Quinoa as source of type 1 ribosome inactivating proteins: A novel knowledge for a revision of its consumption. Food Chem 2020; 342:128337. [PMID: 33077288 DOI: 10.1016/j.foodchem.2020.128337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/30/2022]
Abstract
This study investigates on the presence of toxic proteins in quinoa seeds. To this aim, a plethora of biochemical approaches were adopted for the purification and characterization of quinoin, a type 1 ribosome-inactivating protein (RIP) contained in quinoa seeds. We determined its melting temperature (68.2 ± 0.6 °C) and thermostability (loss of activity after 10-min incubation at 70 °C). Considering that quinoa seeds are used as a food, we found that quinoin is cytotoxic against BJ-5ta (human fibroblasts) and HaCaT (human keratinocytes) in a dose- and time-dependent manner. Moreover, in an in vitro digestive pepsin-trypsin treatment, 30% of quinoin is resistant to enzymatic cleavage. This toxin was found in seeds (0.23 mg/g of seeds) and in sprouted seeds obtained after 24-h (0.12 mg/g of sprout) and 48-h (0.09 mg/g of sprout). We suggest a thermal treatment of quinoa seeds before consumption in order to inactivate the toxin, particularly in sprouts, generally consumed raw.
Collapse
Affiliation(s)
- Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II', Via S. Pansini 5, 80131 Naples, Italy
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Federica Aliotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II', Via S. Pansini 5, 80131 Naples, Italy
| | - Rosarita Nasso
- Department of Movement Sciences and Wellness, University of Naples 'Parthenope', Via F. Acton 38, 80133 Naples, Italy
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
7
|
Antiviral Activity of PD-L1 and PD-L4, Type 1 Ribosome Inactivating Proteins from Leaves of Phytolacca dioica L. in the Pathosystem Phaseolus vulgaris-Tobacco Necrosis Virus (TNV). Toxins (Basel) 2020; 12:toxins12080524. [PMID: 32824023 PMCID: PMC7472211 DOI: 10.3390/toxins12080524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Using the pathosystem Phaseolus vulgaris-tobacco necrosis virus (TNV), we demonstrated that PD-L1 and PD-L4, type-1 ribosome inactivating proteins (RIPs) from leaves of Phytolacca dioica L., possess a strong antiviral activity. This activity was exerted both when the RIPs and the virus were inoculated together in the same leaf and when they were inoculated or applied separately in the adaxial and abaxial leaf surfaces. This suggests that virus inhibition would mainly occur inside plant cells at the onset of infection. Histochemical studies showed that both PD-L1 and PD-L4 were not able to induce oxidative burst and cell death in treated leaves, which were instead elicited by inoculation of the virus alone. Furthermore, when RIPs and TNV were inoculated together, no sign of H2O2 deposits and cell death were detectable, indicating that the virus could have been inactivated in a very early stage of infection, before the elicitation of a hypersensitivity reaction. In conclusion, the strong antiviral activity is likely exerted inside host cells as soon the virus disassembles to start translation of the viral genome. This activity is likely directed towards both viral and ribosomal RNA, explaining the almost complete abolition of infection when virus and RIP enter together into the cells.
Collapse
|
8
|
Ebulin-RP, a novel member of the Ebulin gene family with low cytotoxicity as a result of deficient sugar binding domains. Biochim Biophys Acta Gen Subj 2017; 1862:460-473. [PMID: 29154940 DOI: 10.1016/j.bbagen.2017.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/31/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Sambucus ebulus is a rich source of ribosome-inactivating proteins (RIPs) and RIP-related lectins generated from multiple genes. These proteins differ in their structure, enzymatic activity and sugar binding specificity. METHODS We have purified and characterized ebulin-RP from S. ebulus leaves and determined the amino acid sequence by cDNA cloning. Cytotoxicity was studied in a variety of cancer cells and a comparative study of the ability of ebulin-RP to bind sugars using "in vitro" and "in silico" approaches was performed. RESULTS Ebulin-RP is a novel heterodimeric type 2 RIP present in S. ebulus leaves together with the type 2 RIP ebulin l, which displayed rRNA N-glycosidase activity but unlike ebulin l, lacked functional sugar binding domains. As a consequence of changes in its B-chain, ebulin-RP displayed lower cytotoxicity than ebulin l towards cancer cells and induced apoptosis as the predominant pattern of cell death. CONCLUSIONS Ebulin-RP is a novel member of the ebulin gene family with low cytotoxicity as a result of deficient sugar binding domains. Type 2 RIP genes from Sambucus have evolved to render proteins with different sugar affinities that may be related to different biological activities and could result in an advantage for the plant. GENERAL SIGNIFICANCE The ebulin family of RIPs and lectins can serve as a good model for studying the evolutionary process which may have occurred in RIPs. The lack of cytotoxicity of ebulin-RP makes it a good candidate as a toxic moiety in the construction of immunotoxins and conjugates directed against specific targets.
Collapse
|
9
|
De Zaeytijd J, Van Damme EJM. Extensive Evolution of Cereal Ribosome-Inactivating Proteins Translates into Unique Structural Features, Activation Mechanisms, and Physiological Roles. Toxins (Basel) 2017; 9:E123. [PMID: 28353660 PMCID: PMC5408197 DOI: 10.3390/toxins9040123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/25/2017] [Indexed: 11/16/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes that can depurinate rRNAs thereby inhibiting protein translation. Although these proteins have also been detected in bacteria, fungi, and even some insects, they are especially prevalent in the plant kingdom. This review focuses on the RIPs from cereals. Studies on the taxonomical distribution and evolution of plant RIPs suggest that cereal RIPs have evolved at an enhanced rate giving rise to a large and heterogeneous RIP gene family. Furthermore, several cereal RIP genes are characterized by a unique domain architecture and the lack of a signal peptide. This advanced evolution of cereal RIPs translates into distinct structures, activation mechanisms, and physiological roles. Several cereal RIPs are characterized by activation mechanisms that include the proteolytic removal of internal peptides from the N-glycosidase domain, a feature not documented for non-cereal RIPs. Besides their role in defense against pathogenic fungi or herbivorous insects, cereal RIPs are also involved in endogenous functions such as adaptation to abiotic stress, storage, induction of senescence, and reprogramming of the translational machinery. The unique properties of cereal RIPs are discussed in this review paper.
Collapse
Affiliation(s)
- Jeroen De Zaeytijd
- Lab Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Els J M Van Damme
- Lab Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
10
|
Biological and antipathogenic activities of ribosome-inactivating proteins from Phytolacca dioica L. Biochim Biophys Acta Gen Subj 2016; 1860:1256-64. [DOI: 10.1016/j.bbagen.2016.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/16/2016] [Accepted: 03/07/2016] [Indexed: 12/30/2022]
|
11
|
Iglesias R, Citores L, Di Maro A, Ferreras JM. Biological activities of the antiviral protein BE27 from sugar beet (Beta vulgaris L.). PLANTA 2015; 241:421-433. [PMID: 25326773 DOI: 10.1007/s00425-014-2191-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/12/2014] [Indexed: 06/04/2023]
Abstract
The ribosome inactivating protein BE27 displays several biological activities in vitro that could result in a broad action against several types of pathogens. Beetin 27 (BE27), a ribosome-inactivating protein (RIP) from sugar beet (Beta vulgaris L.) leaves, is an antiviral protein induced by virus and signaling compounds such as hydrogen peroxide and salicylic acid. Its role as a defense protein has been attributed to its RNA polynucleotide:adenosine glycosidase activity. Here we tested other putative activities of BE27 that could have a defensive role against pathogens finding that BE27 displays rRNA N-glycosidase activity against yeast and Agrobacterium tumefaciens ribosomes, DNA polynucleotide:adenosine glycosidase activity against herring sperm DNA, and magnesium-dependent endonuclease activity against the supercoiled plasmid PUC19 (nicking activity). The nicking activity could be a consequence of an unusual conformation of the BE27 active site, similar to that of PD-L1, a RIP from Phytolacca dioica L. leaves. Additionally, BE27 possesses superoxide dismutase activity, thus being able to produce the signal compound hydrogen peroxide. BE27 is also toxic to COLO 320 cells, inducing apoptosis in these cells by either activating the caspase pathways and/or inhibiting protein synthesis. The combined effect of these biological activities could result in a broad action against several types of pathogens such as virus, bacteria, fungi or insects.
Collapse
Affiliation(s)
- Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011, Valladolid, Spain
| | | | | | | |
Collapse
|
12
|
Di Maro A, Berisio R, Ruggiero A, Tamburino R, Severino V, Zacchia E, Parente A. Structural and enzymatic properties of an in vivo proteolytic form of PD-S2, type 1 ribosome-inactivating protein from seeds of Phytolacca dioica L. Biochem Biophys Res Commun 2012; 421:514-20. [DOI: 10.1016/j.bbrc.2012.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
|
13
|
Parente A, Berisio R, Chambery A, Di Maro A. Type 1 Ribosome-Inactivating Proteins from the Ombú Tree (Phytolacca dioica L.). TOXIC PLANT PROTEINS 2010. [DOI: 10.1007/978-3-642-12176-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
14
|
Ruggiero A, Di Maro A, Severino V, Chambery A, Berisio R. Crystal structure of PD-L1, a ribosome inactivating protein fromPhytolacca dioicaL. Leaves with the property to induce DNA cleavage. Biopolymers 2009; 91:1135-42. [DOI: 10.1002/bip.21260] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Di Maro A, Chambery A, Carafa V, Costantini S, Colonna G, Parente A. Structural characterization and comparative modeling of PD-Ls 1–3, type 1 ribosome-inactivating proteins from summer leaves of Phytolacca dioica L. Biochimie 2009; 91:352-63. [DOI: 10.1016/j.biochi.2008.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/16/2008] [Indexed: 11/29/2022]
|
16
|
Parente A, Conforto B, Di Maro A, Chambery A, De Luca P, Bolognesi A, Iriti M, Faoro F. Type 1 ribosome-inactivating proteins from Phytolacca dioica L. leaves: differential seasonal and age expression, and cellular localization. PLANTA 2008; 228:963-975. [PMID: 18704492 DOI: 10.1007/s00425-008-0796-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/18/2008] [Indexed: 05/26/2023]
Abstract
The expression of type 1 ribosome-inactivating proteins (RIPs) in Phytolacca dioica L. leaves was investigated. Fully expanded leaves of young P. dioica plants (up to 3 years old) expressed two novel RIPs, dioicin 1 and dioicin 2. The former was also found in developing leaves from adult P. dioica within about two and a half weeks after leaf development, and the latter continuously synthesized, with no seasonal or ontogenetic constraint. Fully expanded leaves from adult P. dioica expressed four RIPs (PD-Ls1-4) exhibiting seasonal variation. RIPs were localized in the extracellular space, in the vacuole and in the Golgi apparatus of mesophyll cells. Dioicin 1 and dioicin 2 showed rRNA N-beta-glycosidase activity and displayed the following properties, respectively: (1) Mr values of 30,047.00 and 29,910.00, (2) pIs of 8.74 and 9.37, and (3) IC(50) values of 19.74 (0.658 nM) and 6.85 ng/mL (0.229 nM). Furthermore, they showed adenine polynucleotide glycosylase activity and nicked pBR322 dsDNA. The amino acid sequence of dioicin 2 had 266 amino acid residues, and the highest percentage identity (81.6%) and similarity (84.6%) with PAP-II from Phytolacca americana, while its identity with other RIPs from Phytolaccaceae was around 40%.
Collapse
Affiliation(s)
- Augusto Parente
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Caserta, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chambery A, Di Maro A, Parente A. Primary structure and glycan moiety characterization of PD-Ss, type 1 ribosome-inactivating proteins from Phytolacca dioica L. seeds, by precursor ion discovery on a Q-TOF mass spectrometer. PHYTOCHEMISTRY 2008; 69:1973-1982. [PMID: 18514239 DOI: 10.1016/j.phytochem.2008.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/01/2008] [Accepted: 04/08/2008] [Indexed: 05/26/2023]
Abstract
Seeds from Phytolacca dioica L. contain at least three N-glycosylated PD-Ss, type 1 ribosome-inactivating proteins (RIPs), which were separated and purified to homogeneity by conventional chromatographic techniques. ESI-Q-TOF mass spectrometry provided the accurate M(r) of native PD-S1 and PD-S3 (30957.1 and 29785.1, respectively) and the major form PD-S2 (30753.8). As the amino acid sequence of PD-S2 was already known, its disulfide pairing was determined and found to be Cys34-Cys262 and Cys88-Cys110. Further structural characterization of PD-S1 and PD-S3 (N-terminal sequence determination up to residue 30, amino acid analysis and tryptic peptide mapping) showed that the three PD-Ss shared the entire protein sequence. To explain the different chromatographic behaviour, their glycosylation patterns were characterized by a fast and sensitive mass spectrometry-based approach, applying a precursor ion discovery mode on a Q-TOF mass spectrometer. A standard plant paucidomannosidic N-glycosylation pattern [Hex(3), HexNAc(2), deoxyhexose(1), pentose(1)] was found for PD-S1 and PD-S2 on Asn120. Furthermore, a glycosylation site carrying only a HexNAc residue was identified on Asn112 in PD-S1 and PD-S3. Finally, considering the two disulfide bridges and the glycan moieties, the experimental M(r) values were in agreement with the mass values calculated from the primary structure. The complete characterization of PD-Ss shows the high potential of mass spectrometry to rapidly characterize proteins, widespread in eukaryotes, differing only in their glycosylation motifs.
Collapse
Affiliation(s)
- Angela Chambery
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Caserta, Italy
| | | | | |
Collapse
|
18
|
Ruggiero A, Chambery A, Maro AD, Parente A, Berisio R. Atomic resolution (1.1 Å) structure of the ribosome-inactivating protein PD-L4 fromPhytolacca dioicaL. leaves. Proteins 2008; 71:8-15. [DOI: 10.1002/prot.21712] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
He YW, Guo CX, Pan YF, Peng C, Weng ZH. Inhibition of hepatitis B virus replication by pokeweed antiviral protein in vitro. World J Gastroenterol 2008; 14:1592-7. [PMID: 18330954 PMCID: PMC2693758 DOI: 10.3748/wjg.14.1592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the inhibitory effects of pokeweed antiviral protein seed (PAP-S) and PAP encoded by a eukaryotic expression plasmid on hepatitis B virus (HBV) replication in vitro.
METHODS: HepG2 2.2.15 cells in cultured medium were treated with different concentrations of PAP-S. HBsAg, HBeAg and HBV DNA in supernatants were determined by ELISA and fluorescent quantitative PCR respectively. MTT method was used to assay for cytotoxicity. HepG2 were cotransfected with various amounts of PAP encoded by a eukaryotic expression plasmid and replication competent wild-type HBV 1.3 fold over-length plasmid. On d 3 after transfection, HBsAg and HBeAg were determined by using ELISA. Levels of HBV core-associated DNA and RNA were detected by using Southern and Northern blot, respectively.
RESULTS: The inhibitory effects of PAP-S on HBsAg, HBeAg and HBV DNA were gradually enhanced with the increase of PAP concentration. When the concentration of PAP-S was 10 &mgr;g/mL, the inhibition rates of HBsAg, HBeAg and HBV DNA were 20.9%, 30.2% and 50%, respectively. After transfection of 1.0 &mgr;g and 2.0 &mgr;g plasmid pXF3H-PAP, the levels of HBV nucleocapside-associated DNA were reduced by 38.0% and 74.0% respectively, the levels of HBsAg in the media by 76.8% and 99.7% respectively, and the levels of HBeAg by 72.7% and 99.3% respectively as compared with controls. Transfection with 2 &mgr;g plasmid pXF3H-PAP reduced the levels of HBV nucleocapside-associated RNA by 69.0%.
CONCLUSION: Both PAP-S and PAP encoded by a eukaryotic expression plasmid could effectively inhibit HBV replication and antigen expression in vitro, and the inhibitory effects were dose-dependent.
Collapse
|