1
|
Antonin W, Franz C, Haselmann U, Antony C, Mattaj IW. The integral membrane nucleoporin pom121 functionally links nuclear pore complex assembly and nuclear envelope formation. Mol Cell 2005; 17:83-92. [PMID: 15629719 DOI: 10.1016/j.molcel.2004.12.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/02/2004] [Accepted: 12/08/2004] [Indexed: 10/26/2022]
Abstract
The metazoan nuclear envelope (NE) breaks down and reforms at each mitosis. Nuclear pore complexes (NPCs), which allow nucleocytoplasmic transport during interphase, assemble into the reforming NE at the end of mitosis. Using in vitro NE assembly assays, we show that one of the two transmembrane nucleoporins, pom121, is essential for NE formation, whereas the second, gp210, is dispensable. Depletion of either pom121-containing membrane vesicles or the protein alone does not affect vesicle binding to chromatin but prevents their fusion to form a closed NE. When the Nup107-160 complex, which is essential for integration of NPCs into the NE, is also depleted, pom121 becomes dispensable for NE formation, suggesting a close functional link between NPC and NE formation and the existence of a checkpoint that monitors NPC assembly state.
Collapse
Affiliation(s)
- Wolfram Antonin
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
2
|
Walther TC, Pickersgill HS, Cordes VC, Goldberg MW, Allen TD, Mattaj IW, Fornerod M. The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J Cell Biol 2002; 158:63-77. [PMID: 12105182 PMCID: PMC2173022 DOI: 10.1083/jcb.200202088] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear pore complex (NPC) mediates bidirectional macromolecular traffic between the nucleus and cytoplasm in eukaryotic cells. Eight filaments project from the NPC into the cytoplasm and are proposed to function in nuclear import. We investigated the localization and function of two nucleoporins on the cytoplasmic face of the NPC, CAN/Nup214 and RanBP2/Nup358. Consistent with previous data, RanBP2 was localized at the cytoplasmic filaments. In contrast, CAN was localized near the cytoplasmic coaxial ring. Unexpectedly, extensive blocking of RanBP2 with gold-conjugated antibodies failed to inhibit nuclear import. Therefore, RanBP2-deficient NPCs were generated by in vitro nuclear assembly in RanBP2-depleted Xenopus egg extracts. NPCs were formed that lacked cytoplasmic filaments, but that retained CAN. These nuclei efficiently imported nuclear localization sequence (NLS) or M9 substrates. NPCs lacking CAN retained RanBP2 and cytoplasmic filaments, and showed a minor NLS import defect. NPCs deficient in both CAN and RanBP2 displayed no cytoplasmic filaments and had a strikingly immature cytoplasmic appearance. However, they showed only a slight reduction in NLS-mediated import, no change in M9-mediated import, and were normal in growth and DNA replication. We conclude that RanBP2 is the major nucleoporin component of the cytoplasmic filaments of the NPC, and that these filaments do not have an essential role in importin alpha/beta- or transportin-dependent import.
Collapse
|
3
|
Walther TC, Fornerod M, Pickersgill H, Goldberg M, Allen TD, Mattaj IW. The nucleoporin Nup153 is required for nuclear pore basket formation, nuclear pore complex anchoring and import of a subset of nuclear proteins. EMBO J 2001; 20:5703-14. [PMID: 11598013 PMCID: PMC125666 DOI: 10.1093/emboj/20.20.5703] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nuclear pore complex (NPC) is a large proteinaceous structure through which bidirectional transport of macromolecules across the nuclear envelope (NE) takes place. Nup153 is a peripheral NPC component that has been implicated in protein and RNP transport and in the interaction of NPCs with the nuclear lamina. Here, Nup153 is localized by immunogold electron microscopy to a position on the nuclear ring of the NPC. Nuclear reconstitution is used to investigate the role of Nup153 in nucleo- cytoplasmic transport and NPC architecture. NPCs assembled in the absence of Nup153 lacked several nuclear basket components, were unevenly distributed in the NE and, unlike wild-type NPCs, were mobile within the NE. Importin alpha/beta-mediated protein import into the nucleus was strongly reduced in the absence of Nup153, while transportin-mediated import was unaffected. This was due to a reduction in import complex translocation rather than to defective receptor recycling. Our results therefore reveal functions for Nup153 in NPC assembly, in anchoring NPCs within the NE and in mediating specific nuclear import events.
Collapse
Affiliation(s)
- Tobias C. Walther
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany and CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital National Health Service Trust, Manchester M20 9BX, UK Present address: Netherlands Cancer Institute – H4, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands Corresponding author e-mail:
| | - Maarten Fornerod
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany and CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital National Health Service Trust, Manchester M20 9BX, UK Present address: Netherlands Cancer Institute – H4, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands Corresponding author e-mail:
| | - Helen Pickersgill
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany and CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital National Health Service Trust, Manchester M20 9BX, UK Present address: Netherlands Cancer Institute – H4, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands Corresponding author e-mail:
| | - Martin Goldberg
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany and CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital National Health Service Trust, Manchester M20 9BX, UK Present address: Netherlands Cancer Institute – H4, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands Corresponding author e-mail:
| | - Terry D. Allen
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany and CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital National Health Service Trust, Manchester M20 9BX, UK Present address: Netherlands Cancer Institute – H4, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands Corresponding author e-mail:
| | - Iain W. Mattaj
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany and CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital National Health Service Trust, Manchester M20 9BX, UK Present address: Netherlands Cancer Institute – H4, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands Corresponding author e-mail:
| |
Collapse
|
4
|
Ossareh-Nazari B, Maison C, Black BE, Lévesque L, Paschal BM, Dargemont C. RanGTP-binding protein NXT1 facilitates nuclear export of different classes of RNA in vitro. Mol Cell Biol 2000; 20:4562-71. [PMID: 10848583 PMCID: PMC85847 DOI: 10.1128/mcb.20.13.4562-4571.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/1999] [Accepted: 04/11/2000] [Indexed: 11/20/2022] Open
Abstract
To better characterize the mechanisms responsible for RNA export from the nucleus, we developed an in vitro assay based on the use of permeabilized HeLa cells. This new assay supports nuclear export of U1 snRNA, tRNA, and mRNA in an energy- and Xenopus extract-dependent manner. U1 snRNA export requires a 5' monomethylated cap structure, the nuclear export signal receptor CRM1, and the small GTPase Ran. In contrast, mRNA export does not require the participation of CRM1. We show here that NXT1, an NTF2-related protein that binds directly to RanGTP, strongly stimulates export of U1 snRNA, tRNA, and mRNA. The ability of NXT1 to promote export is dependent on its capacity to bind RanGTP. These results support the emerging view that NXT1 is a general export factor, functioning on both CRM1-dependent and CRM1-independent pathways of RNA export.
Collapse
Affiliation(s)
- B Ossareh-Nazari
- Laboratoire de Transport Nucléocytoplasmique, Unité Mixte de Recherche 144, Institut Curie-CNRS, 75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
5
|
Hetzer M, Bilbao-Cortés D, Walther TC, Gruss OJ, Mattaj IW. GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol Cell 2000; 5:1013-24. [PMID: 10911995 DOI: 10.1016/s1097-2765(00)80266-x] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nuclear formation in Xenopus egg extracts requires cytosol and is inhibited by GTP gamma S, indicating a requirement for GTPase activity. Nuclear envelope (NE) vesicle fusion is extensively inhibited by GTP gamma S and two mutant forms of the Ran GTPase, Q69L and T24N. Depletion of either Ran or RCC1, the exchange factor for Ran, from the assembly reaction also inhibits this step of NE formation. Ran depletion can be complemented by the addition of Ran loaded with either GTP or GDP but not with GTP gamma S. RCC1 depletion is only complemented by RCC1 itself or by RanGTP. Thus, generation of RanGTP by RCC1 and GTP hydrolysis by Ran are both required for the extensive membrane fusion events that lead to NE formation.
Collapse
Affiliation(s)
- M Hetzer
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
6
|
Askjaer P, Bachi A, Wilm M, Bischoff FR, Weeks DL, Ogniewski V, Ohno M, Niehrs C, Kjems J, Mattaj IW, Fornerod M. RanGTP-regulated interactions of CRM1 with nucleoporins and a shuttling DEAD-box helicase. Mol Cell Biol 1999; 19:6276-85. [PMID: 10454574 PMCID: PMC84588 DOI: 10.1128/mcb.19.9.6276] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/1999] [Accepted: 06/21/1999] [Indexed: 11/20/2022] Open
Abstract
CRM1 is an export receptor mediating rapid nuclear exit of proteins and RNAs to the cytoplasm. CRM1 export cargoes include proteins with a leucine-rich nuclear export signal (NES) that bind directly to CRM1 in a trimeric complex with RanGTP. Using a quantitative CRM1-NES cargo binding assay, significant differences in affinity for CRM1 among natural NESs are demonstrated, suggesting that the steady-state nucleocytoplasmic distribution of shuttling proteins could be determined by the relative strengths of their NESs. We also show that a trimeric CRM1-NES-RanGTP complex is disassembled by RanBP1 in the presence of RanGAP, even though RanBP1 itself contains a leucine-rich NES. Selection of CRM1-binding proteins from Xenopus egg extract leads to the identification of an NES-containing DEAD-box helicase, An3, that continuously shuttles between the nucleus and the cytoplasm. In addition, we identify the Xenopus homologue of the nucleoporin CAN/Nup214 as a RanGTP- and NES cargo-specific binding site for CRM1, suggesting that this nucleoporin plays a role in export complex disassembly and/or CRM1 recycling.
Collapse
Affiliation(s)
- P Askjaer
- Department of Gene Expression, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Englmeier L, Olivo JC, Mattaj IW. Receptor-mediated substrate translocation through the nuclear pore complex without nucleotide triphosphate hydrolysis. Curr Biol 1999; 9:30-41. [PMID: 9889120 DOI: 10.1016/s0960-9822(99)80044-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND The transport of macromolecules between the nucleus and cytoplasm is an energy-dependent process. Substrates are translocated across the nuclear envelope through nuclear pore complexes (NPCs). Translocation requires nucleocytoplasmic transport receptors of the importin beta family, which interact both with the NPC and, either directly or via an adaptor, with the transport substrate. Although certain receptors have recently been shown to cross the NPC in an energy-independent manner, translocation of substrate-receptor complexes through the NPC has generally been regarded as an energy-requiring step. RESULTS We describe an in vitro system that is based on permeabilised cells and supports nuclear export mediated by leucine-rich nuclear export signals. In this system, export is dependent on exogenous CRM1/Exportin1 - a nuclear export receptor - the GTPase Ran and nucleotide triphosphates (NTPs), and is further stimulated by Ran-binding protein 1 (RanBP1) and nuclear transport factor 2 (NTF2). Unexpectedly, non-hydrolysable NTP analogues completely satisfy the NTP requirements for a single-round of CRM1-mediated translocation of protein substrates across the NPC. Similarly, single transportin-mediated nuclear protein import events are shown not to require hydrolysable NTPs and to occur in the absence of the Ran GTPase. CONCLUSIONS Our data show that, contrary to expectation and prior conclusions, the translocation of substrate-receptor complexes across the NPC in either direction occurs in the absence of NTP hydrolysis and is thus energy independent. The energy needed to drive substrate transport against a concentration gradient is supplied at the step of receptor recycling in the cytoplasm.
Collapse
Affiliation(s)
- L Englmeier
- European Molecular Biology Laboratory, Meyerhofstrasse, 1 D-69117, Heidelberg, Germany
| | | | | |
Collapse
|
8
|
Kehlenbach RH, Dickmanns A, Gerace L. Nucleocytoplasmic shuttling factors including Ran and CRM1 mediate nuclear export of NFAT In vitro. J Cell Biol 1998; 141:863-74. [PMID: 9585406 PMCID: PMC2132762 DOI: 10.1083/jcb.141.4.863] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/1998] [Revised: 04/03/1998] [Indexed: 02/07/2023] Open
Abstract
We have developed a permeabilized cell assay to study the nuclear export of the shuttling transcription factor NFAT, which contains a leucine-rich export signal. The assay uses HeLa cells that are stably transfected with NFAT fused to the green fluorescent protein (GFP). Nuclear export of GFP-NFAT in digitonin-permeabilized cells occurs in a temperature- and ATP-dependent manner and can be quantified by flow cytometry. In vitro NFAT export requires the GTPase Ran, which is released from cells during the digitonin permeabilization. At least one additional rate-limiting export factor is depleted from permeabilized cells by a preincubation at 30 degrees C in the absence of cytosol. This activity can be provided by cytosolic or nucleoplasmic extracts in a subsequent export step. Using this assay, we have purified a second major export activity from cytosol. We found that it corresponds to CRM1, a protein recently reported to be a receptor for certain leucine-rich export sequences. CRM1 appears to be imported into the nucleus by a Ran-dependent mechanism that is distinct from conventional signaling pathways. Considered together, our studies directly demonstrate by fractionation and reconstitution that nuclear export of NFAT is mediated by multiple nucleocytoplasmic shuttling factors, including Ran and CRM1.
Collapse
Affiliation(s)
- R H Kehlenbach
- Department of Cell Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|