1
|
Porras AO, Morales MP, Santamaría G, Torres-Fernández O. Dendritic pathology and overexpression of MAP2 in Purkinje cells from mice inoculated with rabies virus. J Mol Histol 2024; 56:62. [PMID: 39739067 DOI: 10.1007/s10735-024-10348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
The effect of rabies virus infection on dendritic morphology and on the expression of the MAP2 protein in Purkinje cells in the cerebellum of mice was studied. ICR mice were inoculated with rabies virus, and six days later, the mice were sacrificed, the cerebellum was removed and processed for Golgi-Cox staining or MAP2 immunohistochemistry. Infection with rabies virus altered the dendritic pattern of Purkinje cells ranged from moderate changes to accentuated retraction in the dendritic tree of some Purkinje cells. The loss of dendritic branches in the samples of mice infected with RABV was also reflected in a decrease in intersections quantified using the Sholl technique, thus suggesting dendritic pathology. Immunoreactivity to MAP2 protein in the molecular layer of the cerebellum of control mice was mainly distributed in dendrites of Purkinje cells. Some somas were faintly stained. In infected mice immunoreactivity to MAP2 was intense in somas and dendrites of Purkinje cells and in some interneurons. These results are consistent with similar findings we previously reported for the cerebral cortex and spinal cord of rabies-infected mice. But they differ from studies in other pathologies where an association between dendritic pathology and loss of MAP2 immunoreactivity has been found. Our studies in rabies contribute to suggestion that MAP2 overexpression may also be associated with alterations in dendritic morphology. MAP2 protein contributes to maintaining cytoskeleton stability. However, in rabies, increased MAP2 expression here only determined by immunohistochemistry could destabilize the cytoskeleton of dendrites. Golgi staining is considered the gold standard for the study of dendritic morphology. Its association with changes in MAP2 expression appears to provide molecular support for the concept of dendritic pathology. These results contribute to the understanding of the effect of rabies virus infection on dendritic morphology. They therefore reinforce the idea that rabies not only has a dysfunctional effect on neurons, as some authors claim, but also affects their structure.
Collapse
Affiliation(s)
- Andrés Obdulio Porras
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, DC, 111321, Colombia
| | - María Paula Morales
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, DC, 111321, Colombia
| | - Gerardo Santamaría
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, DC, 111321, Colombia
| | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, DC, 111321, Colombia.
| |
Collapse
|
2
|
Monette A, Niu M, Nijhoff Asser M, Gorelick RJ, Mouland AJ. Scaffolding viral protein NC nucleates phase separation of the HIV-1 biomolecular condensate. Cell Rep 2022; 40:111251. [PMID: 36001979 DOI: 10.1016/j.celrep.2022.111251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Membraneless biomolecular condensates (BMCs) contribute to the replication of a growing number of viruses but remain to be functionally characterized. Previously, we demonstrated that pan-retroviral nucleocapsid (NC) proteins phase separated into condensates regulating virus assembly. Here we discover that intrinsically disordered human immunodeficiency virus-type 1 (HIV-1) core proteins condense with the viral genomic RNA (vRNA) to assemble as BMCs attaining a geometry characteristic of viral reverse transcription complexes. We explore the predisposition, mechanisms, and pharmacologic sensitivity of HIV-1 core BMCs in living cells. HIV-1 vRNA-interacting NC condensates were found to be scaffolds onto which client capsid, reverse transcriptase, and integrase condensates assemble. HIV-1 core BMCs exhibit fundamental characteristics of BMCs and are drug-sensitive. Lastly, protease-mediated maturation of Gag and Gag-Pol precursor proteins yield abundant and visible BMCs in cells. This study redefines HIV-1 core components as fluid BMCs and advances our understanding of the nature of viral cores during ingress.
Collapse
Affiliation(s)
- Anne Monette
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.
| | - Meijuan Niu
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Maya Nijhoff Asser
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
3
|
Oliva MÁ, Tosat-Bitrián C, Barrado-Gil L, Bonato F, Galindo I, Garaigorta U, Álvarez-Bernad B, París-Ogáyar R, Lucena-Agell D, Giménez-Abián JF, García-Dorival I, Urquiza J, Gastaminza P, Díaz JF, Palomo V, Alonso C. Effect of Clinically Used Microtubule Targeting Drugs on Viral Infection and Transport Function. Int J Mol Sci 2022; 23:ijms23073448. [PMID: 35408808 PMCID: PMC8998746 DOI: 10.3390/ijms23073448] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Microtubule targeting agents (MTAs) have been exploited mainly as anti-cancer drugs because of their impact on cellular division and angiogenesis. Additionally, microtubules (MTs) are key structures for intracellular transport, which is frequently hijacked during viral infection. We have analyzed the antiviral activity of clinically used MTAs in the infection of DNA and RNA viruses, including SARS-CoV-2, to find that MT destabilizer agents show a higher impact than stabilizers in the viral infections tested, and FDA-approved anti-helminthic benzimidazoles were among the most active compounds. In order to understand the reasons for the observed antiviral activity, we studied the impact of these compounds in motor proteins-mediated intracellular transport. To do so, we used labeled peptide tools, finding that clinically available MTAs impaired the movement linked to MT motors in living cells. However, their effect on viral infection lacked a clear correlation to their effect in motor-mediated transport, denoting the complex use of the cytoskeleton by viruses. Finally, we further delved into the molecular mechanism of action of Mebendazole by combining biochemical and structural studies to obtain crystallographic high-resolution information of the Mebendazole-tubulin complex, which provided insights into the mechanisms of differential toxicity between helminths and mammalians.
Collapse
Affiliation(s)
- María Ángela Oliva
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.Á.O.); (C.T.-B.); (L.B.-G.); (F.B.); (B.Á.-B.); (R.P.-O.); (D.L.-A.); (J.F.G.-A.); (J.F.D.)
| | - Carlota Tosat-Bitrián
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.Á.O.); (C.T.-B.); (L.B.-G.); (F.B.); (B.Á.-B.); (R.P.-O.); (D.L.-A.); (J.F.G.-A.); (J.F.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Lucía Barrado-Gil
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.Á.O.); (C.T.-B.); (L.B.-G.); (F.B.); (B.Á.-B.); (R.P.-O.); (D.L.-A.); (J.F.G.-A.); (J.F.D.)
| | - Francesca Bonato
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.Á.O.); (C.T.-B.); (L.B.-G.); (F.B.); (B.Á.-B.); (R.P.-O.); (D.L.-A.); (J.F.G.-A.); (J.F.D.)
| | - Inmaculada Galindo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Consejo Superior de Investigaciones Científicas, Carretera de la Coruña km 7.5, 28040 Madrid, Spain; (I.G.); (I.G.-D.); (J.U.)
| | - Urtzi Garaigorta
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Calle Darwin 3, 28049 Madrid, Spain; (U.G.); (P.G.)
| | - Beatriz Álvarez-Bernad
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.Á.O.); (C.T.-B.); (L.B.-G.); (F.B.); (B.Á.-B.); (R.P.-O.); (D.L.-A.); (J.F.G.-A.); (J.F.D.)
| | - Rebeca París-Ogáyar
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.Á.O.); (C.T.-B.); (L.B.-G.); (F.B.); (B.Á.-B.); (R.P.-O.); (D.L.-A.); (J.F.G.-A.); (J.F.D.)
| | - Daniel Lucena-Agell
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.Á.O.); (C.T.-B.); (L.B.-G.); (F.B.); (B.Á.-B.); (R.P.-O.); (D.L.-A.); (J.F.G.-A.); (J.F.D.)
| | - Juan Francisco Giménez-Abián
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.Á.O.); (C.T.-B.); (L.B.-G.); (F.B.); (B.Á.-B.); (R.P.-O.); (D.L.-A.); (J.F.G.-A.); (J.F.D.)
| | - Isabel García-Dorival
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Consejo Superior de Investigaciones Científicas, Carretera de la Coruña km 7.5, 28040 Madrid, Spain; (I.G.); (I.G.-D.); (J.U.)
| | - Jesús Urquiza
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Consejo Superior de Investigaciones Científicas, Carretera de la Coruña km 7.5, 28040 Madrid, Spain; (I.G.); (I.G.-D.); (J.U.)
| | - Pablo Gastaminza
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Calle Darwin 3, 28049 Madrid, Spain; (U.G.); (P.G.)
| | - José Fernando Díaz
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.Á.O.); (C.T.-B.); (L.B.-G.); (F.B.); (B.Á.-B.); (R.P.-O.); (D.L.-A.); (J.F.G.-A.); (J.F.D.)
| | - Valle Palomo
- Unidad BICS, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.Á.O.); (C.T.-B.); (L.B.-G.); (F.B.); (B.Á.-B.); (R.P.-O.); (D.L.-A.); (J.F.G.-A.); (J.F.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain
- Correspondence: (V.P.); (C.A.); Tel.: +34-913476896 (C.A.)
| | - Covadonga Alonso
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Consejo Superior de Investigaciones Científicas, Carretera de la Coruña km 7.5, 28040 Madrid, Spain; (I.G.); (I.G.-D.); (J.U.)
- Correspondence: (V.P.); (C.A.); Tel.: +34-913476896 (C.A.)
| |
Collapse
|
4
|
Chaikeeratisak V, Birkholz EA, Pogliano J. The Phage Nucleus and PhuZ Spindle: Defining Features of the Subcellular Organization and Speciation of Nucleus-Forming Jumbo Phages. Front Microbiol 2021; 12:641317. [PMID: 34326818 PMCID: PMC8314001 DOI: 10.3389/fmicb.2021.641317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages and their bacterial hosts are ancient organisms that have been co-evolving for billions of years. Some jumbo phages, those with a genome size larger than 200 kilobases, have recently been discovered to establish complex subcellular organization during replication. Here, we review our current understanding of jumbo phages that form a nucleus-like structure, or “Phage Nucleus,” during replication. The phage nucleus is made of a proteinaceous shell that surrounds replicating phage DNA and imparts a unique subcellular organization that is temporally and spatially controlled within bacterial host cells by a phage-encoded tubulin (PhuZ)-based spindle. This subcellular architecture serves as a replication factory for jumbo Pseudomonas phages and provides a selective advantage when these replicate in some host strains. Throughout the lytic cycle, the phage nucleus compartmentalizes proteins according to function and protects the phage genome from host defense mechanisms. Early during infection, the PhuZ spindle positions the newly formed phage nucleus at midcell and, later in the infection cycle, the spindle rotates the nucleus while delivering capsids and distributing them uniformly on the nuclear surface, where they dock for DNA packaging. During the co-infection of two different nucleus-forming jumbo phages in a bacterial cell, the phage nucleus establishes Subcellular Genetic Isolation that limits the potential for viral genetic exchange by physically separating co-infection genomes, and the PhuZ spindle causes Virogenesis Incompatibility, whereby interacting components from two diverging phages negatively affect phage reproduction. Thus, the phage nucleus and PhuZ spindle are defining cell biological structures that serve roles in both the life cycle of nucleus-forming jumbo phages and phage speciation.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States.,Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Erica A Birkholz
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Chaikeeratisak V, Khanna K, Nguyen KT, Sugie J, Egan ME, Erb ML, Vavilina A, Nonejuie P, Nieweglowska E, Pogliano K, Agard DA, Villa E, Pogliano J. Viral Capsid Trafficking along Treadmilling Tubulin Filaments in Bacteria. Cell 2019; 177:1771-1780.e12. [PMID: 31199917 PMCID: PMC7301877 DOI: 10.1016/j.cell.2019.05.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/24/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
Cargo trafficking along microtubules is exploited by eukaryotic viruses, but no such examples have been reported in bacteria. Several large Pseudomonas phages assemble a dynamic, tubulin-based (PhuZ) spindle that centers replicating phage DNA sequestered within a nucleus-like structure. Here, we show that capsids assemble on the membrane and then move rapidly along PhuZ filaments toward the phage nucleus for DNA packaging. The spindle rotates the phage nucleus, distributing capsids around its surface. PhuZ filaments treadmill toward the nucleus at a constant rate similar to the rate of capsid movement and the linear velocity of nucleus rotation. Capsids become trapped along mutant static PhuZ filaments that are defective in GTP hydrolysis. Our results suggest a transport and distribution mechanism in which capsids attached to the sides of filaments are trafficked to the nucleus by PhuZ polymerization at the poles, demonstrating that the phage cytoskeleton evolved cargo-trafficking capabilities in bacteria.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Katrina T Nguyen
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Joseph Sugie
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - MacKennon E Egan
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Marcella L Erb
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Anastasia Vavilina
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Eliza Nieweglowska
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - David A Agard
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth Villa
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
6
|
Cytoskeletons in the Closet-Subversion in Alphaherpesvirus Infections. Viruses 2018; 10:v10020079. [PMID: 29438303 PMCID: PMC5850386 DOI: 10.3390/v10020079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Actin filaments, microtubules and intermediate filaments form the cytoskeleton of vertebrate cells. Involved in maintaining cell integrity and structure, facilitating cargo and vesicle transport, remodelling surface structures and motility, the cytoskeleton is necessary for the successful life of a cell. Because of the broad range of functions these filaments are involved in, they are common targets for viral pathogens, including the alphaherpesviruses. Human-tropic alphaherpesviruses are prevalent pathogens carried by more than half of the world’s population; comprising herpes simplex virus (types 1 and 2) and varicella-zoster virus, these viruses are characterised by their ability to establish latency in sensory neurons. This review will discuss the known mechanisms involved in subversion of and transport via the cytoskeleton during alphaherpesvirus infections, focusing on protein-protein interactions and pathways that have recently been identified. Studies on related alphaherpesviruses whose primary host is not human, along with comparisons to more distantly related beta and gammaherpesviruses, are also presented in this review. The need to decipher as-yet-unknown mechanisms exploited by viruses to hijack cytoskeletal components—to reveal the hidden cytoskeletons in the closet—will also be addressed.
Collapse
|
7
|
Tomlinson JJ, Shutinoski B, Dong L, Meng F, Elleithy D, Lengacher NA, Nguyen AP, Cron GO, Jiang Q, Roberson ED, Nussbaum RL, Majbour NK, El-Agnaf OM, Bennett SA, Lagace DC, Woulfe JM, Sad S, Brown EG, Schlossmacher MG. Holocranohistochemistry enables the visualization of α-synuclein expression in the murine olfactory system and discovery of its systemic anti-microbial effects. J Neural Transm (Vienna) 2017; 124:721-738. [PMID: 28477284 PMCID: PMC5446848 DOI: 10.1007/s00702-017-1726-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/18/2017] [Indexed: 01/19/2023]
Abstract
Braak and Del Tredici have proposed that typical Parkinson disease (PD) has its origins in the olfactory bulb and gastrointestinal tract. However, the role of the olfactory system has insufficiently been explored in the pathogeneses of PD and Alzheimer disease (AD) in laboratory models. Here, we demonstrate applications of a new method to process mouse heads for microscopy by sectioning, mounting, and staining whole skulls (‘holocranohistochemistry’). This technique permits the visualization of the olfactory system from the nasal cavity to mitral cells and dopamine-producing interneurons of glomeruli in the olfactory bulb. We applied this method to two specific goals: first, to visualize PD- and AD-linked gene expression in the olfactory system, where we detected abundant, endogenous α-synuclein and tau expression in the olfactory epithelium. Furthermore, we observed amyloid-β plaques and proteinase-K-resistant α-synuclein species, respectively, in cranial nerve-I of APP- and human SNCA-over-expressing mice. The second application of the technique was to the modeling of gene–environment interactions in the nasal cavity of mice. We tracked the infection of a neurotropic respiratory-enteric-orphan virus from the nose pad into cranial nerves-I (and -V) and monitored the ensuing brain infection. Given its abundance in the olfactory epithelia, we questioned whether α-synuclein played a role in innate host defenses to modify the outcome of infections. Indeed, Snca-null mice were more likely to succumb to viral encephalitis versus their wild-type littermates. Moreover, using a bacterial sepsis model, Snca-null mice were less able to control infection after intravenous inoculation with Salmonella typhimurium. Together, holocranohistochemistry enabled new discoveries related to α-synuclein expression and its function in mice. Future studies will address: the role of Mapt and mutant SNCA alleles in infection paradigms; the contribution of xenobiotics in the initiation of idiopathic PD; and the safety to the host when systemically targeting α-synuclein by immunotherapy.
Collapse
Affiliation(s)
- Julianna J Tomlinson
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada. .,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada. .,University of Ottawa, 451 Smyth Road, RGH #1464, Ottawa, ON, K1H 8M5, Canada.
| | - Bojan Shutinoski
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Li Dong
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Fanyi Meng
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dina Elleithy
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | - Angela P Nguyen
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Greg O Cron
- Department of Medical Imaging, The Ottawa Hospital, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Faculty of Medicine, Department of Radiology, University of Ottawa, Ottawa, ON, Canada
| | - Qiubo Jiang
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Erik D Roberson
- Department of Neurology, University of Alabama, Birmingham, AL, USA
| | - Robert L Nussbaum
- Division of Medical Genetics, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nour K Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Omar M El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Steffany A Bennett
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Diane C Lagace
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - John M Woulfe
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Earl G Brown
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael G Schlossmacher
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada. .,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada. .,Division of Neurology, Department of Medicine, Faculty of Medicine, The Ottawa Hospital, Ottawa, ON, Canada. .,University of Ottawa, 451 Smyth Road, RGH #1464, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|