1
|
Genetic Heterogeneity of Familial Hypercholesterolemia: Repercussions for Molecular Diagnosis. Int J Mol Sci 2023; 24:ijms24043224. [PMID: 36834635 PMCID: PMC9961636 DOI: 10.3390/ijms24043224] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Genetics of Familial Hypercholesterolemia (FH) is ascribable to pathogenic variants in genes encoding proteins leading to an impaired LDL uptake by the LDL receptor (LDLR). Two forms of the disease are possible, heterozygous (HeFH) and homozygous (HoFH), caused by one or two pathogenic variants, respectively, in the three main genes that are responsible for the autosomal dominant disease: LDLR, APOB and PCSK9 genes. The HeFH is the most common genetic disease in humans, being the prevalence about 1:300. Variants in the LDLRAP1 gene causes FH with a recessive inheritance and a specific APOE variant was described as causative of FH, contributing to increase FH genetic heterogeneity. In addition, variants in genes causing other dyslipidemias showing phenotypes overlapping with FH may mimic FH in patients without causative variants (FH-phenocopies; ABCG5, ABCG8, CYP27A1 and LIPA genes) or act as phenotype modifiers in patients with a pathogenic variant in a causative gene. The presence of several common variants was also considered a genetic basis of FH and several polygenic risk scores (PRS) have been described. The presence of a variant in modifier genes or high PRS in HeFH further exacerbates the phenotype, partially justifying its variability among patients. This review aims to report the updates on the genetic and molecular bases of FH with their implication for molecular diagnosis.
Collapse
|
2
|
Sarkar SK, Matyas A, Asikhia I, Hu Z, Golder M, Beehler K, Kosenko T, Lagace TA. Pathogenic gain-of-function mutations in the prodomain and C-terminal domain of PCSK9 inhibit LDL binding. Front Physiol 2022; 13:960272. [PMID: 36187800 PMCID: PMC9515655 DOI: 10.3389/fphys.2022.960272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a secreted protein that binds and mediates endo-lysosomal degradation of low-density lipoprotein receptor (LDLR), limiting plasma clearance of cholesterol-rich LDL particles in liver. Gain-of-function (GOF) point mutations in PCSK9 are associated with familial hypercholesterolemia (FH). Approximately 30%–40% of PCSK9 in normolipidemic human plasma is bound to LDL particles. We previously reported that an R496W GOF mutation in a region of PCSK9 known as cysteine-histidine–rich domain module 1 (CM1) prevents LDL binding in vitro [Sarkar et al., J. Biol. Chem. 295 (8), 2285–2298 (2020)]. Herein, we identify additional GOF mutations that inhibit LDL association, localized either within CM1 or a surface-exposed region in the PCSK9 prodomain. Notably, LDL binding was nearly abolished by a prodomain S127R GOF mutation, one of the first PCSK9 mutations identified in FH patients. PCSK9 containing alanine or proline substitutions at amino acid position 127 were also defective for LDL binding. LDL inhibited cell surface LDLR binding and degradation induced by exogenous PCSK9-D374Y but had no effect on an S127R-D374Y double mutant form of PCSK9. These studies reveal that multiple FH-associated GOF mutations in two distinct regions of PCSK9 inhibit LDL binding, and that the Ser-127 residue in PCSK9 plays a critical role.
Collapse
Affiliation(s)
- Samantha K. Sarkar
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Angela Matyas
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ikhuosho Asikhia
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Zhenkun Hu
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Mia Golder
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | | | - Tanja Kosenko
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Thomas A. Lagace
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- *Correspondence: Thomas A. Lagace,
| |
Collapse
|
3
|
Iannuzzo G, Buonaiuto A, Calcaterra I, Gentile M, Forte F, Tripaldella M, Di Taranto MD, Giacobbe C, Fortunato G, Rubba PO, Di Minno MND. Association between causative mutations and response to PCSK9 inhibitor therapy in subjects with familial hypercholesterolemia: A single center real-world study. Nutr Metab Cardiovasc Dis 2022; 32:684-691. [PMID: 34991937 DOI: 10.1016/j.numecd.2021.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolemia (FH) is an autosomal dominant disease that leads to cardiovascular (CV) disease. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9-I) demonstrated efficacy in low-density lipoprotein cholesterol (LDL-C) reduction and in prevention of CV events. The aim of our study is to evaluate the relationship between LDL receptor (LDLR) mutations and response to PCSK9-I therapy. METHODS AND RESULTS We evaluated total cholesterol (TC), LDL-C, high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) in consecutive patients with FH before PCSK9-I treatment and after 12 (T12w) and 36 (T36w) weeks of treatment. We evaluated LDL-C target achievement according to different mutations in LDLR. Eighty FH subjects (mean age:54 ± 13.3 years), 39 heterozygous (He) with defective LDLR gene mutations, 30 He with null mutations and 11 compound-He or homozygous (Ho) were recruited. At baseline, 69 subjects were under maximal lipid lowering therapy (MLLT) and 11 subjects had statin-intolerance. From baseline to T36w we observed an overall 51% reduction in LDL-C. We found no difference in LDL-C changes between subjects with He-defective mutation and He-null mutations both at T12w (p = 1.00) and T36w (p = 0.538). At T36w, LDL-C target was achieved in 59% of He-defective mutations subjects and in 36% of He-null mutations subgroup (p = 0.069), whereas none of compound-He/Ho-FH achieved LDL-C target. CONCLUSIONS After 36 weeks there were no differences in response to PCSK9-I therapy between different groups of He-FH subjects. Response to PCSK9-I was significantly lower in carriers of compound-He/Ho mutations. Registration number for clinical trials: NCT04313270 extension.
Collapse
Affiliation(s)
- Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Alessio Buonaiuto
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Ilenia Calcaterra
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Marco Gentile
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Francesco Forte
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Maria Tripaldella
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Maria D Di Taranto
- Department of Molecular Medicine e Medical Biotechnologies, Federico II University, Naples, Italy
| | - Carola Giacobbe
- Department of Molecular Medicine e Medical Biotechnologies, Federico II University, Naples, Italy
| | - Giuliana Fortunato
- Department of Molecular Medicine e Medical Biotechnologies, Federico II University, Naples, Italy
| | - Paolo O Rubba
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | | |
Collapse
|
4
|
Di Taranto MD, Giacobbe C, Palma D, Iannuzzo G, Gentile M, Calcaterra I, Guardamagna O, Auricchio R, Di Minno MND, Fortunato G. Genetic spectrum of familial hypercholesterolemia and correlations with clinical expression: Implications for diagnosis improvement. Clin Genet 2021; 100:529-541. [PMID: 34297352 PMCID: PMC9291778 DOI: 10.1111/cge.14036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/26/2022]
Abstract
Familial hypercholesterolemia (FH) is the most common genetic disease caused by variants in LDLR, APOB, PCSK9 genes; it is characterized by high levels of LDL-cholesterol and premature cardiovascular disease. We aim to perform a retrospective analysis of a genetically screened population (528 unrelated patients-342 adults and 186 children) to evaluate the biochemical and clinical correlations with the different genetic statuses. Genetic screening was performed by traditional sequencing and some patients were re-analyzed by next-generation-sequencing. Pathogenic variants, mainly missense in the LDLR gene, were identified in 402/528 patients (76.1%), including 4 homozygotes, 17 compound heterozygotes and 1 double heterozygotes. A gradual increase of LDL-cholesterol was observed from patients without pathogenic variants to patients with a defective variant, to patients with a null variant and to patients with two variants. Six variants accounted for 51% of patients; a large variability of LDL-cholesterol was observed among patients carrying the same variant. The frequency of pathogenic variants gradually increased from unlikely FH to definite FH, according to the Dutch Lipid Clinic Network criteria. Genetic diagnosis can help prognostic evaluation of FH patients, discriminating between the different genetic statuses or variant types. Clinical suspicion of FH should be considered even if few symptoms are present or if LDL-cholesterol is only mildly increased.
Collapse
Affiliation(s)
- Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II, CEINGE Biotecnologie Avanzate s.c. a r.l.NaplesItaly
| | - Carola Giacobbe
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II, CEINGE Biotecnologie Avanzate s.c. a r.l.NaplesItaly
| | - Daniela Palma
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II, CEINGE Biotecnologie Avanzate s.c. a r.l.NaplesItaly
| | - Gabriella Iannuzzo
- Dipartimento di Medicina Clinica e ChirurgiaUniversità degli Studi di Napoli Federico IINaplesItaly
| | - Marco Gentile
- Dipartimento di Medicina Clinica e ChirurgiaUniversità degli Studi di Napoli Federico IINaplesItaly
| | - Ilenia Calcaterra
- Dipartimento di Medicina Clinica e ChirurgiaUniversità degli Studi di Napoli Federico IINaplesItaly
| | - Ornella Guardamagna
- Dipartimento di Scienze della Sanità Pubblica e PediatricheUniversità degli Studi di TorinoTurinItaly
| | - Renata Auricchio
- Dipartimento di Scienze Mediche TraslazionaliUniversità degli Studi di Napoli Federico IINaplesItaly
| | | | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II, CEINGE Biotecnologie Avanzate s.c. a r.l.NaplesItaly
| |
Collapse
|
5
|
Gelzo M, Di Taranto MD, Bisecco A, D'Amico A, Capuano R, Giacobbe C, Caputo M, Cirillo M, Tedeschi G, Fortunato G, Corso G. A case of Cerebrotendinous Xanthomatosis with spinal cord involvement and without tendon xanthomas: identification of a new mutation of the CYP27A1 gene. Acta Neurol Belg 2021; 121:561-566. [PMID: 31875301 DOI: 10.1007/s13760-019-01267-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022]
Abstract
Cerebrotendinous Xanthomatosis (CTX) is an autosomal recessive defect of the alternative pathway of bile acid biosynthesis, due to the deficiency of mitochondrial cytochrome P450 sterol 27-hydroxylase enzyme encoded by CYP27A1. The deficit of sterol 27-hydroxylase raises cholestanol in plasma and tissues of affected patients. Although there is a marked variability of signs, symptoms, severity and age of onset, the main clinical manifestations of CTX include chronic diarrhea, bilateral cataract, tendon xanthomas and neurological dysfunction. Herein, we report the clinical, biochemical and molecular characterization of a Caucasian female affected by CTX diagnosed at 28 years. The patient's clinical history revealed neurological and behavioral manifestations already at fifth year of life, following by bilateral cataract and chronic diarrhea without xanthomas. At diagnosis, an involvement of the cervical spinal cord was also observed on MRI. Sterols profile analysis in plasma and red blood cell membranes showed very high cholestanol levels. CYP27A1 sequencing revealed a new variant (e.g., c.850_854delinsCTC) at homozygous status. The follow-up after 5 months of chenodeoxycholic acid treatment showed a decrease of plasma cholestanol of 64%. After 1 year, the patient showed normalization of bowel function, reduction of risk of falls, improvement of cognitive function although brain and spine MRI and other instrumental examinations remained unchanged. This case highlights the variability of the CTX phenotype that makes it difficult to reach an early diagnosis. Biochemical and/or molecular screening of CTX should be taken into account to early start the pharmacological treatment limiting neurological damages.
Collapse
Affiliation(s)
- Monica Gelzo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Maria Donata Di Taranto
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Alessandra D'Amico
- Department of Advanced Biomedical Sciences, Neuroradiology Units, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Rocco Capuano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Carola Giacobbe
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Mafalda Caputo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Giuliana Fortunato
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, Viale L. Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
6
|
Gelzo M, Di Taranto MD, Bisecco A, D'Amico A, Capuano R, Giacobbe C, Caputo M, Cirillo M, Tedeschi G, Fortunato G, Corso G. A case of Cerebrotendinous Xanthomatosis with spinal cord involvement and without tendon xanthomas: identification of a new mutation of the CYP27A1 gene. Acta Neurol Belg 2021; 121:561-566. [PMID: 31875301 DOI: 10.1007/s13760‐019‐01267‐4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/16/2019] [Indexed: 01/29/2023]
Abstract
Cerebrotendinous Xanthomatosis (CTX) is an autosomal recessive defect of the alternative pathway of bile acid biosynthesis, due to the deficiency of mitochondrial cytochrome P450 sterol 27-hydroxylase enzyme encoded by CYP27A1. The deficit of sterol 27-hydroxylase raises cholestanol in plasma and tissues of affected patients. Although there is a marked variability of signs, symptoms, severity and age of onset, the main clinical manifestations of CTX include chronic diarrhea, bilateral cataract, tendon xanthomas and neurological dysfunction. Herein, we report the clinical, biochemical and molecular characterization of a Caucasian female affected by CTX diagnosed at 28 years. The patient's clinical history revealed neurological and behavioral manifestations already at fifth year of life, following by bilateral cataract and chronic diarrhea without xanthomas. At diagnosis, an involvement of the cervical spinal cord was also observed on MRI. Sterols profile analysis in plasma and red blood cell membranes showed very high cholestanol levels. CYP27A1 sequencing revealed a new variant (e.g., c.850_854delinsCTC) at homozygous status. The follow-up after 5 months of chenodeoxycholic acid treatment showed a decrease of plasma cholestanol of 64%. After 1 year, the patient showed normalization of bowel function, reduction of risk of falls, improvement of cognitive function although brain and spine MRI and other instrumental examinations remained unchanged. This case highlights the variability of the CTX phenotype that makes it difficult to reach an early diagnosis. Biochemical and/or molecular screening of CTX should be taken into account to early start the pharmacological treatment limiting neurological damages.
Collapse
Affiliation(s)
- Monica Gelzo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Maria Donata Di Taranto
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Alessandra D'Amico
- Department of Advanced Biomedical Sciences, Neuroradiology Units, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Rocco Capuano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Carola Giacobbe
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Mafalda Caputo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Giuliana Fortunato
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, Viale L. Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
7
|
Alabi A, Xia XD, Gu HM, Wang F, Deng SJ, Yang N, Adijiang A, Douglas DN, Kneteman NM, Xue Y, Chen L, Qin S, Wang G, Zhang DW. Membrane type 1 matrix metalloproteinase promotes LDL receptor shedding and accelerates the development of atherosclerosis. Nat Commun 2021; 12:1889. [PMID: 33767172 PMCID: PMC7994674 DOI: 10.1038/s41467-021-22167-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
Plasma low-density lipoprotein (LDL) is primarily cleared by LDL receptor (LDLR). LDLR can be proteolytically cleaved to release its soluble ectodomain (sLDLR) into extracellular milieu. However, the proteinase responsible for LDLR cleavage is unknown. Here we report that membrane type 1-matrix metalloproteinase (MT1-MMP) co-immunoprecipitates and co-localizes with LDLR and promotes LDLR cleavage. Plasma sLDLR and cholesterol levels are reduced while hepatic LDLR is increased in mice lacking hepatic MT1-MMP. Opposite effects are observed when MT1-MMP is overexpressed. MT1-MMP overexpression significantly increases atherosclerotic lesions, while MT1-MMP knockdown significantly reduces cholesteryl ester accumulation in the aortas of apolipoprotein E (apoE) knockout mice. Furthermore, sLDLR is associated with apoB and apoE-containing lipoproteins in mouse and human plasma. Plasma levels of sLDLR are significantly increased in subjects with high plasma LDL cholesterol levels. Thus, we demonstrate that MT1-MMP promotes ectodomain shedding of hepatic LDLR, thereby regulating plasma cholesterol levels and the development of atherosclerosis.
Collapse
Affiliation(s)
- Adekunle Alabi
- The Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xiao-Dan Xia
- The Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Hong-Mei Gu
- The Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Faqi Wang
- The Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shi-Jun Deng
- The Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nana Yang
- Experimental Center for Medical Research, Weifang Medical University, Weifang, China
| | - Ayinuer Adijiang
- The Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Donna N Douglas
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Norman M Kneteman
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yazhuo Xue
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Li Chen
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Shucun Qin
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Guiqing Wang
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Da-Wei Zhang
- The Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Di Minno MND, Gentile M, Di Minno A, Iannuzzo G, Calcaterra I, Buonaiuto A, Di Taranto MD, Giacobbe C, Fortunato G, Rubba POF. Changes in carotid stiffness in patients with familial hypercholesterolemia treated with Evolocumab®: A prospective cohort study. Nutr Metab Cardiovasc Dis 2020; 30:996-1004. [PMID: 32402582 DOI: 10.1016/j.numecd.2020.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND AIM Protein convertase subtilisin kexin type 9 (PCSK-9) inhibitors demonstrated efficacy in cholesterol reduction and in the prevention of cardiovascular events. We evaluated changes in lipid profile and carotid stiffness in patients with familial hypercholesterolemia during 12 weeks of treatment with a PCSK-9 inhibitor, Evolocumab®. METHODS AND RESULTS Patients with familial hypercholesterolemia starting a treatment with Evolocumab® were included. Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), small dense LDL (assessed by LDL score) and carotid stiffness were evaluated before starting treatment with Evolocumab® and during 12 weeks of treatment. Twenty-five subjects were enrolled (52% males, mean age 51.5 years). TC and LDL-C were reduced of 38% and 52%, respectively during treatment, with LDL score reduced of 46.1%. In parallel, carotid stiffness changed from 8.8 (IQR: 7.0-10.4) m/sec to 6.6 (IQR: 5.4-7.5) m/sec, corresponding to a median change of 21.4% (p < 0.001), with a significant increase in carotid distensibility (from 12.1, IQR: 8.73-19.3 kPA-1 × 10-3 at T0 to 21.8, IQR: 16.6-31.8 kPA-1 × 10-3 at T12w) corresponding to a median change of 62.8% (p < 0.001). A multivariate analysis showed that changes in LDL score were independently associated with changes in carotid stiffness (β = 0.429, p = 0.041). CONCLUSION Small dense LDL reduction, as assessed by LDL score, is associated with changes in carotid stiffness in patients with familial hypercholesterolemia treated with Evolocumab®.
Collapse
Affiliation(s)
| | - Marco Gentile
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Alessandro Di Minno
- Department of Pharmacy, Federico II University, Naples, Italy; Unit of Metabolomics and Cellular Biochemistry of Atherothrombosis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Ilenia Calcaterra
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Alessio Buonaiuto
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Maria D Di Taranto
- Department of Molecular Medicine e Medical Biotechnologies, Federico II University, Naples, Italy
| | - Carola Giacobbe
- Department of Molecular Medicine e Medical Biotechnologies, Federico II University, Naples, Italy
| | - Giuliana Fortunato
- Department of Molecular Medicine e Medical Biotechnologies, Federico II University, Naples, Italy
| | - Paolo O F Rubba
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| |
Collapse
|
9
|
Deng SJ, Shen Y, Gu HM, Guo S, Wu SR, Zhang DW. The role of the C-terminal domain of PCSK9 and SEC24 isoforms in PCSK9 secretion. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158660. [DOI: 10.1016/j.bbalip.2020.158660] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
|
10
|
Di Taranto MD, Giacobbe C, Fortunato G. Familial hypercholesterolemia: A complex genetic disease with variable phenotypes. Eur J Med Genet 2020; 63:103831. [DOI: 10.1016/j.ejmg.2019.103831] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022]
|
11
|
Di Taranto MD, Giacobbe C, Buonaiuto A, Calcaterra I, Palma D, Maione G, Iannuzzo G, Di Minno MND, Rubba P, Fortunato G. A Real-World Experience of Clinical, Biochemical and Genetic Assessment of Patients with Homozygous Familial Hypercholesterolemia. J Clin Med 2020; 9:jcm9010219. [PMID: 31947532 PMCID: PMC7019873 DOI: 10.3390/jcm9010219] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/30/2019] [Accepted: 01/10/2020] [Indexed: 01/09/2023] Open
Abstract
Homozygous familial hypercholesterolemia (HoFH), the severest form of familial hypercholesterolemia (FH), is characterized by very high LDL-cholesterol levels and a high frequency of coronary heart disease. The disease is caused by the presence of either a pathogenic variant at homozygous status or of two pathogenic variants at compound heterozygous status in the LDLR, APOB, PCSK9 genes. We retrospectively analyzed data of 23 HoFH patients (four children and 19 adults) identified during the genetic screening of 724 FH patients. Genetic screening was performed by sequencing FH causative genes and identifying large rearrangements of LDLR. Among the HoFH patients, four out of 23 (17.4%) were true homozygotes, whereas 19 out of 23 (82.6%) were compound heterozygotes for variants in the LDLR gene. Basal LDL-cholesterol was 12.9 ± 2.9 mmol/L. LDL-cholesterol levels decreased to 7.2 ± 1.8 mmol/L when treated with statin/ezetimibe and to 5.1 ± 3.1 mmol/L with anti-PCSK9 antibodies. Homozygous patients showed higher basal LDL-cholesterol and a poorer response to therapy compared with compound heterozygotes. Since 19 unrelated patients were identified in the Campania region (6,000,000 inhabitants) in southern Italy, the regional prevalence of HoFH was estimated to be at least 1:320,000. In conclusion, our results revealed a worse phenotype for homozygotes compared with compound heterozygotes, thereby highlighting the role of genetic screening in differentiating one genetic status from the other.
Collapse
Affiliation(s)
- Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (C.G.); (D.P.); (G.M.)
- CEINGE S.C.a r.l. Biotecnologie Avanzate, 80131 Naples, Italy
- Correspondence: (M.D.D.T.); (G.F.); Tel.: +39-081-7463530 (M.D.D.T.); +39-081-7464200 (G.F.)
| | - Carola Giacobbe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (C.G.); (D.P.); (G.M.)
- CEINGE S.C.a r.l. Biotecnologie Avanzate, 80131 Naples, Italy
| | - Alessio Buonaiuto
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (A.B.); (I.C.); (G.I.); (P.R.)
| | - Ilenia Calcaterra
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (A.B.); (I.C.); (G.I.); (P.R.)
| | - Daniela Palma
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (C.G.); (D.P.); (G.M.)
- CEINGE S.C.a r.l. Biotecnologie Avanzate, 80131 Naples, Italy
| | - Giovanna Maione
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (C.G.); (D.P.); (G.M.)
- CEINGE S.C.a r.l. Biotecnologie Avanzate, 80131 Naples, Italy
| | - Gabriella Iannuzzo
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (A.B.); (I.C.); (G.I.); (P.R.)
| | - Matteo Nicola Dario Di Minno
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, 80131 Naples, Italy;
| | - Paolo Rubba
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (A.B.); (I.C.); (G.I.); (P.R.)
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (C.G.); (D.P.); (G.M.)
- CEINGE S.C.a r.l. Biotecnologie Avanzate, 80131 Naples, Italy
- Correspondence: (M.D.D.T.); (G.F.); Tel.: +39-081-7463530 (M.D.D.T.); +39-081-7464200 (G.F.)
| |
Collapse
|
12
|
Sánchez-Hernández RM, Di Taranto MD, Benito-Vicente A, Uribe KB, Lamiquiz-Moneo I, Larrea-Sebal A, Jebari S, Galicia-Garcia U, Nóvoa FJ, Boronat M, Wägner AM, Civeira F, Martín C, Fortunato G. The Arg499His gain-of-function mutation in the C-terminal domain of PCSK9. Atherosclerosis 2019; 289:162-172. [PMID: 31518966 DOI: 10.1016/j.atherosclerosis.2019.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolemia (FH) is a monogenic disease characterized by high levels of low-density lipoprotein cholesterol and premature atherosclerotic cardiovascular disease. FH is caused by loss of function mutations in genes encoding LDL receptor (LDLR), and Apolipoprotein B (APOB) or gain of function (GOF) mutations in proprotein convertase subtilisin/kexin type 9 (PCSK9). In this study, we identified a novel variant in PCSK9, p.(Arg499His), located in the C-terminal domain, in two unrelated FH patients from Spain and Italy. METHODS We studied familial segregation and determined variant activity in vitro. RESULTS We determined PCSK9 expression, secretion and activity of the variant in transfected HEK293 cells; extracellular activity of the recombinant p.(Arg499His) PCSK9 variant in HEK 293 and HepG2 cells; PCSK9 affinity to the LDL receptor at neutral and acidic pH; the mechanism of action of the p.(Arg499His) PCSK9 variant by co-transfection with a soluble construct of the LDL receptor and by determining total PCSK9 intracellular accumulation when endosomal acidification is impaired and when an excess of soluble LDLr is present in the culture medium. Our results show high LDL-C concentrations and FH phenotype in p.(Arg499His) carriers. In vitro functional characterization shows that p.(Arg499His) PCSK9 variant causes a reduction in LDLr expression and LDL uptake. An intracellular activity for this variant is also shown when blocking the activity of secreted PCSK9 and by inhibiting endosomal acidification. CONCLUSIONS We demonstrated that p.(Arg499His) PCSK9 variant causes a direct intracellular degradation of LDLr therefore causing FH by reducing LDLr availability.
Collapse
Affiliation(s)
- Rosa M Sánchez-Hernández
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli and CEINGE S.C.a r.l, Biotecnologie Avanzate, Napoli, Italy
| | - Asier Benito-Vicente
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain
| | - Kepa B Uribe
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain
| | - Itziar Lamiquiz-Moneo
- Hospital Universitario Miguel Servet. IIS Aragon. CIBERCV. Universidad de Zaragoza, Zaragoza, Spain
| | - Asier Larrea-Sebal
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain
| | - Shifa Jebari
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain
| | - Unai Galicia-Garcia
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940, Leioa, Bizkaia, Spain
| | - F Javier Nóvoa
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mauro Boronat
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana M Wägner
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Fernando Civeira
- Hospital Universitario Miguel Servet. IIS Aragon. CIBERCV. Universidad de Zaragoza, Zaragoza, Spain
| | - César Martín
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain.
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli and CEINGE S.C.a r.l, Biotecnologie Avanzate, Napoli, Italy.
| |
Collapse
|
13
|
Di Taranto MD, de Falco R, Guardamagna O, Massini G, Giacobbe C, Auricchio R, Malamisura B, Proto M, Palma D, Greco L, Fortunato G. Lipid profile and genetic status in a familial hypercholesterolemia pediatric population: exploring the LDL/HDL ratio. ACTA ACUST UNITED AC 2019; 57:1102-1110. [DOI: 10.1515/cclm-2018-1037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022]
Abstract
Abstract
Background
Familial hypercholesterolemia (FH) is a genetic disorder caused by mutations in genes involved in low-density lipoprotein (LDL) uptake (LDLR, APOB and PCSK9). Genetic diagnosis is particularly useful in asymptomatic children allowing for the detection of definite FH patients. Furthermore, defining their genetic status may be of considerable importance as the compound heterozygous status is much more severe than the heterozygous one. Our study aims at depicting the genetic background of an Italian pediatric population with FH focusing on the correlation between lipid profile and genetic status.
Methods
Out of 196 patients with clinically suspected FH (LDL-cholesterol [LDL-C] levels above 3.37 mmol/L, cholesterol level above 6.46 mmol/L in a first-degree relative or the presence of premature cardiovascular acute disease in a first/second-degree relative), we screened 164 index cases for mutations in the LDLR, APOB and PCSK9 genes.
Results
Patients with mutations (129/164) showed increased levels of LDL-C, 95th percentile-adjusted LDL-C and LDL/high-density lipoprotein (HDL) ratio and decreased levels of HDL-C, adjusted HDL-C. The association of the LDL/HDL ratio with the presence of mutations was assessed independently of age, (body mass index) BMI, parental hypercholesterolemia, premature coronary artery disease (CAD), triglycerides by multivariate logistic regression (odds ratio [OR]=1.701 [1.103–2.621], p=0.016). The LDL/HDL ratio gradually increased from patients without mutations to patients with missense mutations, null mutations and compound heterozygotes.
Conclusions
In conclusion, the LDL/HDL ratio proved to be a better parameter than LDL-C for discriminating patients with from patients without mutations across different genetic statuses.
Collapse
Affiliation(s)
- Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli Federico II , Naples , Italy
- CEINGE Biotecnologie Avanzate s.c. a r.l. , Naples , Italy
| | - Renato de Falco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli Federico II , Naples , Italy
- CEINGE Biotecnologie Avanzate s.c. a r.l. , Naples , Italy
| | - Ornella Guardamagna
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche , Università degli Studi di Torino , Turin , Italy
| | - Giulia Massini
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche , Università degli Studi di Torino , Turin , Italy
| | - Carola Giacobbe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli Federico II , Naples , Italy
- CEINGE Biotecnologie Avanzate s.c. a r.l. , Naples , Italy
| | - Renata Auricchio
- Dipartimento di Scienze Mediche Traslazionali , Università degli Studi di Napoli Federico II , Naples , Italy
| | - Basilio Malamisura
- Dipartimento di Scienze Mediche Traslazionali , Università degli Studi di Napoli Federico II , Naples , Italy
| | - Michela Proto
- Dipartimento di Scienze Mediche Traslazionali , Università degli Studi di Napoli Federico II , Naples , Italy
| | - Daniela Palma
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli Federico II , Naples , Italy
- CEINGE Biotecnologie Avanzate s.c. a r.l. , Naples , Italy
| | - Luigi Greco
- Dipartimento di Scienze Mediche Traslazionali , Università degli Studi di Napoli Federico II , Naples , Italy
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università degli Studi di Napoli Federico II , Naples , Italy
- CEINGE Biotecnologie Avanzate s.c. a r.l. , via Gaetano Salvatore 486 , 80145 Naples , Italy , Phone: +39-081.746.4200
| |
Collapse
|
14
|
Péterfy M, Bedoya C, Giacobbe C, Pagano C, Gentile M, Rubba P, Fortunato G, Di Taranto MD. Characterization of two novel pathogenic variants at compound heterozygous status in lipase maturation factor 1 gene causing severe hypertriglyceridemia. J Clin Lipidol 2018; 12:1253-1259. [PMID: 30172716 DOI: 10.1016/j.jacl.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/07/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Severe hypertriglyceridemia is a rare disease characterized by triglyceride levels higher than 1000 mg/dL (11.3 mmol/L) and acute pancreatitis. The disease is caused by pathogenic variants in genes encoding lipoprotein lipase (LPL), apolipoprotein A5, apolipoprotein C2, glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1, and lipase maturation factor 1 (LMF1). OBJECTIVE We aim to identify the genetic cause of severe hypertriglyceridemia and characterize the new variants in a patient with severe hypertriglyceridemia. METHODS The proband was a male showing severe hypertriglyceridemia (triglycerides 1416 mg/dL, 16.0 mmol/L); proband's relatives were also screened. Genetic screening included direct sequencing of the above genes and identification of large rearrangements in the LPL gene. Functional characterization of mutant LMF1 variants was performed by complementing LPL maturation in transfected LMF1-deficient mouse fibroblasts. RESULTS The proband and his affected brother were compound heterozygotes for variants in the LMF1 gene never identified as causative of severe hypertriglyceridemia c.[157delC;1351C>T];[410C>T], p.[(Arg53Glyfs*5)];[(Ser137Leu)]. Functional analysis demonstrated that the p.(Arg53Glyfs*5) truncation completely abolished and the p.(Ser137Leu) missense variant dramatically diminished the lipase maturation activity of LMF1. CONCLUSIONS In addition to a novel truncating variant, we describe for the first time a missense variant functionally demonstrated affecting the lipase maturation function of LMF1. This is the first case in which compound heterozygous variants in LMF1 were functionally demonstrated as causative of severe hypertriglyceridemia.
Collapse
Affiliation(s)
- Miklós Péterfy
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Candy Bedoya
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Carola Giacobbe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy; CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy
| | - Carmen Pagano
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Marco Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Paolo Rubba
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy; CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy
| | - Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy; CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy.
| |
Collapse
|
15
|
Di Taranto MD, Benito-Vicente A, Giacobbe C, Uribe KB, Rubba P, Etxebarria A, Guardamagna O, Gentile M, Martín C, Fortunato G. Identification and in vitro characterization of two new PCSK9 Gain of Function variants found in patients with Familial Hypercholesterolemia. Sci Rep 2017; 7:15282. [PMID: 29127338 PMCID: PMC5681505 DOI: 10.1038/s41598-017-15543-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by pathogenic variants in genes encoding for LDL receptor (LDLR), Apolipoprotein B and Proprotein convertase subtilisin/kexin type 9 (PCSK9). Among PCSK9 variants, only Gain-of- Function (GOF) variants lead to FH. Greater attention should be paid to the classification of variants as pathogenic. Two hundred sixty nine patients with a clinical suspect of FH were screened for variants in LDLR and the patients without pathogenic variants were screened for variants in PCSK9 and APOB. Functional characterization of PCSK9 variants was performed by assessment of protein secretion, of LDLR activity in presence of PCSK9 variant proteins as well as of the LDLR affinity of the PCSK9 variants. Among 81 patients without pathogenic variants in LDLR, 7 PCSK9 heterozygotes were found, 4 of whom were carriers of variants whose role in FH pathogenesis is still unknown. Functional characterization revealed that two variants (p.(Ser636Arg) and p.(Arg357Cys)) were GOF variants. In Conclusions, we demonstrated a GOF effect of 2 PCSK9 variants that can be considered as FH-causative variants. The study highlights the important role played by functional characterization in integrating diagnostic procedures when the pathogenicity of new variants has not been previously demonstrated.
Collapse
Affiliation(s)
- Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli and CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy
| | - Asier Benito-Vicente
- Biofisika Institute (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain
| | - Carola Giacobbe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli and CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy
| | - Kepa Belloso Uribe
- Biofisika Institute (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain
| | - Paolo Rubba
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Aitor Etxebarria
- Biofisika Institute (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain
| | - Ornella Guardamagna
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Torino, Italy
| | - Marco Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Cesar Martín
- Biofisika Institute (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Apdo. 644, 48080, Bilbao, Spain.
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli and CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy.
| |
Collapse
|
16
|
Rubba P, Gentile M, Marotta G, Iannuzzi A, Sodano M, De Simone B, Jossa F, Iannuzzo G, Giacobbe C, Di Taranto MD, Fortunato G. Causative mutations and premature cardiovascular disease in patients with heterozygous familial hypercholesterolaemia. Eur J Prev Cardiol 2017; 24:1051-1059. [DOI: 10.1177/2047487317702040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Paolo Rubba
- Dipartimento di Medicina Clinica e Chirurgia, Università ‘Federico II’ di Napoli, Italy
| | - Marco Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università ‘Federico II’ di Napoli, Italy
| | - Gennaro Marotta
- Dipartimento di Medicina Clinica e Chirurgia, Università ‘Federico II’ di Napoli, Italy
| | | | - Marta Sodano
- Dipartimento di Medicina Clinica e Chirurgia, Università ‘Federico II’ di Napoli, Italy
| | - Biagio De Simone
- Dipartimento di Medicina Clinica e Chirurgia, Università ‘Federico II’ di Napoli, Italy
| | - Fabrizio Jossa
- Dipartimento di Medicina Clinica e Chirurgia, Università ‘Federico II’ di Napoli, Italy
| | - Gabriella Iannuzzo
- Dipartimento di Medicina Clinica e Chirurgia, Università ‘Federico II’ di Napoli, Italy
| | - Carola Giacobbe
- CEINGE S.c.a r.l. Biotecnologie Avanzate, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | | | - Giuliana Fortunato
- CEINGE S.c.a r.l. Biotecnologie Avanzate, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
17
|
Di Taranto MD, Gelzo M, Giacobbe C, Gentile M, Marotta G, Savastano S, Dello Russo A, Fortunato G, Corso G. Cerebrotendinous xanthomatosis, a metabolic disease with different neurological signs: two case reports. Metab Brain Dis 2016; 31:1185-1188. [PMID: 27225395 DOI: 10.1007/s11011-016-9841-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/16/2016] [Indexed: 02/08/2023]
Abstract
Cerebrotendinous xanthomatosis (CTX) is an autosomal recessive inborn error of bile acids synthesis and lipid accumulation caused by a deficiency of the mitochondrial cytochrome P450 sterol 27-hydroxylase enzyme encoded by CYP27A1. Pathogenic variants in CYP27A1 cause elevated cholestanol levels in the body, which leads to a variable clinical presentation that often includes cataracts, intellectual disability, neurological features, tendon xanthomas, and chronic diarrhea. Herein we describe the cases of two unrelated adult CTX patients. Case 1 is a patient with neurological dysfunction, including moderate intellectual disability, cataract of right eye, and xanthomas; Case 2 is a patient with tendon xanthomas without neurological symptoms. Plasma sterols profile obtained from both cases showed higher levels of cholestanol and cholesterol biosynthetic precursors compared to unaffected subjects. Case 1 and Case 2 were homozygous for the c.1263 + 5G > T (p.Leu396Profs29X) and c.1435C > G (p.Arg479Gly) pathogenic variants, respectively, in the CYP27A1 gene. Interestingly, for the first time, Case 2 variant has been identified in a homozygous state. Our results highlight that the sterol profile and genetic analyses are essential to make the diagnosis of CTX and to exclude other dyslipidemias.
Collapse
Affiliation(s)
| | - Monica Gelzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via Sergio Pansini 5, 80131, Naples, Italy
| | - Carola Giacobbe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate s.c. a r.l., via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Marco Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, via Sergio Pansini 5, 80131, Naples, Italy
| | - Gennaro Marotta
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, via Sergio Pansini 5, 80131, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, via Sergio Pansini 5, 80131, Naples, Italy
| | - Antonio Dello Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via Sergio Pansini 5, 80131, Naples, Italy
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate s.c. a r.l., via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Gaetano Corso
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Foggia, Viale L. Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
18
|
Di Taranto MD, D'Agostino MN, Fortunato G. Functional characterization of mutant genes associated with autosomal dominant familial hypercholesterolemia: integration and evolution of genetic diagnosis. Nutr Metab Cardiovasc Dis 2015; 25:979-987. [PMID: 26165249 DOI: 10.1016/j.numecd.2015.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/15/2015] [Indexed: 12/18/2022]
Abstract
AIMS Familial Hypercholesterolemia (FH) is one of the most frequent dyslipidemias, the autosomal dominant form of which is primarily caused by mutations in the LDL receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes, although in around 20% of patients the genetic cause remains unidentified. Genetic testing has notably improved the identification of patients suffering from FH, the most frequent cause of which is the presence of mutations in the LDLR gene. Although more than 1200 different mutations have been identified in this gene, about 80% are recognized to be pathogenic. We aim to overview the current methods used to perform the functional characterization of mutations causing FH and to highlight the conditions requiring a functional characterization of the variant in order to obtain a diagnostic report. DATA SYNTHESIS In the current review, we summarize the different types of functional assays - including their advantages and disadvantages - performed to characterize mutations in the LDLR, APOB and PCSK9 genes helping to better define their pathogenic role. We describe the evaluation of splicing alterations and two major procedures for functional characterization: 1. ex vivo methods, using cells from FH patients; 2. in vitro methods using cell lines. CONCLUSIONS Functional characterization of the LDLR, APOB and PCSK9 mutant genes associated with FH can be considered a necessary integration of its genetic diagnosis.
Collapse
Affiliation(s)
| | - M N D'Agostino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - G Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; CEINGE Biotecnologie Avanzate S.C.a r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy.
| |
Collapse
|
19
|
Statistical and Computational Methods for Genetic Diseases: An Overview. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:954598. [PMID: 26106440 PMCID: PMC4464008 DOI: 10.1155/2015/954598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/23/2015] [Indexed: 12/19/2022]
Abstract
The identification of causes of genetic diseases has been carried out by several approaches with increasing complexity. Innovation of genetic methodologies leads to the production of large amounts of data that needs the support of statistical and computational methods to be correctly processed. The aim of the paper is to provide an overview of statistical and computational methods paying attention to methods for the sequence analysis and complex diseases.
Collapse
|