1
|
Stierlen A, Greive SJ, Bacri L, Manivet P, Cressiot B, Pelta J. Nanopore Discrimination of Coagulation Biomarker Derivatives and Characterization of a Post-Translational Modification. ACS CENTRAL SCIENCE 2023; 9:228-238. [PMID: 36844502 PMCID: PMC9951287 DOI: 10.1021/acscentsci.2c01256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Indexed: 06/18/2023]
Abstract
One of the most important health challenges is the early and ongoing detection of disease for prevention, as well as personalized treatment management. Development of new sensitive analytical point-of-care tests are, therefore, necessary for direct biomarker detection from biofluids as critical tools to address the healthcare needs of an aging global population. Coagulation disorders associated with stroke, heart attack, or cancer are defined by an increased level of the fibrinopeptide A (FPA) biomarker, among others. This biomarker exists in more than one form: it can be post-translationally modified with a phosphate and also cleaved to form shorter peptides. Current assays are long and have difficulties in discriminating between these derivatives; hence, this is an underutilized biomarker for routine clinical practice. We use nanopore sensing to identify FPA, the phosphorylated FPA, and two derivatives. Each of these peptides is characterized by unique electrical signals for both dwell time and blockade level. We also show that the phosphorylated form of FPA can adopt two different conformations, each of which have different values for each electrical parameter. We were able to use these parameters to discriminate these peptides from a mix, thereby opening the way for the potential development of new point-of-care tests.
Collapse
Affiliation(s)
- Aïcha Stierlen
- LAMBE,
CNRS, CY Cergy Paris Université, 95033 Cergy, France
| | | | - Laurent Bacri
- LAMBE,
CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
| | - Philippe Manivet
- Centre
de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75475 Paris, France
- Université
Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | | | - Juan Pelta
- LAMBE,
CNRS, CY Cergy Paris Université, 95033 Cergy, France
- LAMBE,
CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
| |
Collapse
|
2
|
Silajdžić E, Björkqvist M. A Critical Evaluation of Wet Biomarkers for Huntington's Disease: Current Status and Ways Forward. J Huntingtons Dis 2019; 7:109-135. [PMID: 29614689 PMCID: PMC6004896 DOI: 10.3233/jhd-170273] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is an unmet clinical need for objective biomarkers to monitor disease progression and treatment response in Huntington's disease (HD). The aim of this review is, therefore, to provide practical advice for biomarker discovery and to summarise studies on biofluid markers for HD. A PubMed search was performed to review literature with regard to candidate saliva, urine, blood and cerebrospinal fluid biomarkers for HD. Information has been organised into tables to allow a pragmatic approach to the discussion of the evidence and generation of practical recommendations for future studies. Many of the markers published converge on metabolic and inflammatory pathways, although changes in other analytes representing antioxidant and growth factor pathways have also been found. The most promising markers reflect neuronal and glial degeneration, particularly neurofilament light chain. International collaboration to standardise assays and study protocols, as well as to recruit sufficiently large cohorts, will facilitate future biomarker discovery and development.
Collapse
Affiliation(s)
- Edina Silajdžić
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Maria Björkqvist
- Department of Experimental Medical Science, Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Romano P, Beitia San Vicente M, Profumo A. A mass spectrometry based method and a software tool to assess degradation status of serum samples to be used in proteomics for biomarker discovery. J Proteomics 2017; 173:99-106. [PMID: 29242081 DOI: 10.1016/j.jprot.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/09/2017] [Accepted: 12/05/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Paolo Romano
- Biopolymers and Proteomics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | | | - Aldo Profumo
- Biopolymers and Proteomics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
4
|
Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS One 2017; 12:e0178943. [PMID: 28575099 PMCID: PMC5456363 DOI: 10.1371/journal.pone.0178943] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/22/2017] [Indexed: 01/18/2023] Open
Abstract
Proteolytic degradation of peptide-based drugs is often considered as major weakness limiting systemic therapeutic applications. Therefore, huge efforts are typically devoted to stabilize sequences against proteases present in serum or plasma, obtained as supernatants after complete blood coagulation or centrifugation of blood supplemented with anticoagulants, respectively. Plasma and serum are reproducibly obtained from animals and humans allowing consistent for clinical analyses and research applications. However, the spectrum of active or activated proteases appears to vary depending on the activation of proteases and cofactors during coagulation (serum) or inhibition of such enzymes by anticoagulants (plasma), such as EDTA (metallo- and Ca2+-dependent proteases) and heparin (e.g. thrombin, factor Xa). Here, we studied the presumed effects on peptide degradation by taking blood via cardiac puncture of CD-1 mice using a syringe containing a peptide solution. Due to absence of coagulation activators (e.g. glass surfaces and damaged cells), visible blood clotting was prevented allowing to study peptide degradation for one hour. The remaining peptide was quantified and the degradation products were identified using mass spectrometry. When the degradation rates (half-life times) were compared to serum derived freshly from the same animal and commercial serum and plasma samples, peptides of three different families showed indeed considerably different stabilities. Generally, peptides were faster degraded in serum than in plasma, but surprisingly all peptides were more stable in fresh blood and the order of degradation rates among the peptides varied among the six different incubation experiments. This indicates, that proteolytic degradation of peptide-based therapeutics may often be misleading stimulating efforts to stabilize peptides at degradation sites relevant only in vitro, i.e., for serum or plasma stability assays, but of lower importance in vivo.
Collapse
|
5
|
Basso D, Padoan A, Laufer T, Aneloni V, Moz S, Schroers H, Pelloso M, Saiz A, Krapp M, Fogar P, Cornoldi P, Zambon CF, Rossi E, La Malfa M, Marotti A, Brefort T, Weis TM, Katus HA, Plebani M. Relevance of pre-analytical blood management on the emerging cardiovascular protein biomarkers TWEAK and HMGB1 and on miRNA serum and plasma profiling. Clin Biochem 2016; 50:186-193. [PMID: 27847340 DOI: 10.1016/j.clinbiochem.2016.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Disease-independent sources of biomarker variability include pre-analytical, analytical and biological variance. The aim of the present study was to evaluate whether the pre-analytical phase has any impact on the emerging heart disease TWEAK and HMGB1 protein markers and miRNA biomarkers, and whether peptidome profiling allows the identification of pre-analytical quality markers. METHODS An assessment was made of sample type (serum, EDTA-Plasma, Citrate-Plasma, ACD-plasma, Heparin-plasma), temperature of sample storage (room temperature or refrigerated), time of sample storage (0.5, 3, 6 and 9h) and centrifugation (one or two-step). Aliquots of all processed samples were immediately frozen (-80°C) before analysis. Proteins were assayed by ELISAs, miRNA expression profile by microarray and peptidome profiling by MALDI-TOF/MS. RESULTS Temperature, time and centrifugation had no impact on TWEAK and HMGB1 results, which were significantly influenced by matrix type, TWEAK levels being significantly higher (F=194.7, p<0.0001), and HMGB1 levels significantly lower (F=36.32, p<0.0001) in serum than in any other plasma type. Unsuitable miRNA results were obtained using Heparin-plasma. Serum miRNA expression profiles depended mainly on temperature, while EDTA-plasma miRNA expression profiles were strongly affected by the centrifugation method used. MALDI-TOF/MS allowed the identification of seven features as indices of pre-analytical serum (m/z at 1206, 1350, 1865 and 2021) or EDTA-plasma (m/z 1897, 2740 and 2917) degradation. CONCLUSIONS Serum and EDTA-plasma allow the analysis of both proteins and miRNA emerging biomarkers of heart diseases. Refrigerated storage prevents an altered miRNA expression profile also in cases of a prolonged time-interval between blood drawing and processing.
Collapse
Affiliation(s)
- Daniela Basso
- Department of Medicine - DIMED, University of Padova, Italy.
| | - Andrea Padoan
- Department of Medicine - DIMED, University of Padova, Italy
| | - Thomas Laufer
- Comprehensive Biomarker Center GmbH, Heidelberg, Germany
| | | | - Stefania Moz
- Department of Medicine - DIMED, University of Padova, Italy
| | | | | | - Anna Saiz
- Comprehensive Biomarker Center GmbH, Heidelberg, Germany
| | - Medea Krapp
- Comprehensive Biomarker Center GmbH, Heidelberg, Germany
| | - Paola Fogar
- Department of Medicine - DIMED, University of Padova, Italy
| | - Paola Cornoldi
- Department of Medicine - DIMED, University of Padova, Italy
| | | | - Elisa Rossi
- Department of Medicine - DIMED, University of Padova, Italy
| | - Marco La Malfa
- Department of Medicine - DIMED, University of Padova, Italy
| | - Alberto Marotti
- UOC Immunotrasfusionale, University-Hospital of Padova, Italy
| | - Thomas Brefort
- Comprehensive Biomarker Center GmbH, Heidelberg, Germany; Eurofins Medigenomix GmbH, Ebersberg, Germany
| | - Tanja M Weis
- Department of Cardiology, Angiology, and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology, and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mario Plebani
- Department of Medicine - DIMED, University of Padova, Italy
| |
Collapse
|
6
|
Takayama K, Taguchi A, Yakushiji F, Hayashi Y. Identification of a degrading enzyme in human serum that hydrolyzes a C-terminal core sequence of neuromedin U. Biopolymers 2016; 106:440-5. [DOI: 10.1002/bip.22770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/12/2015] [Accepted: 11/02/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Kentaro Takayama
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Fumika Yakushiji
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry; Tokyo University of Pharmacy and Life Sciences; Horinouchi, Hachioji Tokyo 192-0392 Japan
| |
Collapse
|
7
|
Chen X, Li S, Zhang X, Min Q, Zhu JJ. Weaving a two-dimensional fishing net from titanoniobate nanosheets embedded with Fe₃O₄ nanocrystals for highly efficient capture and isotope labeling of phosphopeptides. NANOSCALE 2015; 7:5815-5825. [PMID: 25757497 DOI: 10.1039/c4nr07041k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Qualitative and quantitative characterization of phosphopeptides by means of mass spectrometry (MS) is the main goal of MS-based phosphoproteomics, but suffers from their low abundance in the large haystack of various biological molecules. Herein, we introduce two-dimensional (2D) metal oxides to tackle this biological separation issue. A nanocomposite composed of titanoniobate nanosheets embedded with Fe₃O₄ nanocrystals (Fe₃O₄-TiNbNS) is constructed via a facile cation-exchange approach, and adopted for the capture and isotope labeling of phosphopeptides. In this nanoarchitecture, the 2D titanoniobate nanosheets offer enlarged surface area and a spacious microenvironment for capturing phosphopeptides, while the Fe₃O₄ nanocrystals not only incorporate a magnetic response into the composite but, more importantly, also disrupt the restacking process between the titanoniobate nanosheets and thus preserve a greater specific surface for binding phosphopeptides. Owing to the extended active surface, abundant Lewis acid sites and excellent magnetic controllability, Fe₃O₄-TiNbNS demonstrates superior sensitivity, selectivity and capacity over homogeneous bulk metal oxides, layered oxides, and even restacked nanosheets in phosphopeptide enrichment, and further allows in situ isotope labeling to quantify aberrantly-regulated phosphopeptides from sera of leukemia patients. This composite nanosheet greatly contributes to the MS analysis of phosphopeptides and gives inspiration in the pursuit of 2D structured materials for separation of other biological molecules of interests.
Collapse
Affiliation(s)
- Xueqin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.
| | | | | | | | | |
Collapse
|
8
|
Farina A. Proximal fluid proteomics for the discovery of digestive cancer biomarkers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:988-1002. [DOI: 10.1016/j.bbapap.2013.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/15/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
|
9
|
Pre-analytical and analytical variability in absolute quantitative MRM-based plasma proteomic studies. Bioanalysis 2013; 5:2837-56. [DOI: 10.4155/bio.13.245] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Quantitative plasma proteomics, through the use of targeted MRM-MS and isotopically labeled standards, is emerging as a popular technique to address biological- and biomedical-centered queries. High precision and accuracy are essential in such measurements, particularly in protein biomarker research where translation to the clinic is sought. Standardized procedures and routine performance evaluation of all stages of the workflow (both pre-analytical and analytical) are therefore imperative to satisfy these requisites and enable high inter-laboratory reproducibility and transferability. In this review, we first discuss the pre-analytical and analytical variables that can affect the precision and accuracy of ‘absolute’ quantitative plasma proteomic measurements. Proposed strategies to limit such variability will then be highlighted and unmet needs for future exploration will be noted. Although there is no way to conduct a truly comprehensive review on this broad, rapidly changing topic, we have highlighted key aspects and included references to review articles on various sub-topics.
Collapse
|
10
|
Yamanaka T, Sakamoto H, Nakagawa T, Tanaka S, Matsumoto K, Ueno M. An immunohistochemical study of human platelets using a rabbit antibody against H18-K24 of apolipoprotein CIII (HATKTAK). Pathol Int 2013; 63:398-407. [PMID: 23957915 DOI: 10.1111/pin.12083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 06/25/2013] [Indexed: 11/28/2022]
Abstract
H18-K24 of human apolipopotein CIII (Apo CIII) (HATKTAK) is an activator of the macromolecular activators of phagocytosis from platelets (MAPPs). Using a rabbit antibody against HATKTAK, we performed an immunohistochemical study of human platelets. Indirect ELISA showed that this antibody reacts with Apo CIII-derived peptides with a C-terminal of HATKTAK, but not with Apo CIII. Immunoelectron microscopy revealed that reaction of anti-HATKTAK antibody occurred in the pseudopods of activated platelets. In blood coagula produced from the peripheral blood and formalin-fixed after various incubation periods, reaction of this antibody with platelets appeared rapidly with a peak at 3 to 6 h of incubation, and then diminished gradually. Leukocytes in the blood coagula were stained strongly positive. In tissue sections, fresh thrombi and hemorrhages with slight fibrin formation revealed a positive response of platelets to anti-HATKTAK antibody, whereas older ones with leukocytic infiltration, fibrin formation and organization did not. In addition to platelets, endothelial cells and leukocytes were stained positive by anti-HATKTAK antibody. All of the positive reactions by anti-HATKTAK antibody disappeared or diminished by co-incubation with HATKTAK. In conclusion, the anti-HATKTAK antibody reveals platelets during the early phase of activation.
Collapse
Affiliation(s)
- Takao Yamanaka
- Inflammation Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Profumo A, Mangerini R, Rubagotti A, Romano P, Damonte G, Guglielmini P, Facchiano A, Ferri F, Ricci F, Rocco M, Boccardo F. Complement C3f serum levels may predict breast cancer risk in women with gross cystic disease of the breast. J Proteomics 2013; 85:44-52. [PMID: 23639844 DOI: 10.1016/j.jprot.2013.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/02/2013] [Accepted: 04/13/2013] [Indexed: 01/19/2023]
Abstract
UNLABELLED Gross cystic disease (GCDB) is a breast benign condition predisposing to breast cancer. Cryopreserved sera from GCDB patients, some of whom later developed a cancer (cases), were studied to identify potential risk markers. A MALDI-TOF mass spectrometry analysis found several complement C3f fragments having a significant increased abundance in cases compared to controls. After multivariate analysis, the full-length form of C3f maintained a predictive value of breast cancer risk. Higher levels of C3f in the serum of women affected by a benign condition like GCDB thus appears to be correlated to the development of breast cancer even 20 years later. BIOLOGICAL SIGNIFICANCE Increased complement system activation has been found in the sera of women affected by GCDB who developed a breast cancer, even twenty or more years later. C3f may predict an increased breast cancer risk in the healthy population and in women affected by predisposing conditions.
Collapse
Affiliation(s)
- Aldo Profumo
- Biopolymers and Proteomics Unit, IRCCS AOU San Martino-IST, San Martino University Hospital and National Cancer Research Institute, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Findeisen P, Costina V, Yepes D, Hofheinz R, Neumaier M. Functional protease profiling with reporter peptides in serum specimens of colorectal cancer patients: demonstration of its routine diagnostic applicability. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:56. [PMID: 22682081 PMCID: PMC3780806 DOI: 10.1186/1756-9966-31-56] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/04/2012] [Indexed: 01/18/2023]
Abstract
Background The progression of many solid tumors is characterized by the release of tumor-associated proteases and the detection of tumor specific proteolytic activity in serum specimens is a promising diagnostic tool in oncology. Here we describe a mass spectrometry-based functional proteomic profiling approach that tracks the ex-vivo degradation of a synthetic endoprotease substrate in serum specimens of colorectal tumor patients. Methods A reporter peptide (RP) with the amino acid sequence WKPYDAAD was synthesized that has a known cleavage site for the cysteine-endopeptidase cancer procoagulant (EC 3.4.22.26). The RP was added to serum specimens from colorectal cancer patients (n = 30), inflammatory controls (n = 30) and healthy controls (n = 30) and incubated under strictly standardized conditions. The proteolytic fragment of the RP was quantified with liquid chromatography / mass spectrometry (LC/MS). Results RP-spiking showed good intra- and inter-day reproducibility with coefficients of variation (CVs) that did not exceed a value of 10%. The calibration curve for the anchor peptide was linear in the concentration range of 0.4 – 50 μmol/L. The median concentration of the RP-fragment in serum specimens from tumor patients (TU: 17.6 μmol/L, SD 9.0) was significantly higher when compared to non-malignant inflammatory controls (IC: 11.1 μmol/L, SD 6.1) and healthy controls (HC: 10.3 μmol/L, SD 3.1). Highest area under receiver operating characteristic (AUROC) values were seen for discrimination of TU versus HC (0.89) followed by TU versus IC (0.77). IC and HC could barely be separated indicated by an AUROC value of 0.57. The proteolytic activity towards the RP was conserved in serum specimens that were kept at room temperature for up to 24 hours prior to the analysis. Conclusion The proteolytic cleavage of reporter peptides is a surrogate marker for tumor associated proteolytic activity in serum specimens of cancer patients. A simple, robust and highly reproducible LC/MS method has been developed that allows the quantification of proteolytic fragments in serum specimens. The preanalytical impact of sample handling is minimal as the tumor-associated proteolytic activity towards the reporter peptide is stable for at least up to 24 h. Taken together, the functional protease profiling shows characteristics that are in line with routinely performed diagnostic assays. Further work will focus on the identification of additional reporter peptides for the construction of a multiplex assay to increase diagnostic accuracy of the functional protease profiling.
Collapse
Affiliation(s)
- Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany.
| | | | | | | | | |
Collapse
|
13
|
Payne SR. From discovery to the clinic: the novel DNA methylation biomarker (m)SEPT9 for the detection of colorectal cancer in blood. Epigenomics 2012; 2:575-85. [PMID: 22121975 DOI: 10.2217/epi.10.35] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Detection of colorectal cancer at an early stage has been shown to significantly decrease mortality from the disease, while the advent of effective therapies for late-stage colorectal cancer make the detection of colorectal cancer at any stage a critical step in further reducing colorectal cancer mortality. Availability of a blood-based test for colorectal cancer is expected to improve screening compliance in the general population. Through DNA methylation-sensitive, restriction enzyme-based biomarker discovery, we identified a region of the Septin 9 gene that is methylated in over 90% of colorectal cancer tissues with little or no methylation seen in normal colon tissue and other controls. Specific detection of colorectal cancer DNA using the Septin 9 methylation biomarker ((m)SEPT9) was demonstrated in multiple studies of plasma from colorectal cancer patients and colonoscopy-verified negative controls. A prospective, population-based trial to determine the clinical performance of (m)SEPT9 in colorectal cancer screening guideline-eligible individuals has recently been completed, with the results to be published in the near future. The potential pitfalls and lessons learned in the multiyear process of developing the (m)SEPT9 biomarker from initial discovery to commercialization are described in this article.
Collapse
Affiliation(s)
- Shannon R Payne
- Epigenomics Inc., 901 Fifth Avenue, Suite 3800, Seattle, WA 98164, USA.
| |
Collapse
|
14
|
Lin SW, Chuang YC, Lin YS, Lei HY, Liu HS, Yeh TM. Dengue virus nonstructural protein NS1 binds to prothrombin/thrombin and inhibits prothrombin activation. J Infect 2012; 64:325-34. [DOI: 10.1016/j.jinf.2011.11.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 10/15/2022]
|
15
|
van den Berg BHJ, Tholey A. Mass spectrometry-based proteomics strategies for protease cleavage site identification. Proteomics 2012; 12:516-29. [PMID: 22246699 DOI: 10.1002/pmic.201100379] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/14/2011] [Accepted: 09/17/2011] [Indexed: 01/22/2023]
Abstract
Protease-catalyzed hydrolysis of peptide bonds is one of the most pivotal post-translational modifications fulfilling manifold functions in the regulation of cellular processes. Therefore, dysregulation of proteolytic reactions plays a central role in many pathophysiological events. For this reason, understanding the molecular mechanisms in proteolytic reactions, in particular the knowledge of proteases involved in complex processes, expression levels and activity of protease and knowledge of the targeted substrates are an indispensable prerequisite for targeted drug development. The present review focuses on mass spectrometry-based proteomic methods for the analysis of protease cleavage sites, including the identification of the hydrolyzed bonds as well as of the surrounding sequence. Peptide- and protein-centric approaches and bioinformatic tools for experimental data interpretation will be presented and the major advantages and drawbacks of the different approaches will be addressed. The recent applications of these approaches for the analysis of biological function of different protease classes and potential future directions will be discussed.
Collapse
Affiliation(s)
- Bart H J van den Berg
- AG Systematische Proteomforschung, Institut für Experimentelle Medizin, Christian-Albrechts-Universität, Kiel, Germany.
| | | |
Collapse
|
16
|
Thrombin-induced shedding of tumour endothelial marker 5 and exposure of its RGD motif are regulated by cell-surface protein disulfide-isomerase. Biochem J 2012; 441:937-44. [DOI: 10.1042/bj20111682] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TEM5 (tumour endothelial marker 5; also known as GPR124) is an adhesion G-protein-coupled receptor containing a cryptic RGD motif in its extracellular domain. TEM5 is expressed in endothelial cells and pericytes during angiogenesis. In the present paper, we report that thrombin mediates shedding of an N-terminal TEM5 fragment of 60 kDa (termed N60) containing the RGD motif in an open conformation. Thrombin directly cleaved rsTEM5 (recombinant soluble TEM5) 5 and 34 residues downstream of the RGD motif, resulting in formation of N60 and its C-terminal counterpart (termed C50). Interestingly, N60 derived from thrombin cleavage of rsTEM5 was covalently linked to C50 by disulfide bonds, whereas N60 shed from thrombin-treated cells was not associated with its membrane-bound C-terminal counterpart. Inhibition of the reducing function of cell-surface PDI (protein disulfide-isomerase) abrogated thrombin-induced N60 shedding. Conversely, addition of reduced PDI enhanced N60 shedding. Furthermore, thrombin cleavage of rsTEM5 was increased by reduced PDI and resulted in dissociation of the N60–C50 heterodimer. We conclude that PDI regulates thrombin-induced shedding of N60 and exposure of the TEM5 RGD motif by catalysing the reduction of crucial disulfide bonds of TEM5 on the cell surface. Binding of N60 to RGD-dependent integrins may modulate cellular functions such as adhesion and migration during angiogenesis.
Collapse
|
17
|
Findeisen P, Neumaier M. Functional protease profiling for diagnosis of malignant disease. Proteomics Clin Appl 2011; 6:60-78. [PMID: 22213637 DOI: 10.1002/prca.201100058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/27/2011] [Accepted: 10/19/2011] [Indexed: 12/24/2022]
Abstract
Clinical proteomic profiling by mass spectrometry (MS) aims at uncovering specific alterations within mass profiles of clinical specimens that are of diagnostic value for the detection and classification of various diseases including cancer. However, despite substantial progress in the field, the clinical proteomic profiling approaches have not matured into routine diagnostic applications so far. Their limitations are mainly related to high-abundance proteins and their complex processing by a multitude of endogenous proteases thus making rigorous standardization difficult. MS is biased towards the detection of low-molecular-weight peptides. Specifically, in serum specimens, the particular fragments of proteolytically degraded proteins are amenable to MS analysis. Proteases are known to be involved in tumour progression and tumour-specific proteases are released into the blood stream presumably as a result of invasive progression and metastasis. Thus, the determination of protease activity in clinical specimens from patients with malignant disease can offer diagnostic and also therapeutic options. The identification of specific substrates for tumour proteases in complex biological samples is challenging, but proteomic screens for proteases/substrate interactions are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, differential isotope labelling in combination with MS, quantitative degradomic analysis of proteolytically generated neo-N-termini, monitoring the degradation of exogenous reporter peptides with MS, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify tumour-specific protease-substrate interactions for functional protease profiling. Thereby, we focus on the potential diagnostic use of the respective approaches.
Collapse
Affiliation(s)
- Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
18
|
Zhu P, Bowden P, Zhang D, Marshall JG. Mass spectrometry of peptides and proteins from human blood. MASS SPECTROMETRY REVIEWS 2011; 30:685-732. [PMID: 24737629 DOI: 10.1002/mas.20291] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/09/2009] [Accepted: 01/19/2010] [Indexed: 06/03/2023]
Abstract
It is difficult to convey the accelerating rate and growing importance of mass spectrometry applications to human blood proteins and peptides. Mass spectrometry can rapidly detect and identify the ionizable peptides from the proteins in a simple mixture and reveal many of their post-translational modifications. However, blood is a complex mixture that may contain many proteins first expressed in cells and tissues. The complete analysis of blood proteins is a daunting task that will rely on a wide range of disciplines from physics, chemistry, biochemistry, genetics, electromagnetic instrumentation, mathematics and computation. Therefore the comprehensive discovery and analysis of blood proteins will rank among the great technical challenges and require the cumulative sum of many of mankind's scientific achievements together. A variety of methods have been used to fractionate, analyze and identify proteins from blood, each yielding a small piece of the whole and throwing the great size of the task into sharp relief. The approaches attempted to date clearly indicate that enumerating the proteins and peptides of blood can be accomplished. There is no doubt that the mass spectrometry of blood will be crucial to the discovery and analysis of proteins, enzyme activities, and post-translational processes that underlay the mechanisms of disease. At present both discovery and quantification of proteins from blood are commonly reaching sensitivities of ∼1 ng/mL.
Collapse
Affiliation(s)
- Peihong Zhu
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada M5B 2K3
| | | | | | | |
Collapse
|
19
|
Zuccato C, Marullo M, Vitali B, Tarditi A, Mariotti C, Valenza M, Lahiri N, Wild EJ, Sassone J, Ciammola A, Bachoud-Lèvi AC, Tabrizi SJ, Di Donato S, Cattaneo E. Brain-derived neurotrophic factor in patients with Huntington's disease. PLoS One 2011; 6:e22966. [PMID: 21857974 PMCID: PMC3155522 DOI: 10.1371/journal.pone.0022966] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/03/2011] [Indexed: 01/09/2023] Open
Abstract
Reduced Brain-Derived Neurotrophic Factor (BDNF) levels have been described in a number of patho-physiological conditions, most notably, in Huntington's disease (HD), a progressive neurodegenerative disorder. Since BDNF is also produced in blood, we have undertaken the measurement of its peripheral levels in the attempt to identify a possible link with HD prognosis and/or its progression. Here we evaluated BDNF level in 398 blood samples including 138 controls, 56 preHD, and 204 HD subjects. We found that BDNF protein levels were not reliably different between groups, whether measured in plasma (52 controls, 26 preHD, 105 HD) or serum (39 controls, 5 preHD, 29 HD). Our experience, and a re-analysis of the literature highlighted that intra-group variability and methodological aspects affect this measurement, especially in serum. We also assessed BDNF mRNA levels in blood samples from 47 controls, 25 preHD, and 70 HD subjects, and found no differences among the groups. We concluded that levels of BDNF in human blood were not informative (mRNA levels or plasma protein level) nor reliable (serum protein levels) as HD biomarkers. We also wish to warn the scientific community in interpreting the significance of changes measured in BDNF protein levels in serum from patients suffering from different conditions.
Collapse
Affiliation(s)
- Chiara Zuccato
- Department of Pharmacological Sciences and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Manuela Marullo
- Department of Pharmacological Sciences and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Barbara Vitali
- Department of Pharmacological Sciences and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Alessia Tarditi
- Department of Pharmacological Sciences and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Caterina Mariotti
- Division of Biochemistry and Genetics, National Neurological Institute-IRCCS “Carlo Besta”, Milan, Italy
| | - Marta Valenza
- Department of Pharmacological Sciences and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Nayana Lahiri
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Edward J. Wild
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | | | | | | | - Sarah J. Tabrizi
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Stefano Di Donato
- Division of Biochemistry and Genetics, National Neurological Institute-IRCCS “Carlo Besta”, Milan, Italy
| | - Elena Cattaneo
- Department of Pharmacological Sciences and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
- * E-mail:
| |
Collapse
|
20
|
|