1
|
van Maanen JC, Bach FC, Braun TS, Giovanazzi A, van Balkom BW, Templin M, Wauben MH, Tryfonidou MA. A Combined Western and Bead-Based Multiplex Platform to Characterize Extracellular Vesicles. Tissue Eng Part C Methods 2023; 29:493-504. [PMID: 37470213 PMCID: PMC10654656 DOI: 10.1089/ten.tec.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
In regenerative medicine, extracellular vesicles (EVs) are considered as a promising cell-free approach. EVs are lipid bilayer-enclosed vesicles secreted by cells and are key players in intercellular communication. EV-based therapeutic approaches have unique advantages over the use of cell-based therapies, such as a high biological, but low immunogenic and tumorigenic potential. To analyze the purity and biochemical composition of EV preparations, the International Society for Extracellular Vesicles (ISEV) has prepared guidelines recommending the analysis of multiple (EV) markers, as well as proteins coisolated/recovered with EVs. Traditional methods for EV characterization, such as Western blotting, require a relatively high EV sample/protein input for the analysis of one protein. We here evaluate a combined Western and bead-based multiplex platform, called DigiWest, for its ability to detect simultaneously multiple EV markers in an EV-containing sample with inherent low protein input. DigiWest analysis was performed on EVs from various sources and species, including mesenchymal stromal cells, notochordal cells, and milk, from human, pig, and dog. The study established a panel of nine antibodies that can be used as cross-species for the detection of general EV markers and coisolates in accordance with the ISEV guidelines. This optimized panel facilitates the parallel evaluation of EV-containing samples, allowing for a comprehensive characterization and assessment of their purity. The total protein input for marker analysis with DigiWest was 1 μg for all nine antibodies, compared with ∼10 μg protein input required for traditional Western blotting for one antibody. These findings demonstrate the potential of the DigiWest technique for characterizing various types of EVs in the regenerative medicine field.
Collapse
Affiliation(s)
- Josette C. van Maanen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Theresa S. Braun
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Alberta Giovanazzi
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Bas W.M. van Balkom
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Markus Templin
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- NMI TT Pharmaservices, Berlin, Germany
| | - Marca H.M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Nickerson JL, Baghalabadi V, Rajendran SRCK, Jakubec PJ, Said H, McMillen TS, Dang Z, Doucette AA. Recent advances in top-down proteome sample processing ahead of MS analysis. MASS SPECTROMETRY REVIEWS 2023; 42:457-495. [PMID: 34047392 DOI: 10.1002/mas.21706] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Top-down proteomics is emerging as a preferred approach to investigate biological systems, with objectives ranging from the detailed assessment of a single protein therapeutic, to the complete characterization of every possible protein including their modifications, which define the human proteoform. Given the controlling influence of protein modifications on their biological function, understanding how gene products manifest or respond to disease is most precisely achieved by characterization at the intact protein level. Top-down mass spectrometry (MS) analysis of proteins entails unique challenges associated with processing whole proteins while maintaining their integrity throughout the processes of extraction, enrichment, purification, and fractionation. Recent advances in each of these critical front-end preparation processes, including minimalistic workflows, have greatly expanded the capacity of MS for top-down proteome analysis. Acknowledging the many contributions in MS technology and sample processing, the present review aims to highlight the diverse strategies that have forged a pathway for top-down proteomics. We comprehensively discuss the evolution of front-end workflows that today facilitate optimal characterization of proteoform-driven biology, including a brief description of the clinical applications that have motivated these impactful contributions.
Collapse
Affiliation(s)
| | - Venus Baghalabadi
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Subin R C K Rajendran
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
- Verschuren Centre for Sustainability in Energy and the Environment, Sydney, Nova Scotia, Canada
| | - Philip J Jakubec
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hammam Said
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Teresa S McMillen
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ziheng Dang
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
3
|
Korn P, Schwieger C, Gruhle K, Garamus VM, Meister A, Ihling C, Drescher S. Azide- and diazirine-modified membrane lipids: Physicochemistry and applicability to study peptide/lipid interactions via cross-linking/mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184004. [PMID: 35841926 DOI: 10.1016/j.bbamem.2022.184004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Although the incorporation of photo-activatable lipids into membranes potentially opens new avenues for studying interactions with peptides and proteins, the question of whether azide- or diazirine-modified lipids are suitable for such studies remains controversial. We have recently shown that diazirine-modified lipids can indeed form cross-links to membrane peptides after UV activation and that these cross-links can be precisely determined in their position by mass spectrometry (MS). However, we also observed an unexpected backfolding of the lipid's diazirine-containing stearoyl chain to the membrane interface challenging the potential application of this modified lipid for future cross-linking (XL)-MS studies of protein/lipid interactions. In this work, we compared an azide- (AzidoPC) and a diazirine-modified (DiazPC) membrane lipid regarding their self-assembly properties, their mixing behavior with saturated bilayer-forming phospholipids, and their reactivity upon UV activation using differential scanning calorimetry (DSC), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and MS. Mixtures of both modified lipids with DMPC were further used for photo-chemically induced XL experiments with a transmembrane model peptide (KLAW23) to elucidate similarities and differences between the azide and the diazirine moiety. We showed that both photo-reactive lipids can be used to study lipid/peptide and lipid/protein interactions. The AzidoPC proved easier to handle, whereas the DiazPC had fewer degradation products and a higher cross-linking yield. However, the problem of backfolding occurs in both lipids; thus, it seems to be a general phenomenon.
Collapse
Affiliation(s)
- Patricia Korn
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Christian Schwieger
- Institute of Chemistry, MLU Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Kai Gruhle
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany; Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Vasil M Garamus
- Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany; Institute of Biochemistry and Biotechnology-Physical Biotechnology, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Christian Ihling
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany; Center for Structural Mass Spectrometry, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Simon Drescher
- Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany; Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Hellwig N, Martin J, Morgner N. LILBID-MS: using lasers to shed light on biomolecular architectures. Biochem Soc Trans 2022; 50:1057-1067. [PMID: 35695670 PMCID: PMC9317959 DOI: 10.1042/bst20190881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Structural Biology has moved beyond the aim of simply identifying the components of a cellular subsystem towards analysing the dynamics and interactions of multiple players within a cell. This focal shift comes with additional requirements for the analytical tools used to investigate these systems of increased size and complexity, such as Native Mass Spectrometry, which has always been an important tool for structural biology. Scientific advance and recent developments, such as new ways to mimic a cell membrane for a membrane protein, have caused established methods to struggle to keep up with the increased demands. In this review, we summarize the possibilities, which Laser Induced Liquid Bead Ion Desorption (LILBID) mass spectrometry offers with regard to the challenges of modern structural biology, like increasingly complex sample composition, novel membrane mimics and advanced structural analysis, including next neighbor relations and the dynamics of complex formation.
Collapse
Affiliation(s)
- Nils Hellwig
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Janosch Martin
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| |
Collapse
|
5
|
Vallejo DD, Ramírez CR, Parson KF, Han Y, Gadkari VG, Ruotolo BT. Mass Spectrometry Methods for Measuring Protein Stability. Chem Rev 2022; 122:7690-7719. [PMID: 35316030 PMCID: PMC9197173 DOI: 10.1021/acs.chemrev.1c00857] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is a central technology in the life sciences, providing our most comprehensive account of the molecular inventory of the cell. In parallel with developments in mass spectrometry technologies targeting such assessments of cellular composition, mass spectrometry tools have emerged as versatile probes of biomolecular stability. In this review, we cover recent advancements in this branch of mass spectrometry that target proteins, a centrally important class of macromolecules that accounts for most biochemical functions and drug targets. Our efforts cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision induced unfolding, and other techniques capable of stability assessments on a proteomic scale. In addition, we focus on a range of application areas where mass spectrometry-driven protein stability measurements have made notable impacts, including studies of membrane proteins, heat shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing the future of this vibrant and fast-moving area of research.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F. Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun G. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Sun J, Li W, Gross ML. Advances in mass spectrometry-based footprinting of membrane proteins. Proteomics 2022; 22:e2100222. [PMID: 35290716 PMCID: PMC10493193 DOI: 10.1002/pmic.202100222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins (MPs) are determined regularly. These advances have been driven by over 15 years of technological improvements, first in macromolecular crystallography, and recently in cryo-electron microscopy. Obtaining information about MP higher order structure and interactions is also a frontier, important but challenging owing to their unique properties and the need to choose suitable detergents/lipids for their study. The development of mass spectrometry (MS), both instruments and methodology in the past 10 years, has also advanced it as a complementary method to study MP structure and interactions. In this review, we discuss advances in MS-based footprinting for MPs and highlight recent methodologies that offer new promise for MP study by chemical footprinting and mass spectrometry.
Collapse
Affiliation(s)
- Jie Sun
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Alwash M, Gariépy J. Labeling Cell Surface Receptors with Ligand.BirA* Bispecifics. ACS Pharmacol Transl Sci 2022; 5:62-69. [PMID: 36742360 PMCID: PMC9890520 DOI: 10.1021/acsptsci.1c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BirA*, a mutant form of the biotinylating enzyme BirA, can nonspecifically biotinylate ε-amino groups on lysines of proteins. Based on the promiscuous labeling nature of BirA*, plasmids expressing fusion constructs of BirA* to a given ligand have been used to transfect eukaryotic cells, leading to the biotinylation of intracellular proteins interacting or in close proximity to such Ligand.BirA* constructs. Mass spectrometry performed on the recovered biotinylated partners allows one to map intracellular protein interactors, a technique known as BioID. In contrast, the expression and purification of recombinant Ligand.BirA* constructs could serve as a powerful tool for labeling and detecting cell surface receptors. Here, we report the design and expression of recombinant Affibody.BirA* constructs, ZEGFR:1907.BirA* and ZHER2:243.BirA*, as protein bispecifics able to biotinylate their respective receptors EGFR and HER2 on the surface of MDA-MB-231 (EGFR+, EpCaM+, and CD44+) and SK-OV-3 (HER2++, EGFR+, EpCaM+, and CD44+) cancer cells. These Affibody.BirA* constructs retain both their BirA* enzymatic activity as well as their receptor-binding function. Importantly, MDA-MB-231 and SK-OV-3 cells biotinylated with Affibody.BirA* constructs did label their receptors EGFR and HER2 but did not biotinylate irrelevant antigens such as EpCaM or CD44 present on the surface of both cell lines. Ligand.BirA* bispecifics may represent a promising class of agents to identify unknown receptors on cell surfaces.
Collapse
Affiliation(s)
- Mays Alwash
- Sunnybrook
Research Institute, 2075
Bayview Avenue, Toronto, Ontario M4N 3M5, Canada,Department
of Pharmaceutical Sciences, University of
Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Jean Gariépy
- Sunnybrook
Research Institute, 2075
Bayview Avenue, Toronto, Ontario M4N 3M5, Canada,Department
of Pharmaceutical Sciences, University of
Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada,Department
of Medical Biophysics, University of Toronto, 101 College St Suite 15-701, Toronto, Ontario M5G 1L7, Canada,
| |
Collapse
|
8
|
Dorner J, Korn P, Gruhle K, Ramsbeck D, Garamus VM, Lilie H, Meister A, Schwieger C, Ihling C, Sinz A, Drescher S. A Diazirine-Modified Membrane Lipid to Study Peptide/Lipid Interactions - Chances and Challenges. Chemistry 2021; 27:14586-14593. [PMID: 34406694 PMCID: PMC8597076 DOI: 10.1002/chem.202102048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 01/19/2023]
Abstract
Although incorporation of photo‐activatable lipids into membranes potentially opens up novel avenues for investigating interactions with proteins, the question of whether diazirine‐modified lipids are suitable for such studies, remains under debate. Focusing on the potential for studying lipid/peptide interactions by cross‐linking mass spectrometry (XL‐MS), we developed a diazirine‐modified lipid (DiazPC), and examined its behaviour in membranes incorporating the model α‐helical peptide LAVA20. We observed an unexpected backfolding of the diazirine‐containing stearoyl chain of the lipid. This surprising behaviour challenges the potential application of DiazPC for future XL‐MS studies of peptide and protein/lipid interactions. The observations made for DiazPC most likely represent a general phenomenon for any type of membrane lipids with a polar moiety incorporated into the alkyl chain. Our finding is therefore of importance for future protein/lipid interaction studies relying on modified lipid probes.
Collapse
Affiliation(s)
- Julia Dorner
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Patricia Korn
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Kai Gruhle
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.,Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Daniel Ramsbeck
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Weinbergweg 22, 06120, Halle (Saale), Germany.,Institute of Pharmacy, University Leipzig, Brüderstr. 34, 04103, Leipzig, Germany
| | - Vasil M Garamus
- Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Hauke Lilie
- Institute for Biochemistry and Biotechnology-Technical Biochemistry, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Annette Meister
- Institute of Biochemistry and Biotechnology-Physical Biotechnology Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany.,Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Christian Schwieger
- Interdisciplinary Research Center HALOmem, MLU Halle-Wittenberg Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Christian Ihling
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Institute of Pharmacy-Pharmaceutical Chemistry and Bioanalytics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Simon Drescher
- Institute of Pharmacy-Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany.,Phospholipid Research Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Wiatrak B, Piasny J, Kuźniarski A, Gąsiorowski K. Interactions of Amyloid-β with Membrane Proteins. Int J Mol Sci 2021; 22:6075. [PMID: 34199915 PMCID: PMC8200087 DOI: 10.3390/ijms22116075] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
In developing and developed countries, an increasing elderly population is observed. This affects the growing percentage of people struggling with neurodegenerative diseases, including Alzheimer's disease. Nevertheless, the pathomechanism of this disease is still unknown. This contributes to problems with early diagnosis of the disease as well as with treatment. One of the most popular hypotheses of Alzheimer's disease is related to the pathological deposition of amyloid-β (Aβ) in the brain of ill people. In this paper, we discuss issues related to Aβ and its relationship in the development of Alzheimer's disease. The structure of Aβ and its interaction with the cell membrane are discussed. Not only do the extracellular plaques affect nerve cells, but other forms of this peptide as well.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Janusz Piasny
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Amadeusz Kuźniarski
- Department of Prosthetic Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Kazimierz Gąsiorowski
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
10
|
Frick M, Schwieger C, Schmidt C. Liposomes as Carriers of Membrane-Associated Proteins and Peptides for Mass Spectrometric Analysis. Angew Chem Int Ed Engl 2021; 60:11523-11530. [PMID: 33599387 PMCID: PMC8252038 DOI: 10.1002/anie.202101242] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Membrane proteins are key players of the cell. Their structure and the interactions they form with their lipid environment are required to understand their function. Here we explore liposomes as membrane mimetics for mass spectrometric analysis of peripheral membrane proteins and peptides. Liposomes are advantageous over other membrane mimetics in that they are easy to prepare, can be varied in size and composition, and are suitable for functional assays. We demonstrate that they dissociate into lipid clusters in the gas phase of a mass spectrometer while intact protein and protein-lipid complexes are retained. We exemplify this approach by employing different liposomes including proteoliposomes of two model peptides/proteins differing in size. Our results pave the way for the general application of liposomes for mass spectrometric analysis of membrane-associated proteins.
Collapse
Affiliation(s)
- Melissa Frick
- Interdisciplinary Research Center HALOmemCharles Tanford Protein CenterInstitute for Biochemistry and BiotechnologyMartin Luther University Halle-WittenbergKurt-Mothes-Strasse 3a06120HalleGermany
| | - Christian Schwieger
- Interdisciplinary Research Center HALOmemCharles Tanford Protein CenterInstitute for Biochemistry and BiotechnologyMartin Luther University Halle-WittenbergKurt-Mothes-Strasse 3a06120HalleGermany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmemCharles Tanford Protein CenterInstitute for Biochemistry and BiotechnologyMartin Luther University Halle-WittenbergKurt-Mothes-Strasse 3a06120HalleGermany
| |
Collapse
|
11
|
Frick M, Schwieger C, Schmidt C. Liposomen als Überträger membranassoziierter Proteine und Peptide für die massenspektrometrische Analyse. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Melissa Frick
- Interdisziplinäre wissenschaftliche Einrichtung Charles-Tanford-Proteinzentrum Institut für Biochemie und Biotechnologie Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Straße 3a 06120 Halle Deutschland
| | - Christian Schwieger
- Interdisziplinäre wissenschaftliche Einrichtung Charles-Tanford-Proteinzentrum Institut für Biochemie und Biotechnologie Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Straße 3a 06120 Halle Deutschland
| | - Carla Schmidt
- Interdisziplinäre wissenschaftliche Einrichtung Charles-Tanford-Proteinzentrum Institut für Biochemie und Biotechnologie Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Straße 3a 06120 Halle Deutschland
| |
Collapse
|
12
|
Moreno MJ, Teles Martins PA, Bernardino EF, Abel B, Ambudkar SV. Characterization of the Lipidome and Biophysical Properties of Membranes from High Five Insect Cells Expressing Mouse P-Glycoprotein. Biomolecules 2021; 11:biom11030426. [PMID: 33799403 PMCID: PMC8001469 DOI: 10.3390/biom11030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
The lipid composition of biomembranes influences the properties of the lipid bilayer and that of the proteins. In this study, the lipidome and the lipid/protein ratio of membranes from High Five™ insect cells overexpressing mouse P-glycoprotein was characterized. This provides a better understanding of the lipid environment in which P-glycoprotein is embedded, and thus of its functional and structural properties. The relative abundance of the distinct phospholipid classes and their acyl chain composition was characterized. A mass ratio of 0.57 ± 0.11 phospholipids to protein was obtained. Phosphatidylethanolamines are the most abundant phospholipids, followed by phosphatidylcholines. Membranes are also enriched in negatively charged lipids (phosphatidylserines, phosphatidylinositols and phosphatidylglycerols), and contain small amounts of sphingomyelins, ceramides and monoglycosilatedceramides. The most abundant acyl chains are monounsaturated, with significant amounts of saturated chains. The characterization of the phospholipids by HPLC-MS allowed identification of the combination of acyl chains, with palmitoyl-oleoyl being the most representative for all major phospholipid classes except for phosphatidylserines, which are mostly saturated. A mixture of POPE:POPC:POPS in the ratio 45:35:20 is proposed for the preparation of simple representative model membranes. The adequacy of the model membranes was further evaluated by characterizing their surface potential and fluidity.
Collapse
Affiliation(s)
- Maria João Moreno
- Coimbra Chemistry Center, Chemistry Department, FCTUC, University of Coimbra, 3004-535 Coimbra, Portugal; (P.A.T.M.); (E.F.B.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
- Correspondence:
| | | | - Eva F. Bernardino
- Coimbra Chemistry Center, Chemistry Department, FCTUC, University of Coimbra, 3004-535 Coimbra, Portugal; (P.A.T.M.); (E.F.B.)
| | - Biebele Abel
- Laboratory of Cell Biology, CCR, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (B.A.); (S.V.A.)
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, CCR, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (B.A.); (S.V.A.)
| |
Collapse
|
13
|
Affiliation(s)
- James E. Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
14
|
Müller S, Schwieger C, Gruhle K, Garamus VM, Hause G, Meister A, Drescher S. Azide-Modified Membrane Lipids: Miscibility with Saturated Phosphatidylcholines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12439-12450. [PMID: 31456406 DOI: 10.1021/acs.langmuir.9b01842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we describe the miscibility of four azide-modified membrane phospholipids (azidolipids) with conventional phospholipids. The azidolipids bear an azide group at different positions of the sn-1 or sn-2 alkyl chain and they further differ in the type of linkage (ester vs ether) of the sn-2 alkyl chain. Investigations regarding the miscibility of the azidolipids with bilayer-forming phosphatidylcholines will evaluate lipid mixtures that are suitable for the production of stable azidolipid-doped liposomes. These vesicles then serve as model membranes for the incorporation of model peptides or proteins in the future. The miscibility of both types of phospholipids was studied by calorimetric assays, electron microscopy, small-angle X-ray scattering, infrared spectroscopy, and dynamic light scattering to provide a complete biophysical characterization of the mixed systems.
Collapse
Affiliation(s)
- Sindy Müller
- Institute of Pharmacy-Biophysical Pharmacy , Martin Luther University (MLU) Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4 , 06120 Halle (Saale) , Germany
| | - Christian Schwieger
- Institute of Chemistry , MLU Halle-Wittenberg , von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | - Kai Gruhle
- Institute of Pharmacy-Biophysical Pharmacy , Martin Luther University (MLU) Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4 , 06120 Halle (Saale) , Germany
| | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht (HZG): Zentrum für Material- und Küstenforschung GmbH , Max-Planck-Strasse 1 , 21502 Geesthacht , Germany
| | - Gerd Hause
- Biocenter , MLU Halle-Wittenberg , Weinbergweg 22 , 06120 Halle (Saale) , Germany
| | - Annette Meister
- ZIK HALOmem and Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center , MLU Halle-Wittenberg , Kurt-Mothes-Strasse 3a , 06120 Halle (Saale) , Germany
| | - Simon Drescher
- Institute of Pharmacy-Biophysical Pharmacy , Martin Luther University (MLU) Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4 , 06120 Halle (Saale) , Germany
- Institute of Pharmacy , University of Greifswald , Friedrich-Ludwig-Jahn-Str. 17 , 17489 Greifswald , Germany
| |
Collapse
|
15
|
Affiliation(s)
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Matthias J Feige
- Center for Integrated Protein Science Munich at the Department of Chemistry and Institute for Advanced Study, Technical University of Munich, D-85748 Garching, Germany
| |
Collapse
|