1
|
Chen H, He Y, Duan S, Xu A, Li M, Ren Y, Zhang R, Yang X, Wang S, Bai H. Highly-sensitive detection of CP-type synthetic cannabinoids from e-cigarettes by a novel Zn/Bi bimetallic organic framework-derived ZnO-Bi 2O 3 heterojunctions sensing platform. Mikrochim Acta 2024; 191:750. [PMID: 39565474 DOI: 10.1007/s00604-024-06832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
Synthetic cannabinoids (SCs), often masqueraded in "e-cigarettes," are novel popular psychoactive substances with diverse structures and complex material compositions, making their detection more challenging for prompt intervention. Herein, a novel electrochemical sensing platform based on Zn/Bi bimetallic organic framework-derived ZnO-Bi2O3 heterojunctions was constructed for the detection of cyclohexanylphenol synthetic cannabinoids (CP-type SCs: CP47,497 and CP55,940). The sensing characteristics of ZnO-Bi2O3 were studied under various conditions, including solvent composition, molar ratio of metal, and calcination temperature. The optimized ZnO-Bi2O3 heterojunction exhibited a larger surface area, more active sites, and stronger stability, conducive to enhanced electrochemical catalytic performance. Under optimal conditions, a ZnO-Bi2O3 modified screen-printed electrode (ZnO-Bi2O3/SPE) showed good linear responses toward CP47,497 and CP55,940 within the concentration ranges 7 × 10-9 ~ 5 × 10-6 M and 1 × 10-9 ~ 5 × 10-6 M, with detection limits of 2.3 × 10-9 M and 3.3 × 10-10 M, respectively. The sensor also depicted excellent reliability and can be used for on-site electrochemical detection of target objects in e-cigarettes with high recovery. Finally, the electrochemical oxidation mechanisms of CP47,497 and CP55,940 were studied for the first time, and electrochemical fingerprints of CP-type SCs were speculated.
Collapse
Affiliation(s)
- Haiou Chen
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Ying He
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Shimeng Duan
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Anyun Xu
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Meng Li
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Yanming Ren
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, 650050, China
| | - Ruilin Zhang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, 650050, China
| | - Xiangjun Yang
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China
| | - Shixiong Wang
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China.
| | - Huiping Bai
- School of Chemical Science and Engineering, School of Material and Energy, Yunnan Key Laboratory of Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
2
|
Heal DJ, Gosden J, Smith SL. A critical assessment of the abuse, dependence and associated safety risks of naturally occurring and synthetic cannabinoids. Front Psychiatry 2024; 15:1322434. [PMID: 38915848 PMCID: PMC11194422 DOI: 10.3389/fpsyt.2024.1322434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Various countries and US States have legalized cannabis, and the use of the psychoactive1 and non-psychoactive cannabinoids is steadily increasing. In this review, we have collated evidence from published non-clinical and clinical sources to evaluate the abuse, dependence and associated safety risks of the individual cannabinoids present in cannabis. As context, we also evaluated various synthetic cannabinoids. The evidence shows that delta-9 tetrahydrocannabinol (Δ9-THC) and other psychoactive cannabinoids in cannabis have moderate reinforcing effects. Although they rapidly induce pharmacological tolerance, the withdrawal syndrome produced by the psychoactive cannabinoids in cannabis is of moderate severity and lasts from 2 to 6 days. The evidence overwhelmingly shows that non-psychoactive cannabinoids do not produce intoxicating, cognitive or rewarding properties in humans. There has been much speculation whether cannabidiol (CBD) influences the psychoactive and potentially harmful effects of Δ9-THC. Although most non-clinical and clinical investigations have shown that CBD does not attenuate the CNS effects of Δ9-THC or synthetic psychoactive cannabinoids, there is sufficient uncertainty to warrant further research. Based on the analysis, our assessment is cannabis has moderate levels of abuse and dependence risk. While the risks and harms are substantially lower than those posed by many illegal and legal substances of abuse, including tobacco and alcohol, they are far from negligible. In contrast, potent synthetic cannabinoid (CB1/CB2) receptor agonists are more reinforcing and highly intoxicating and pose a substantial risk for abuse and harm. 1 "Psychoactive" is defined as a substance that when taken or administered affects mental processes, e.g., perception, consciousness, cognition or mood and emotions.
Collapse
Affiliation(s)
- David J. Heal
- DevelRx Limited, Nottingham, United Kingdom
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | | | | |
Collapse
|
3
|
Marusich JA, Wiley JL. Δ 9-tetrahydrocannabinol discrimination: Effects of route of administration in mice. DRUG AND ALCOHOL DEPENDENCE REPORTS 2023; 9:100205. [PMID: 38045495 PMCID: PMC10690562 DOI: 10.1016/j.dadr.2023.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Background Route of administration is an important pharmacokinetic variable in development of translationally relevant preclinical models. Humans primarily administer cannabis through smoking, vaping, and edibles. In contrast, preclinical research has historically utilized injected Δ9-tetrahydrocannabinol (THC). The present study sought to examine how route of administration affected the potency and time course of THC's discriminative stimulus properties. Methods Adult female and male C57BL/6 mice were trained to discriminate intraperitoneal (i.p.) THC from vehicle in a drug discrimination procedure. After discrimination was acquired, a dose-effect curve was determined for i.p., oral (p.o.), subcutaneous (s.c.), and aerosolized THC. Subsequently, the time course of effects of each route of administration was determined. Results THC administered i.p., p.o., s.c., or via aerosolization fully substituted for i.p. THC. The potency of THC's psychoactive effects was similar for i.p., p.o., and s.c., except that THC was more potent when administered s.c. vs p.o. in females. All routes of administration had a similar potency in both sexes. The duration of THC's psychoactive effects was similar across i.p., s.c., and p.o. routes of administration, whereas aerosolized THC produced a faster onset and shorter duration of effects compared to the other routes. Conclusion THC administered via multiple routes of administration, including those commonly used in preclinical research (i.p. and s.c.) and more translationally relevant routes (aerosol and p.o.), produced THC-like discriminative stimulus effects in mice trained to discriminate i.p. THC. More precise predictions of THC's effects in humans may result from use of these translationally relevant routes of administration.
Collapse
Affiliation(s)
- Julie A. Marusich
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Jenny L. Wiley
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| |
Collapse
|
4
|
Lins BR, Anyaegbu CC, Hellewell SC, Papini M, McGonigle T, De Prato L, Shales M, Fitzgerald M. Cannabinoids in traumatic brain injury and related neuropathologies: preclinical and clinical research on endogenous, plant-derived, and synthetic compounds. J Neuroinflammation 2023; 20:77. [PMID: 36935484 PMCID: PMC10026409 DOI: 10.1186/s12974-023-02734-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023] Open
Abstract
Traumatic brain injury is common, and often results in debilitating consequences. Even mild traumatic brain injury leaves approximately 20% of patients with symptoms that persist for months. Despite great clinical need there are currently no approved pharmaceutical interventions that improve outcomes after traumatic brain injury. Increased understanding of the endocannabinoid system in health and disease has accompanied growing evidence for therapeutic benefits of Cannabis sativa. This has driven research of Cannabis' active chemical constituents (phytocannabinoids), alongside endogenous and synthetic counterparts, collectively known as cannabinoids. Also of therapeutic interest are other Cannabis constituents, such as terpenes. Cannabinoids interact with neurons, microglia, and astrocytes, and exert anti-inflammatory and neuroprotective effects which are highly desirable for the management of traumatic brain injury. In this review, we comprehensively appraised the relevant scientific literature, where major and minor phytocannabinoids, terpenes, synthetic cannabinoids, and endogenous cannabinoids were assessed in TBI, or other neurological conditions with pathology and symptomology relevant to TBI, as well as recent studies in preclinical TBI models and clinical TBI populations.
Collapse
Affiliation(s)
- Brittney R Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia.
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Melissa Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
| | - Luca De Prato
- MediCann Health Aust Pty Ltd, Osborne Park, 6017, Australia
| | - Matthew Shales
- MediCann Health Aust Pty Ltd, Osborne Park, 6017, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| |
Collapse
|
5
|
Vanegas SO, Reck AM, Rodriguez CE, Marusich JA, Yassin O, Sotzing G, Wiley JL, Kinsey SG. Assessment of dependence potential and abuse liability of Δ 8-tetrahydrocannabinol in mice. Drug Alcohol Depend 2022; 240:109640. [PMID: 36179506 PMCID: PMC10288383 DOI: 10.1016/j.drugalcdep.2022.109640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/06/2023]
Abstract
Delta-8-tetrahydrocannabinol (Δ8-THC) is a psychotropic cannabinoid produced in low quantities in the cannabis plant. Refinements in production techniques, paired with the availability of inexpensive cannabidiol substrate, have resulted in Δ8-THC being widely marketed as a quasi-legal, purportedly milder alternative to Δ9-THC. Yet, little research has probed the behavioral and physiological effects of repeated Δ8-THC use. The present study aimed to evaluate the effects of acute and repeated exposure to Δ8-THC. We hypothesized that Δ8-THC produces effects similar to Δ9-THC, including signs of drug tolerance and dependence. Adult male and female C57BL/6J mice were treated acutely with Δ8-THC (6.25-100 mg/kg, i.p.) or vehicle and tested in the tetrad battery to quantify cannabimimetic effects (i.e., catalepsy, antinociception, hypothermia, immobility) as compared with a non-selective synthetic cannabinoid (WIN 55,212-2) and Δ9-THC. As previously reported, Δ8-THC (≥12.5 mg/kg) induced cannabimimetic effects. Pretreatment with the CB1 receptor-selective antagonist rimonabant (3 mg/kg, i.p.) blocked each of these effects. In addition, repeated administration of Δ8-THC (50 mg/kg, s.c.) produced tolerance, as well as cross-tolerance to WIN 55,212-2 (10 mg/kg, s.c.) in tetrad, consistent with downregulated CB1 receptor function. Behavioral signs of physical dependence in the somatic signs, tail suspension, and marble burying assays were also observed following rimonabant-precipitated withdrawal from Δ8-THC (≥10 mg/kg BID for 6 days). Lastly, Δ8-THC produced Δ9-THC-like discriminative stimulus effects in both male and female mice. Together, these findings demonstrate that Δ8-THC produces qualitatively similar effects to Δ9-THC, including risk of drug dependence and abuse liability.
Collapse
Affiliation(s)
- S O Vanegas
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - A M Reck
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - C E Rodriguez
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - J A Marusich
- RTI International, Research Triangle Park, NC, USA
| | | | - G Sotzing
- Department of Chemistry, University of Connecticut, Storrs, CT, USA; 3BC, Inc., Farmington, CT, USA
| | - J L Wiley
- RTI International, Research Triangle Park, NC, USA
| | - S G Kinsey
- School of Nursing, University of Connecticut, Storrs, CT, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
6
|
Marusich JA, Gamage TF, Zhang Y, Akinfiresoye LR, Wiley JL. In vitro and in vivo pharmacology of nine novel synthetic cannabinoid receptor agonists. Pharmacol Biochem Behav 2022; 220:173467. [PMID: 36154844 PMCID: PMC9837865 DOI: 10.1016/j.pbb.2022.173467] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 01/17/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are novel psychoactive substances that bind to and activate CB1 receptors in the brain. The structural manipulations observed in newer SCRAs suggest that manufacturers have incorporated modern drug development techniques into their repertoire, often producing higher CB1 receptor affinity than Δ9-tetrahydrocannabinol (Δ9-THC). This study examined nine SCRAs recently detected by forensic surveillance, some of which caused fatalities: 5F-MDMB-PICA, FUB-144, 5F-MMB-PICA, MMB-4en-PICA, MMB-FUBICA, 5F-EDMB-PINACA, APP-BINACA, MDMB-4en-PINACA, and FUB-AKB48. Compounds were evaluated for CB1 and CB2 receptor binding affinity and functional activation and for their effects on body temperature, time course, and pharmacological equivalence with Δ9-THC in Δ9-THC drug discrimination in mice. All SCRAs bound to and activated CB1 and CB2 receptors with high affinity, with similar or greater affinity for CB2 than CB1 receptors and stimulated [35S]GTPγS binding in CB1 and CB2 expressing cell membranes. All compounds produced hypothermia, with shorter latency to peak effects for SCRAs than Δ9-THC. All SCRAs fully substituted for Δ9-THC in drug discrimination at one or more doses. Rank order potency in producing in vivo effects mostly aligned with rank order CB1 receptor affinities. Potencies for Δ9-THC-like discriminative stimulus effects were similar across sex except Δ9-THC was more potent in females and 5F-MMB-PICA was more potent in males. In summary, 5F-EMDB-PINACA, 5F-MDMB-PICA, MDMB-4en-PINACA, FUB-144, FUB-AKB48, 5F-MMB-PICA, MMB-4en-PICA, and MMB-FUBICA are potent and efficacious SCRAs with pharmacology like that of past SCRAs that have been abused in humans. In contrast, APP-BINACA was efficacious, but had lower potency than most past SCRAs.
Collapse
Affiliation(s)
- Julie A Marusich
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA.
| | - Thomas F Gamage
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Yanan Zhang
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Luli R Akinfiresoye
- United States Department of Justice, Drug Enforcement Administration, Diversion Control Division, Drug and Chemical Evaluation Section, 8701 Morrissette Drive, Springfield, VA 22152, USA
| | - Jenny L Wiley
- RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| |
Collapse
|
7
|
Slivicki RA, Yi J, Brings VE, Huynh PN, Gereau RW. The cannabinoid agonist CB-13 produces peripherally mediated analgesia in mice but elicits tolerance and signs of central nervous system activity with repeated dosing. Pain 2022; 163:1603-1621. [PMID: 34961756 PMCID: PMC9281468 DOI: 10.1097/j.pain.0000000000002550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Activation of cannabinoid receptor type 1 (CB 1 ) produces analgesia in a variety of preclinical models of pain; however, engagement of central CB 1 receptors is accompanied by unwanted side effects, such as psychoactivity, tolerance, and dependence. Therefore, some efforts to develop novel analgesics have focused on targeting peripheral CB 1 receptors to circumvent central CB 1 -related side effects. In the present study, we evaluated the effects of acute and repeated dosing with the peripherally selective CB 1 -preferring agonist CB-13 on nociception and central CB 1 -related phenotypes in a model of inflammatory pain in mice. We also evaluated cellular mechanisms underlying CB-13-induced antinociception in vitro using cultured mouse dorsal root ganglion neurons. CB-13 reduced inflammation-induced mechanical allodynia in male and female mice in a peripheral CB 1 -receptor-dependent manner and relieved inflammatory thermal hyperalgesia. In cultured mouse dorsal root ganglion neurons, CB-13 reduced TRPV1 sensitization and neuronal hyperexcitability induced by the inflammatory mediator prostaglandin E 2 , providing potential mechanistic explanations for the analgesic actions of peripheral CB 1 receptor activation. With acute dosing, phenotypes associated with central CB 1 receptor activation occurred only at a dose of CB-13 approximately 10-fold the ED 50 for reducing allodynia. Strikingly, repeated dosing resulted in both analgesic tolerance and CB 1 receptor dependence, even at a dose that did not produce central CB 1 -receptor-mediated phenotypes on acute dosing. This suggests that repeated CB-13 dosing leads to increased CNS exposure and unwanted engagement of central CB 1 receptors. Thus, caution is warranted regarding therapeutic use of CB-13 with the goal of avoiding CNS side effects. Nonetheless, the clear analgesic effect of acute peripheral CB 1 receptor activation suggests that peripherally restricted cannabinoids are a viable target for novel analgesic development.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Jiwon Yi
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO
| | - Victoria E. Brings
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Phuong Nhu Huynh
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| |
Collapse
|
8
|
Dodu JC, Moncayo RK, Damaj MI, Schlosburg JE, Akbarali HI, O'Brien LD, Kendall DA, Wu Z, Lu D, Lichtman AH. The Cannabinoid Receptor Type 1 Positive Allosteric Modulator ZCZ011 Attenuates Naloxone-Precipitated Diarrhea and Weight Loss in Oxycodone-Dependent Mice. J Pharmacol Exp Ther 2022; 380:1-14. [PMID: 34625464 PMCID: PMC8969135 DOI: 10.1124/jpet.121.000723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023] Open
Abstract
Opioid use disorder reflects a major public health crisis of morbidity and mortality in which opioid withdrawal often contributes to continued use. However, current medications that treat opioid withdrawal symptoms are limited by their abuse liability or lack of efficacy. Although cannabinoid 1 (CB1) receptor agonists, including Δ9-tetrahydrocannabinol, ameliorate opioid withdrawal in both clinical and preclinical studies of opioid dependence, this strategy elicits cannabimimetic side effects as well as tolerance and dependence after repeated administration. Alternatively, CB1 receptor positive allosteric modulators (PAMs) enhance CB1 receptor signaling and show efficacy in rodent models of pain and cannabinoid dependence but lack cannabimimetic side effects. We hypothesize that the CB1 receptor PAM ZCZ011 attenuates naloxone-precipitated withdrawal signs in opioid-dependent mice. Accordingly, male and female mice given an escalating dosing regimen of oxycodone, a widely prescribed opioid, and challenged with naloxone displayed withdrawal signs that included diarrhea, weight loss, jumping, paw flutters, and head shakes. ZCZ011 fully attenuated naloxone-precipitated withdrawal-induced diarrhea and weight loss and reduced paw flutters by approximately half, but its effects on head shakes were unreliable, and it did not affect jumping behavior. The antidiarrheal and anti-weight loss effects of ZCZ0111 were reversed by a CB1 not a cannabinoid receptor type 2 receptor antagonist and were absent in CB1 (-/-) mice, suggesting a necessary role of CB1 receptors. Collectively, these results indicate that ZCZ011 completely blocked naloxone-precipitated diarrhea and weight loss in oxycodone-dependent mice and suggest that CB1 receptor PAMs may offer a novel strategy to treat opioid dependence. SIGNIFICANCE STATEMENT: Opioid use disorder represents a serious public health crisis in which current medications used to treat withdrawal symptoms are limited by abuse liability and side effects. The CB1 receptor positive allosteric modulator (PAM) ZCZ011, which lacks overt cannabimimetic behavioral effects, ameliorated naloxone-precipitated withdrawal signs through a CB1 receptor mechanism of action in a mouse model of oxycodone dependence. These results suggest that CB1 receptor PAMs may represent a viable strategy to treat opioid withdrawal.
Collapse
Affiliation(s)
- Julien C Dodu
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Rebecca K Moncayo
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - M Imad Damaj
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Joel E Schlosburg
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Hamid I Akbarali
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Lesley D O'Brien
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Debra A Kendall
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Zhixing Wu
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Dai Lu
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology (J.C.D., R.K.M., M.I.D., J.E.S., H.I.A., L.D.O., A.H.L.), and Department of Medicinal Chemistry (A.H.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Pharmaceutical Sciences, University of Connecticut, Mansfield, Connecticut (D.A.K.); and Department of Pharmaceutical Sciences, Texas A&M, College Station, Texas (Z.W., D.L.)
| |
Collapse
|
9
|
Wouters E, Walraed J, Banister SD, Stove CP. Insights into biased signaling at cannabinoid receptors: synthetic cannabinoid receptor agonists. Biochem Pharmacol 2019; 169:113623. [DOI: 10.1016/j.bcp.2019.08.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/26/2019] [Indexed: 01/09/2023]
|
10
|
|
11
|
Affiliation(s)
- Mary Tresa Zanda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, Monserrato, Italy
| |
Collapse
|
12
|
Grim TW, Morales AJ, Thomas BF, Wiley JL, Endres GW, Negus SS, Lichtman AH. Apparent CB 1 Receptor Rimonabant Affinity Estimates: Combination with THC and Synthetic Cannabinoids in the Mouse In Vivo Triad Model. J Pharmacol Exp Ther 2017; 362:210-218. [PMID: 28442584 PMCID: PMC5478909 DOI: 10.1124/jpet.117.240192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/19/2017] [Indexed: 11/22/2022] Open
Abstract
Synthetic cannabinoids (SCs) represent an emerging class of abused drugs associated with psychiatric complications and other substantial health risks. These ligands are largely sold over the internet for human consumption, presumably because of their high cannabinoid 1 receptor (CB1R) affinity and their potency in eliciting pharmacological effects similar to Δ9-tetrahydrocannabinol (THC), as well as circumventing laws illegalizing this plant. Factors potentially contributing to the increased prevalence of SC abuse and related hospitalizations, such as increased CB1R efficacy and non-CB1R targets, highlight the need for quantitative pharmacological analyses to determine receptor mediation of the pharmacological effects of cannabinoids. Accordingly, the present study used pA2 and pKB analyses for quantitative determination of CB1R mediation in which we utilized the CB1R-selective inverse agonist/antagonist rimonabant to elicit rightward shifts in the dose-response curves of five SCs (i.e., A-834,735D; WIN55,212-2; CP55,950; JWH-073; and CP47,497) and THC in producing common cannabimimetic effects (i.e., catalepsy, antinociception, and hypothermia). The results revealed overall similarity of pA2 and pKB values for these compounds and suggest that CB1Rs, and not other pharmacological targets, largely mediated the central pharmacological effects of SCs. More generally, affinity estimation offers a powerful pharmacological approach to assess potential receptor heterogeneity subserving in vivo pharmacological effects of SCs.
Collapse
Affiliation(s)
- T W Grim
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia (T.W.G., A.J.M., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (B.F.T., J.L.W.); and PinPoint Testing, LLC, AR (G.W.E.)
| | - A J Morales
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia (T.W.G., A.J.M., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (B.F.T., J.L.W.); and PinPoint Testing, LLC, AR (G.W.E.)
| | - B F Thomas
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia (T.W.G., A.J.M., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (B.F.T., J.L.W.); and PinPoint Testing, LLC, AR (G.W.E.)
| | - J L Wiley
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia (T.W.G., A.J.M., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (B.F.T., J.L.W.); and PinPoint Testing, LLC, AR (G.W.E.)
| | - G W Endres
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia (T.W.G., A.J.M., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (B.F.T., J.L.W.); and PinPoint Testing, LLC, AR (G.W.E.)
| | - S S Negus
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia (T.W.G., A.J.M., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (B.F.T., J.L.W.); and PinPoint Testing, LLC, AR (G.W.E.)
| | - A H Lichtman
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia (T.W.G., A.J.M., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (B.F.T., J.L.W.); and PinPoint Testing, LLC, AR (G.W.E.)
| |
Collapse
|
13
|
Ford BM, Tai S, Fantegrossi WE, Prather PL. Synthetic Pot: Not Your Grandfather's Marijuana. Trends Pharmacol Sci 2017; 38:257-276. [PMID: 28162792 PMCID: PMC5329767 DOI: 10.1016/j.tips.2016.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 01/05/2023]
Abstract
In the early 2000s in Europe and shortly thereafter in the USA, it was reported that 'legal' forms of marijuana were being sold under the name K2 and/or Spice. Active ingredients in K2/Spice products were determined to be synthetic cannabinoids (SCBs), producing psychotropic actions via CB1 cannabinoid receptors, similar to those of Δ9-tetrahydrocannabinol (Δ9-THC), the primary active constituent in marijuana. Often abused by adolescents and military personnel to elude detection in drug tests due to their lack of structural similarity to Δ9-THC, SCBs are falsely marketed as safe marijuana substitutes. Instead, SCBs are a highly structural diverse group of compounds, easily synthesized, which produce very dangerous adverse effects occurring by, as of yet, unknown mechanisms. Therefore, available evidence indicates that K2/Spice products are clearly not safe marijuana alternatives.
Collapse
Affiliation(s)
- Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sherrica Tai
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
14
|
Grim TW, Morales AJ, Gonek MM, Wiley JL, Thomas BF, Endres GW, Sim-Selley LJ, Selley DE, Negus SS, Lichtman AH. Stratification of Cannabinoid 1 Receptor (CB1R) Agonist Efficacy: Manipulation of CB1R Density through Use of Transgenic Mice Reveals Congruence between In Vivo and In Vitro Assays. J Pharmacol Exp Ther 2016; 359:329-339. [PMID: 27535976 PMCID: PMC5074482 DOI: 10.1124/jpet.116.233163] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/21/2016] [Indexed: 01/16/2023] Open
Abstract
Synthetic cannabinoids (SCs) are an emerging class of abused drugs that differ from each other and the phytocannabinoid ∆9-tetrahydrocannabinol (THC) in their safety and cannabinoid-1 receptor (CB1R) pharmacology. As efficacy represents a critical parameter to understanding drug action, the present study investigated this metric by assessing in vivo and in vitro actions of THC, two well-characterized SCs (WIN55,212-2 and CP55,940), and three abused SCs (JWH-073, CP47,497, and A-834,735-D) in CB1 (+/+), (+/-), and (-/-) mice. All drugs produced maximal cannabimimetic in vivo effects (catalepsy, hypothermia, antinociception) in CB1 (+/+) mice, but these actions were essentially eliminated in CB1 (-/-) mice, indicating a CB1R mechanism of action. CB1R efficacy was inferred by comparing potencies between CB1 (+/+) and (+/-) mice [+/+ ED50 /+/- ED50], the latter of which has a 50% reduction of CB1Rs (i.e., decreased receptor reserve). Notably, CB1 (+/-) mice displayed profound rightward and downward shifts in the antinociception and hypothermia dose-response curves of low-efficacy compared with high-efficacy cannabinoids. In vitro efficacy, quantified using agonist-stimulated [35S]GTPγS binding in spinal cord tissue, significantly correlated with the relative efficacies of antinociception (r = 0.87) and hypothermia (r = 0.94) in CB1 (+/-) mice relative to CB1 (+/+) mice. Conversely, drug potencies for cataleptic effects did not differ between these genotypes and did not correlate with the in vitro efficacy measure. These results suggest that evaluation of antinociception and hypothermia in CB1 transgenic mice offers a useful in vivo approach to determine CB1R selectivity and efficacy of emerging SCs, which shows strong congruence with in vitro efficacy.
Collapse
Affiliation(s)
- T W Grim
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - A J Morales
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - M M Gonek
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - J L Wiley
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - B F Thomas
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - G W Endres
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - L J Sim-Selley
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - D E Selley
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - S S Negus
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - A H Lichtman
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| |
Collapse
|
15
|
|