1
|
Ball M, Bouffler SE, Barnett CB, Freckmann ML, Hunter MF, Kamien B, Kassahn KS, Lunke S, Patel CV, Pinner J, Roscioli T, Sandaradura SA, Scott HS, Tan TY, Wallis M, Compton AG, Thorburn DR, Stark Z, Christodoulou J. Critically unwell infants and children with mitochondrial disorders diagnosed by ultrarapid genomic sequencing. Genet Med 2025; 27:101293. [PMID: 39417332 DOI: 10.1016/j.gim.2024.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE To characterize the diagnostic and clinical outcomes of a cohort of critically ill infants and children with suspected mitochondrial disorders (MD) undergoing ultrarapid genomic testing as part of a national program. METHODS Ultrarapid genomic sequencing was performed in 454 families (genome sequencing: n = 290, exome sequencing +/- mitochondrial DNA sequencing: n = 164). In 91 individuals, MD was considered, prompting analysis using an MD virtual gene panel. These individuals were reviewed retrospectively and scored according to modified Nijmegen Mitochondrial Disease Criteria. RESULTS A diagnosis was achieved in 47% (43/91) of individuals, 40% (17/43) of whom had an MD. Seven additional individuals in whom an MD was not suspected were diagnosed with an MD after broader analysis. Gene-agnostic analysis led to the discovery of 2 novel disease genes, with pathogenicity validated through targeted functional studies (CRLS1 and MRPL39). Functional studies enabled diagnosis in another 4 individuals. Of the 24 individuals ultimately diagnosed with an MD, 79% had a change in management, which included 53% whose care was redirected to palliation. CONCLUSION Ultrarapid genetic diagnosis of MD in acutely unwell infants and children is critical for guiding decisions about the need for additional investigations and clinical management.
Collapse
Affiliation(s)
- Megan Ball
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Royal Children's Hospital, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.
| | | | - Christopher B Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | | | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | | | - Karin S Kassahn
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia
| | - Chirag V Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Jason Pinner
- Sydney Children's Hospitals Network - Randwick, Sydney, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Tony Roscioli
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia; Euroscience Research Australia, University of New South Wales, Sydney, Australia
| | - Sarah A Sandaradura
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Hamish S Scott
- Australian Genomics, Melbourne, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia; UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Tiong Y Tan
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, Australia; School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Alison G Compton
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia.
| |
Collapse
|
2
|
Vela-Amieva M, Alcántara-Ortigoza MA, González-del Angel A, Fernández-Hernández L, Reyna-Fabián ME, Estandía-Ortega B, Guillén-López S, López-Mejía L, Belmont-Martínez L, Carrillo-Nieto RI, Ibarra-González I, Ryu SW, Lee H, Fernández-Lainez C. Concordance Between Biochemical and Molecular Diagnosis Obtained by WES in Mexican Patients with Inborn Errors of Intermediary Metabolism: Utility for Therapeutic Management. Int J Mol Sci 2024; 25:11722. [PMID: 39519275 PMCID: PMC11546494 DOI: 10.3390/ijms252111722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Biochemical phenotyping has been the milestone for diagnosing and managing patients affected by inborn errors of intermediary metabolism (IEiM); however, identifying the genotype responsible for these monogenic disorders greatly contributes to achieving these goals. Herein, whole-exome sequencing (WES) was used to determine the genotypes of 95 unrelated Mexican pediatric patients suspected of having IEiM. They were classified into those bearing specific biochemical abnormalities (Group 1), and those presenting unspecific biochemical profiles (Group 2). The overall concordance between the initial biochemical diagnosis and final genotypic diagnoses was 72.6% (N = 69/95 patients), with the highest concordance achieved in Group 1 (91.3%, N = 63/69), whereas the concordance was limited in Group 2 (23.07%). This finding suggests that previous biochemical phenotyping correlated with the high WES diagnostic success. Concordance was high for urea cycle disorders (94.1%) and organic acid disorders (77.4%). The identified mutational spectrum comprised 83 IEiM-relevant variants (pathogenic, likely pathogenic, and variants of uncertain significance or VUS), including three novel ones, distributed among 29 different genes responsible for amino acid, organic acid, urea cycle, carbohydrate, and lipid disorders. Inconclusive WES results (7.3%, N = 7/95) relied on monoallelic pathogenic genotypes or those involving two VUS for autosomal-recessive IEiMs. A second monogenic disease was observed in 10.5% (N = 10/95) of the patients. According to the WES results, modifications in treatment had to be made in 33.6% (N = 32/95) of patients, mainly attributed to the presence of a second monogenic disease, or to an actionable trait. This study includes the largest cohort of Mexican patients to date with biochemically suspected IEiM who were genetically diagnosed through WES, underscoring its importance in medical management.
Collapse
Affiliation(s)
- Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | | | - Ariadna González-del Angel
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Liliana Fernández-Hernández
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Miriam Erandi Reyna-Fabián
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Bernardette Estandía-Ortega
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Sara Guillén-López
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Lizbeth López-Mejía
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Leticia Belmont-Martínez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Rosa Itzel Carrillo-Nieto
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| | - Isabel Ibarra-González
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, UNAM, Mexico City C.P. 04530, Mexico
| | | | - Hane Lee
- 3billion, Inc., Seoul 03161, Republic of Korea
| | - Cynthia Fernández-Lainez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City C.P. 04530, Mexico
| |
Collapse
|
3
|
Koch J, Broeks MH, Gautschi M, Jans J, Laemmle A. Inborn errors of the malate aspartate shuttle - Update on patients and cellular models. Mol Genet Metab 2024; 142:108520. [PMID: 38945121 DOI: 10.1016/j.ymgme.2024.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
The malate aspartate shuttle (MAS) plays a pivotal role in transporting cytosolic reducing equivalents - electrons - into the mitochondria for energy conversion at the electron transport chain (ETC) and in the process of oxidative phosphorylation. The MAS consists of two pairs of cytosolic and mitochondrial isoenzymes (malate dehydrogenases 1 and 2; and glutamate oxaloacetate transaminases 1 and 2) and two transporters (malate-2-oxoglutarate carrier and aspartate glutamate carrier (AGC), the latter of which has two tissue-dependent isoforms AGC1 and AGC2). While the inner mitochondrial membrane is impermeable to NADH, the MAS forms one of the main routes for mitochondrial electron uptake by promoting uptake of malate. Inherited bi-allelic pathogenic variants in five of the seven components of the MAS have been described hitherto and cause a wide spectrum of symptoms including early-onset epileptic encephalopathy. This review provides an overview of reported patients suffering from MAS deficiencies. In addition, we give an overview of diagnostic procedures and research performed on patient-derived cellular models and tissues. Current cellular models are briefly discussed and novel ways to achieve a better understanding of MAS deficiencies are highlighted.
Collapse
Affiliation(s)
- Jasmine Koch
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Melissa H Broeks
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Matthias Gautschi
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Judith Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Alexander Laemmle
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Ahmad RN, Zhang LT, Morita R, Tani H, Wu Y, Chujo T, Ogawa A, Harada R, Shigeta Y, Tomizawa K, Wei FY. Pathological mutations promote proteolysis of mitochondrial tRNA-specific 2-thiouridylase 1 (MTU1) via mitochondrial caseinolytic peptidase (CLPP). Nucleic Acids Res 2024; 52:1341-1358. [PMID: 38113276 PMCID: PMC10853782 DOI: 10.1093/nar/gkad1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
MTU1 controls intramitochondrial protein synthesis by catalyzing the 2-thiouridine modification of mitochondrial transfer RNAs (mt-tRNAs). Missense mutations in the MTU1 gene are associated with life-threatening reversible infantile hepatic failure. However, the molecular pathogenesis is not well understood. Here, we investigated 17 mutations associated with this disease, and our results showed that most disease-related mutations are partial loss-of-function mutations, with three mutations being particularly severe. Mutant MTU1 is rapidly degraded by mitochondrial caseinolytic peptidase (CLPP) through a direct interaction with its chaperone protein CLPX. Notably, knockdown of CLPP significantly increased mutant MTU1 protein expression and mt-tRNA 2-thiolation, suggesting that accelerated proteolysis of mutant MTU1 plays a role in disease pathogenesis. In addition, molecular dynamics simulations demonstrated that disease-associated mutations may lead to abnormal intermolecular interactions, thereby impairing MTU1 enzyme activity. Finally, clinical data analysis underscores a significant correlation between patient prognosis and residual 2-thiolation levels, which is partially consistent with the AlphaMissense predictions. These findings provide a comprehensive understanding of MTU1-related diseases, offering prospects for modification-based diagnostics and novel therapeutic strategies centered on targeting CLPP.
Collapse
Affiliation(s)
- Raja Norazireen Raja Ahmad
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Long-Teng Zhang
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Haruna Tani
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yong Wu
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
| | - Akiko Ogawa
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
5
|
Gedikbasi A, Toksoy G, Karaca M, Gulec C, Balci MC, Gunes D, Gunes S, Aslanger AD, Unverengil G, Karaman B, Basaran S, Demirkol M, Gokcay GF, Uyguner ZO. Clinical and bi-genomic DNA findings of patients suspected to have mitochondrial diseases. Front Genet 2023; 14:1191159. [PMID: 37377599 PMCID: PMC10292751 DOI: 10.3389/fgene.2023.1191159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/02/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Mitochondrial diseases are the most common group of inherited metabolic disorders, causing difficulties in definite diagnosis due to clinical and genetic heterogeneity. Clinical components are predominantly associated with pathogenic variants shown in nuclear or mitochondrial genomes that affect vital respiratory chain function. The development of high-throughput sequencing technologies has accelerated the elucidation of the genetic etiology of many genetic diseases that previously remained undiagnosed. Methods: Thirty affected patients from 24 unrelated families with clinical, radiological, biochemical, and histopathological evaluations considered for mitochondrial diseases were investigated. DNA isolated from the peripheral blood samples of probands was sequenced for nuclear exome and mitochondrial DNA (mtDNA) analyses. MtDNA sequencing was also performed from the muscle biopsy material in one patient. For segregation, Sanger sequencing is performed for pathogenic alterations in five other affected family members and healthy parents. Results: Exome sequencing revealed 14 different pathogenic variants in nine genes encoding mitochondrial function peptides (AARS2, EARS2, ECHS1, FBXL4, MICOS13, NDUFAF6, OXCT1, POLG, and TK2) in 12 patients from nine families and four variants in genes encoding important for muscle structure (CAPN3, DYSF, and TCAP) in six patients from four families. Three probands carried pathogenic mtDNA variations in two genes (MT-ATP6 and MT-TL1). Nine variants in five genes are reported for the first time with disease association: (AARS2: c.277C>T/p.(R93*), c.845C>G/p.(S282C); EARS2: c.319C>T/p.(R107C), c.1283delC/p.(P428Lfs*); ECHS1: c.161G>A/p.(R54His); c.202G>A/p.(E68Lys); NDUFAF6: c.479delA/p.(N162Ifs*27); and OXCT1: c.1370C>T/p.(T457I), c.1173-139G>T/p.(?). Conclusion: Bi-genomic DNA sequencing clarified genetic etiology in 67% (16/24) of the families. Diagnostic utility by mtDNA sequencing in 13% (3/24) and exome sequencing in 54% (13/24) of the families prioritized searching for nuclear genome pathologies for the first-tier test. Weakness and muscle wasting observed in 17% (4/24) of the families underlined that limb-girdle muscular dystrophy, similar to mitochondrial myopathy, is an essential point for differential diagnosis. The correct diagnosis is crucial for comprehensive genetic counseling of families. Also, it contributes to making treatment-helpful referrals, such as ensuring early access to medication for patients with mutations in the TK2 gene.
Collapse
Affiliation(s)
- Asuman Gedikbasi
- Department of Pediatric Basic Sciences, Institute of Child Health Istanbul University, Istanbul, Türkiye
- Division of Pediatric Nutrition and Metabolism, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Guven Toksoy
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Meryem Karaca
- Division of Pediatric Nutrition and Metabolism, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Cagri Gulec
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Mehmet Cihan Balci
- Division of Pediatric Nutrition and Metabolism, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Dilek Gunes
- Division of Pediatric Nutrition and Metabolism, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Seda Gunes
- Division of Pediatric Nutrition and Metabolism, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Ayca Dilruba Aslanger
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Gokcen Unverengil
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Birsen Karaman
- Department of Pediatric Basic Sciences, Institute of Child Health Istanbul University, Istanbul, Türkiye
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Seher Basaran
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Mubeccel Demirkol
- Division of Pediatric Nutrition and Metabolism, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Gulden Fatma Gokcay
- Division of Pediatric Nutrition and Metabolism, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| |
Collapse
|
6
|
Vogel GF, Mozer-Glassberg Y, Landau YE, Schlieben LD, Prokisch H, Feichtinger RG, Mayr JA, Brennenstuhl H, Schröter J, Pechlaner A, Alkuraya FS, Baker JJ, Barcia G, Baric I, Braverman N, Burnyte B, Christodoulou J, Ciara E, Coman D, Das AM, Darin N, Della Marina A, Distelmaier F, Eklund EA, Ersoy M, Fang W, Gaignard P, Ganetzky RD, Gonzales E, Howard C, Hughes J, Konstantopoulou V, Kose M, Kerr M, Khan A, Lenz D, McFarland R, Margolis MG, Morrison K, Müller T, Murayama K, Nicastro E, Pennisi A, Peters H, Piekutowska-Abramczuk D, Rötig A, Santer R, Scaglia F, Schiff M, Shagrani M, Sharrard M, Soler-Alfonso C, Staufner C, Storey I, Stormon M, Taylor RW, Thorburn DR, Teles EL, Wang JS, Weghuber D, Wortmann S. Genotypic and phenotypic spectrum of infantile liver failure due to pathogenic TRMU variants. Genet Med 2023; 25:100314. [PMID: 36305855 DOI: 10.1016/j.gim.2022.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.
Collapse
Affiliation(s)
- Georg F Vogel
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria; Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | - Yael Mozer-Glassberg
- Institute for Gastroenterology, Nutrition and Liver diseases, Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel
| | - Yuval E Landau
- Metabolism Service, Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lea D Schlieben
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - René G Feichtinger
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Heiko Brennenstuhl
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Julian Schröter
- Division of Paediatric Epileptology, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Agnes Pechlaner
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Joshua J Baker
- Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Giulia Barcia
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France
| | - Ivo Baric
- Department of Pediatrics, School of Medicine, University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Nancy Braverman
- Division of Medical Genetics, Department of Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elzbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - David Coman
- Faculty of Medicine, Queensland Children's Hospital, University of Queensland, Herston, Brisbane, Queensland, Australia
| | - Anibh M Das
- Department of Paediatrics, Paediatric Metabolic Medicine, Hannover Medical School, Hannover, Germany
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- und Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Erik A Eklund
- Section for Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Melike Ersoy
- Department of Pediatrics, Division of Pediatric Metabolism, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training and Research, Istanbul, Turkey
| | - Weiyan Fang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Pauline Gaignard
- Department of Biochemistry, Reference Center for Mitochondrial Disease, FILNEMUS, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France
| | - Rebecca D Ganetzky
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Emmanuel Gonzales
- Pediatric Hepatology and Pediatric Liver Transplantation Unit, Reference Center for Mitochondrial Disease, FILNEMUS, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France; Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, Paris, France
| | - Caoimhe Howard
- Children's Health Ireland, Temple Street Hospital, Dublin, Ireland
| | - Joanne Hughes
- Children's Health Ireland, Temple Street Hospital, Dublin, Ireland
| | | | - Melis Kose
- Division of Inborn Errors of Metabolism, Department of Pediatrics, İzmir Katip Çelebi University, Izmir, Turkey; Division of Genetics, Department of Pediatrics, Ege University, Izmir, Turkey
| | - Marina Kerr
- Discovery DNA, Metabolics and Genetics in Canada (M.A.G.I.C.) Clinic Ltd, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aneal Khan
- Discovery DNA, Metabolics and Genetics in Canada (M.A.G.I.C.) Clinic Ltd, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dominic Lenz
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Merav Gil Margolis
- Institute of Endocrinology and Diabetes, National Center of Childhood Diabetes Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel
| | - Kevin Morrison
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandra Pennisi
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France
| | - Heidi Peters
- Department of Metabolic Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia
| | | | - Agnès Rötig
- Institut Imagine, INSERM UMR 1163, Paris, France
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Manuel Schiff
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France; Reference Center of Inherited Metabolic Disorders, Necker Hospital, Université Paris Cité, Paris, France
| | - Mohmmad Shagrani
- Department of Liver & Small Bowel Health Centre King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mark Sharrard
- Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | | | - Christian Staufner
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Imogen Storey
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Michael Stormon
- Department of Gastroenterology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - David R Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elisa Leao Teles
- Inherited Metabolic Diseases Reference Centre, São João Hospital University Centre, EPE, Porto, Portugal
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Daniel Weghuber
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Saskia Wortmann
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria; Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Nurchis MC, Altamura G, Riccardi MT, Radio FC, Chillemi G, Bertini ES, Garlasco J, Tartaglia M, Dallapiccola B, Damiani G. Whole genome sequencing diagnostic yield for paediatric patients with suspected genetic disorders: systematic review, meta-analysis, and GRADE assessment. Arch Public Health 2023; 81:93. [PMID: 37231492 DOI: 10.1186/s13690-023-01112-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND About 80% of the roughly 7,000 known rare diseases are single gene disorders, about 85% of which are ultra-rare, affecting less than one in one million individuals. NGS technologies, in particular whole genome sequencing (WGS) in paediatric patients suffering from severe disorders of likely genetic origin improve the diagnostic yield allowing targeted, effective care and management. The aim of this study is to perform a systematic review and meta-analysis to assess the effectiveness of WGS, with respect to whole exome sequencing (WES) and/or usual care, for the diagnosis of suspected genetic disorders among the paediatric population. METHODS A systematic review of the literature was conducted querying relevant electronic databases, including MEDLINE, EMBASE, ISI Web of Science, and Scopus from January 2010 to June 2022. A random-effect meta-analysis was run to inspect the diagnostic yield of different techniques. A network meta-analysis was also performed to directly assess the comparison between WGS and WES. RESULTS Of the 4,927 initially retrieved articles, thirty-nine met the inclusion criteria. Overall results highlighted a significantly higher pooled diagnostic yield for WGS, 38.6% (95% CI: [32.6 - 45.0]), in respect to WES, 37.8% (95% CI: [32.9 - 42.9]) and usual care, 7.8% (95% CI: [4.4 - 13.2]). The meta-regression output suggested a higher diagnostic yield of the WGS compared to WES after controlling for the type of disease (monogenic vs non-monogenic), with a tendency to better diagnostic performances for Mendelian diseases. The network meta-analysis showed a higher diagnostic yield for WGS compared to WES (OR = 1.54, 95%CI: [1.11 - 2.12]). CONCLUSIONS Although whole genome sequencing for the paediatric population with suspected genetic disorders provided an accurate and early genetic diagnosis in a high proportion of cases, further research is needed for evaluating costs, effectiveness, and cost-effectiveness of WGS and achieving an informed decision-making process. TRIAL REGISTRATION This systematic review has not been registered.
Collapse
Grants
- RF-2018-12,366,391, 2018 Ministero della Salute
- RF-2018-12,366,391, 2018 Ministero della Salute
- RF-2018-12,366,391, 2018 Ministero della Salute
- RF-2018-12,366,391, 2018 Ministero della Salute
- RF-2018-12,366,391, 2018 Ministero della Salute
- RF-2018-12,366,391, 2018 Ministero della Salute
- RF-2018-12,366,391, 2018 Ministero della Salute
- RF-2018-12,366,391, 2018 Ministero della Salute
- RF-2018-12,366,391, 2018 Ministero della Salute
- RF-2018-12,366,391, 2018 Ministero della Salute
Collapse
Affiliation(s)
- Mario Cesare Nurchis
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- School of Economics, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Gerardo Altamura
- Department of Health Sciences and Public Health, Section of Hygiene, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Maria Teresa Riccardi
- Department of Health Sciences and Public Health, Section of Hygiene, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, 00146, Rome, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Centro Nazionale Delle Ricerche, 70126, Bari, Italy
| | - Enrico Silvio Bertini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, 00146, Rome, Italy
| | - Jacopo Garlasco
- Department of Public Health Sciences and Paediatrics, University of Turin, 10126, Turin, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, 00146, Rome, Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, 00146, Rome, Italy
| | - Gianfranco Damiani
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Health Sciences and Public Health, Section of Hygiene, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| |
Collapse
|
8
|
Salman DO, Mahfouz R, Bitar ER, Samaha J, Karam PE. Challenges of genetic diagnosis of inborn errors of metabolism in a major tertiary care center in Lebanon. Front Genet 2022; 13:1029947. [PMID: 36468010 PMCID: PMC9715967 DOI: 10.3389/fgene.2022.1029947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/08/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Inborn errors of metabolism are rare genetic disorders; however, these are prevalent in countries with high consanguinity rates, like Lebanon. Patients are suspected, based on a combination of clinical and biochemical features; however, the final confirmation relies on genetic testing. Using next generation sequencing, as a new genetic investigational tool, carries several challenges for the physician, the geneticist, and the families. Methods: In this retrospective study, we analyzed the clinical, biochemical, and genetic profile of inborn errors of metabolism suspected patients, seen at a major tertiary care center in Lebanon, between 2015 and 2018. Genetic testing was performed using next generation sequencing. Genotype-phenotype correlation and diagnostic yield of each testing modality were studied. Results: Out of 211 patients genetically tested, 126 were suspected to have an inborn error of metabolism. The diagnostic yield of next generation sequencing reached 64.3%. Single gene testing was requested in 53%, whole exome sequencing in 36% and gene panels in 10%. Aminoacid disorders were mostly diagnosed followed by storage disorders, organic acidemias and mitochondrial diseases. Targeted testing was performed in 77% of aminoacid and organic acid disorders and half of suspected storage disorders. Single gene sequencing was positive in 75%, whereas whole exome sequencing diagnostic yield for complex cases, like mitochondrial disorders, reached 49%. Good clinical and biochemical correlation allowed the interpretation of variants of unknown significance and negative mutations as well as therapeutic management of most patients. Conclusion: Tailoring the choice of test modality, by next generation sequencing, to the category of suspected inborn errors of metabolism may lead to rapid diagnosis, shortcutting the cost of repeated testing. Whole exome sequencing as a first-tier investigation may be considered mainly for suspected mitochondrial diseases, whereas targeted sequencing can be offered upon suspicion of a specific enzyme deficiency. Timing and modality of gene test remain challenging, in view of the cost incurred by families.
Collapse
Affiliation(s)
- Doaa O. Salman
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Rami Mahfouz
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Elio R. Bitar
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jinane Samaha
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon,Inherited Metabolic Diseases Program, American University of Beirut Medical Center, Beirut, Lebanon
| | - Pascale E. Karam
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon,Inherited Metabolic Diseases Program, American University of Beirut Medical Center, Beirut, Lebanon,*Correspondence: Pascale E. Karam,
| |
Collapse
|
9
|
Bölsterli BK, Boltshauser E, Palmieri L, Spenger J, Brunner-Krainz M, Distelmaier F, Freisinger P, Geis T, Gropman AL, Häberle J, Hentschel J, Jeandidier B, Karall D, Keren B, Klabunde-Cherwon A, Konstantopoulou V, Kottke R, Lasorsa FM, Makowski C, Mignot C, O’Gorman Tuura R, Porcelli V, Santer R, Sen K, Steinbrücker K, Syrbe S, Wagner M, Ziegler A, Zöggeler T, Mayr JA, Prokisch H, Wortmann SB. Ketogenic Diet Treatment of Defects in the Mitochondrial Malate Aspartate Shuttle and Pyruvate Carrier. Nutrients 2022; 14:3605. [PMID: 36079864 PMCID: PMC9460686 DOI: 10.3390/nu14173605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The mitochondrial malate aspartate shuttle system (MAS) maintains the cytosolic NAD+/NADH redox balance, thereby sustaining cytosolic redox-dependent pathways, such as glycolysis and serine biosynthesis. Human disease has been associated with defects in four MAS-proteins (encoded by MDH1, MDH2, GOT2, SLC25A12) sharing a neurological/epileptic phenotype, as well as citrin deficiency (SLC25A13) with a complex hepatopathic-neuropsychiatric phenotype. Ketogenic diets (KD) are high-fat/low-carbohydrate diets, which decrease glycolysis thus bypassing the mentioned defects. The same holds for mitochondrial pyruvate carrier (MPC) 1 deficiency, which also presents neurological deficits. We here describe 40 (18 previously unreported) subjects with MAS-/MPC1-defects (32 neurological phenotypes, eight citrin deficiency), describe and discuss their phenotypes and genotypes (presenting 12 novel variants), and the efficacy of KD. Of 13 MAS/MPC1-individuals with a neurological phenotype treated with KD, 11 experienced benefits-mainly a striking effect against seizures. Two individuals with citrin deficiency deceased before the correct diagnosis was established, presumably due to high-carbohydrate treatment. Six citrin-deficient individuals received a carbohydrate-restricted/fat-enriched diet and showed normalisation of laboratory values/hepatopathy as well as age-adequate thriving. We conclude that patients with MAS-/MPC1-defects are amenable to dietary intervention and that early (genetic) diagnosis is key for initiation of proper treatment and can even be lifesaving.
Collapse
Affiliation(s)
- Bigna K. Bölsterli
- Department of Pediatric Neurology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Eugen Boltshauser
- Department of Pediatric Neurology (Emeritus), University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Luigi Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, 70126 Bari, Italy
| | - Johannes Spenger
- University Children’s Hospital, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Michaela Brunner-Krainz
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen, 72764 Reutlingen, Germany
| | - Tobias Geis
- University Children′s Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, 93049 Regensburg, Germany
| | - Andrea L. Gropman
- Division of Neurogenetics, Center for Neuroscience and Behavioral Medicine, Children’s National Hospital, Washington, DC 20010, USA
| | - Johannes Häberle
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Division of Metabolism, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 04103 Leipzig, Germany
| | - Bruno Jeandidier
- APHP, Service de Pédiatrie, CHU Jean Verdier, 93140 Bondy, France
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Boris Keren
- Département de Génétique, Unité Fonctionnelle de Génomique du Développement, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Annick Klabunde-Cherwon
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Vassiliki Konstantopoulou
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Raimund Kottke
- Department of Diagnostic Imaging, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Francesco M. Lasorsa
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, 70126 Bari, Italy
| | - Christine Makowski
- Department of Paediatrics, Children’s Hospital Munich Schwabing, MüK and TUM, 80804 Munich, Germany
| | - Cyril Mignot
- Département de Génétique, Unité Fonctionnelle de Génomique du Développement, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Ruth O’Gorman Tuura
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Center for MR Research, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Vito Porcelli
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Kuntal Sen
- Division of Neurogenetics, Center for Neuroscience and Behavioral Medicine, Children’s National Hospital, Washington, DC 20010, USA
| | - Katja Steinbrücker
- Department of Neuropediatrics, Paracelsus Medical University Hospital Salzburg, 5020 Salzburg, Austria
| | - Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, 80337 Munich, Germany
- Institute for Neurogenomics, Computational Health Center, Helmholtz Zentrum München, German Research Center for Health and Environment (GmbH), 85764 Munich, Germany
| | - Andreas Ziegler
- Division of Neuropaediatrics and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Zöggeler
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes A. Mayr
- University Children’s Hospital, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute for Neurogenomics, Computational Health Center, Helmholtz Zentrum München, German Research Center for Health and Environment (GmbH), 85764 Munich, Germany
| | - Saskia B. Wortmann
- University Children’s Hospital, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
- Radboud Centre for Mitochondrial Medicine (RCMM), Amalia Children’s Hospital, Radboudumc, 6525 Nijmegen, The Netherlands
| |
Collapse
|
10
|
Pardo B, Herrada-Soler E, Satrústegui J, Contreras L, del Arco A. AGC1 Deficiency: Pathology and Molecular and Cellular Mechanisms of the Disease. Int J Mol Sci 2022; 23:528. [PMID: 35008954 PMCID: PMC8745132 DOI: 10.3390/ijms23010528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023] Open
Abstract
AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named "early infantile epileptic encephalopathy 39" (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and N-acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar. However, paradoxically, glial functions such as myelin and Glutamine (Gln) synthesis are markedly impaired in AGC1 deficiency. Herein, we discuss the role of the AGC1/Aralar-MAS pathway in neuronal functions such as Asp and NAA synthesis, lactate use, respiration on glucose, glutamate (Glu) oxidation and other neurometabolic aspects. The possible mechanism triggering the pathophysiological findings in AGC1 deficiency, such as epilepsy and postnatal hypomyelination observed in humans and mice, are also included. Many of these mechanisms arise from findings in the aralar-KO mice model that extensively recapitulate the human disease including the astroglial failure to synthesize Gln and the dopamine (DA) mishandling in the nigrostriatal system. Epilepsy and DA mishandling are a direct consequence of the metabolic defect in neurons due to AGC1/Aralar deficiency. However, the deficits in myelin and Gln synthesis may be a consequence of neuronal affectation or a direct effect of AGC1/Aralar deficiency in glial cells. Further research is needed to clarify this question and delineate the transcellular metabolic fluxes that control brain functions. Finally, we discuss therapeutic approaches successfully used in AGC1-deficient patients and mice.
Collapse
Affiliation(s)
- Beatriz Pardo
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eduardo Herrada-Soler
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (E.H.-S.); (J.S.); (L.C.)
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Araceli del Arco
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro Regional de Investigaciones Biomédicas, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla La Mancha, 45071 Toledo, Spain
| |
Collapse
|
11
|
Luo Q, Wen X, Zhou J, Chen Y, Lv Z, Shen X, Liu J. A novel compound heterozygous mutation of the MTO1 gene associated with complex oxidative phosphorylation deficiency type 10. Clin Chim Acta 2021; 523:172-177. [PMID: 34547275 DOI: 10.1016/j.cca.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The mitochondrial tRNA translation optimization 1 (MTO1) gene, which is closely related to defective mitochondrial oxidative phosphorylation, is an evolutionarily conserved protein expressed in high energy-demanding tissues and is associated with complex oxidative phosphorylation deficiency type 10 (COXPD10) in humans. Related cases and studies are still scarce and have not been reported in the Chinese region. MATERIALS AND METHODS Detailed clinical assessment was applied to the patient. Based on next-generation sequencing technology, we performed whole-exome sequencing of the patient and the parents. Sanger sequencing was used for validation. Bioinformatics software and protein simulations were used to predict the pathogenicity of the variants. RESULTS The patient was diagnosed with a possible association with mitochondrial disease according to the clinical manifestations and physical examination. A novel frameshift mutation c.344delA (p. Asn115Thrfs*11) and a novel point mutation c.1055C > T (p. Thr352Met) in the MTO1 gene were identified. They were found to cause abnormal changes in amino acids and the protein by biochemical tools, indicating it may be pathogenic. CONCLUSION We present two novel and possibly pathogenic variants in the MTO1 gene in a Chinese Han family.
Collapse
Affiliation(s)
- Qing Luo
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan 646000, China
| | - Xia Wen
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan 646000, China
| | - Jiahong Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan 646000, China
| | - Yang Chen
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan 646000, China
| | - Zhiyu Lv
- Department of Neurology, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan 646000, China
| | - Xing Shen
- Pediatric Intensive Care Unit, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan 646000, China
| | - Jinbo Liu
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan 646000, China.
| |
Collapse
|