1
|
Hoseinzadeh M, Molavi N, Norouzi M, Aghaei S, Zeinalian M, Hashemipour M, Tabatabaiefar MA. A Novel Homozygous Pathogenic Variant in CYP11B1 in a Female Iranian Patient with 11B Hydroxylase Deficiency. Lab Med 2022:6885678. [DOI: 10.1093/labmed/lmac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Objective
Congenital adrenal hyperplasia (CAH) addresses a number of autosomal recessive disorders characterized by the enzyme defects in steroid hormones biosynthesis. The second common form of CAH is caused by mutations in the CYP11B1 gene. Here, we reveal a novel mutation in the CYP11B1 gene related to the 11βOHD phenotype.
Methods and Results
Sequence analysis of the CYP11B1 gene in a 19-year-old Iranian woman with the 11βOHD phenotype was performed. In silico analysis and molecular docking were done. A novel missense homozygous variant c.1351C > T (p.L451F) in the CYP11B1 gene was identified in the patient and, according to American College of Medical Genetics and Genomics criteria, was categorized as likely pathogenic. Protein docking showed destructive effects of the variant on the CYP11B1 protein-ligand interactions.
Conclusion
This study broadens the CYP11B1 mutation spectrum and introduces the novel p.L451F likely pathogenic variant leading to destructive effects on protein-ligand interactions. Our results provide reliable information for genetic counseling and molecular diagnostics of CAH.
Collapse
Affiliation(s)
- Marziyeh Hoseinzadeh
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Newsha Molavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Mahnaz Norouzi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Shahrzad Aghaei
- Department of Molecular Medicine, School of Advanced Technologies, Sahrekord University of Medical Sciences , Shahrekord , Iran
| | - Mehrdad Zeinalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Mahin Hashemipour
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan , Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences , Isfahan , Iran
- Department of Pediatrics, School of Medicine, Isfahan University of Medical Sciences , Isfahan , Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
2
|
Karlekar MP, Sarathi V, Lila A, Rai K, Arya S, Bhandare VV, Atluri S, Patil V, Ramteke-Jadhav S, Shah NS, Kunwar A, Bandgar T. Expanding genetic spectrum and discriminatory role of steroid profiling by LC-MS/MS in 11β-hydroxylase deficiency. Clin Endocrinol (Oxf) 2021; 94:533-543. [PMID: 33275286 DOI: 10.1111/cen.14376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To report clinical, hormonal and structural effects of CYP11B1 pathogenic variations in Indian patients with 11β-hydroxylase deficiency (11βOHD) and find hormonal criteria that accurately distinguish 11βOHD from 21α-hydroxylase deficiency (21OHD). DESIGN Retrospective record review of genetically diagnosed patients with 11βOHD. PATIENTS AND MEASUREMENTS Clinical features, hormonal parameters at diagnosis (by immunoassay) and recent follow-up of 13 genetically proven 11βOHD patients managed at our centre were retrospectively reviewed. ACTH-stimulated serum adrenal steroids (measured by LC-MS/MS) of 11βOHD were compared with those of simple virilizing and non-classic 21OHD. Structural analysis of the observed pathogenic variations was performed by computational modelling. RESULTS Nine (four females) and four (all females) patients had classic and non-classic disease, respectively. All 11βOHD patients had elevated ACTH-stimulated serum 11-deoxycortisol (26.5-342.7 nmol/L) whereas none had elevated serum 17-hydroxyprogesterone (4.2-21.2 nmol/L); both hormonal parameters distinguished 11βOHD from 21OHD with 100% accuracy. ACTH-stimulated serum cortisol, but not 11-deoxycortisol, clearly distinguished classic (<70 nmol/L) from non-classic (>160 nmol/L) disease. Thirteen (eight novel, two recurrent) pathogenic variants were observed. Only missense mutations were observed among patients with non-classic disease. Computational modelling predicted the possible affection of enzyme structure and function for all the observed missense mutations. CONCLUSIONS This first Indian study describes 13 11βOHD patients, including four with the rarer non-classic variant. A total of eight novel pathogenic variants were identified in our study, highlighting regional genetic heterogeneity. Measurement of ACTH-stimulated adrenal steroids by LC-MS/MS will help avoid the misdiagnosis of 11βOHD as 21OHD and has potential to distinguish classic from non-classic 11βOHD.
Collapse
Affiliation(s)
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India
| | - Anurag Lila
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Khushnandan Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sneha Arya
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | | | - Sridevi Atluri
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India
| | - Virendra Patil
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Swati Ramteke-Jadhav
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Nalini S Shah
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Tushar Bandgar
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| |
Collapse
|
4
|
Wang D, Wang J, Tong T, Yang Q. Non-classical 11β-hydroxylase deficiency caused by compound heterozygous mutations: a case study and literature review. J Ovarian Res 2018; 11:82. [PMID: 30223866 PMCID: PMC6139905 DOI: 10.1186/s13048-018-0450-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 11β-hydroxylase deficiency (11OHD) is extremely rare, and reports of non-classical 11OHD are even rarer. Non-classical 11OHD usually presents as premature adrenarche, hyperandrogenism, menstrual disorders, and hypertension. Because the symptoms of non-classical 11OHD are mild, delayed diagnosis or misdiagnosis as polycystic ovary syndrome or primary hypertension is common. CASE PRESENTATION This paper introduces a case of a young female patient presenting hypertension and menstrual disorders. Laboratory examination revealed increased androgen levels, mild adrenal hyperplasia, mild left ventricular hypertrophy, and mild sclerosis of the lower limb arteries. 11OHD was confirmed by genetic testing, and the patient was found to carry compound heterozygous mutations in CYP11B1 (c.583 T > C and c.1358G > A). The mutation Y195H is located in exon 3 and has not been reported previously. In silico studies indicated that this mutation may cause reduced enzymatic activity. After treatment with hydrocortisone and spironolactone, blood pressure was brought under good control, and menstruation returned to normal. We also conducted a retrospective review of previously reported cases in the literature (over 170 cases since 1991). CONCLUSIONS Early diagnosis of non-classical 11OHD is difficult because its symptoms are mild. The possibility of this disease should be considered in patients with early-onset hypertension, menstrual disorders, and hyperandrogenism to provide early treatment and prevent organ damage due to hypertension and hyperandrogenism. CYP11B1 mutations are known to be race-specific and are concentrated in exons 3 and 8, of which mutations in the former are mostly associated with non-classical 11OHD, whereas mutations in the latter are mostly found in classical 11OHD, characterized by severe loss of enzymatic activity.
Collapse
Affiliation(s)
- Dongdong Wang
- Obstetrics and Gynecology Department of Shengjing hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Jiahui Wang
- Obstetrics and Gynecology Department of Shengjing hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Tong Tong
- Obstetrics and Gynecology Department of Shengjing hospital, China Medical University, Shenyang, 110001, People's Republic of China
| | - Qing Yang
- Obstetrics and Gynecology Department of Shengjing hospital, China Medical University, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
5
|
Khattab A, Haider S, Kumar A, Dhawan S, Alam D, Romero R, Burns J, Li D, Estatico J, Rahi S, Fatima S, Alzahrani A, Hafez M, Musa N, Razzghy Azar M, Khaloul N, Gribaa M, Saad A, Charfeddine IB, Bilharinho de Mendonça B, Belgorosky A, Dumic K, Dumic M, Aisenberg J, Kandemir N, Alikasifoglu A, Ozon A, Gonc N, Cheng T, Kuhnle-Krahl U, Cappa M, Holterhus PM, Nour MA, Pacaud D, Holtzman A, Li S, Zaidi M, Yuen T, New MI. Clinical, genetic, and structural basis of congenital adrenal hyperplasia due to 11β-hydroxylase deficiency. Proc Natl Acad Sci U S A 2017; 114:E1933-E1940. [PMID: 28228528 PMCID: PMC5347606 DOI: 10.1073/pnas.1621082114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Congenital adrenal hyperplasia (CAH), resulting from mutations in CYP11B1, a gene encoding 11β-hydroxylase, represents a rare autosomal recessive Mendelian disorder of aberrant sex steroid production. Unlike CAH caused by 21-hydroxylase deficiency, the disease is far more common in the Middle East and North Africa, where consanguinity is common often resulting in identical mutations. Clinically, affected female newborns are profoundly virilized (Prader score of 4/5), and both genders display significantly advanced bone ages and are oftentimes hypertensive. We find that 11-deoxycortisol, not frequently measured, is the most robust biochemical marker for diagnosing 11β-hydroxylase deficiency. Finally, computational modeling of 25 missense mutations of CYP11B1 revealed that specific modifications in the heme-binding (R374W and R448C) or substrate-binding (W116C) site of 11β-hydroxylase, or alterations in its stability (L299P and G267S), may predict severe disease. Thus, we report clinical, genetic, hormonal, and structural effects of CYP11B1 gene mutations in the largest international cohort of 108 patients with steroid 11β-hydroxylase deficiency CAH.
Collapse
Affiliation(s)
- Ahmed Khattab
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Shozeb Haider
- School of Pharmacy, University College London, London WC1N 4AX, United Kingdom
| | - Ameet Kumar
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Samarth Dhawan
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Dauood Alam
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Raquel Romero
- School of Pharmacy, University College London, London WC1N 4AX, United Kingdom
| | - James Burns
- School of Pharmacy, University College London, London WC1N 4AX, United Kingdom
| | - Di Li
- School of Pharmacy, University College London, London WC1N 4AX, United Kingdom
| | - Jessica Estatico
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Simran Rahi
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Saleel Fatima
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ali Alzahrani
- King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia
| | - Mona Hafez
- Diabetes, Endocrine, and Metabolism Pediatrics Unit, Department of Pediatrics, Cairo University, 11617 Cairo, Egypt
| | - Noha Musa
- Diabetes, Endocrine, and Metabolism Pediatrics Unit, Department of Pediatrics, Cairo University, 11617 Cairo, Egypt
| | - Maryam Razzghy Azar
- Ali Asghar Children's Hospital, Iran University of Medical Sciences, 10000 Tehran, Iran
| | - Najoua Khaloul
- Laboratory of Human Cytogenetic Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Moez Gribaa
- Laboratory of Human Cytogenetic Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Ali Saad
- Laboratory of Human Cytogenetic Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Ilhem Ben Charfeddine
- Laboratory of Human Cytogenetic Molecular Genetics and Biology of Reproduction, Farhat Hached University Hospital, Sousse, Tunisia
| | - Berenice Bilharinho de Mendonça
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory, University of São Paulo, Sao Paulo 05508, Brazil
| | | | - Katja Dumic
- University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Miroslav Dumic
- University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Javier Aisenberg
- Pediatric Endocrinology and Diabetes Medicine, Hackensack University Medical Center, Hackensack, NJ 07601
| | - Nurgun Kandemir
- Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | | | - Alev Ozon
- Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Nazli Gonc
- Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Tina Cheng
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | - Paul-Martin Holterhus
- Department of Pediatrics, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Munier A Nour
- Department of Pediatrics, University of Saskatchewan College of Medicine, Saskatoon, SK, Canada S7N 0W8
| | - Daniele Pacaud
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada T3B 6A8
| | - Assaf Holtzman
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sun Li
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mone Zaidi
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Tony Yuen
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maria I New
- Division of Adrenal Steroid Disorders, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
8
|
Parajes S, Loidi L, Reisch N, Dhir V, Rose IT, Hampel R, Quinkler M, Conway GS, Castro-Feijóo L, Araujo-Vilar D, Pombo M, Dominguez F, Williams EL, Cole TR, Kirk JM, Kaminsky E, Rumsby G, Arlt W, Krone N. Functional consequences of seven novel mutations in the CYP11B1 gene: four mutations associated with nonclassic and three mutations causing classic 11{beta}-hydroxylase deficiency. J Clin Endocrinol Metab 2010; 95:779-88. [PMID: 20089618 PMCID: PMC2846960 DOI: 10.1210/jc.2009-0651] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Steroid 11beta-hydroxylase (CYP11B1) deficiency (11OHD) is the second most common form of congenital adrenal hyperplasia (CAH). Cases of nonclassic 11OHD are rare compared with the incidence of nonclassic 21-hydroxylase deficiency. OBJECTIVE The aim of the study was to analyze the functional consequences of seven novel CYP11B1 mutations (p.M88I, p.W116G, p.P159L, p.A165D, p.K254_A259del, p.R366C, p.T401A) found in three patients with classic 11OHD, two patients with nonclassic 11OHD, and three heterozygous carriers for CYP11B1 mutations. METHODS We conducted functional studies employing a COS7 cell in vitro expression system comparing wild-type (WT) and mutant CYP11B1 activity. Mutants were examined in a computational three-dimensional model of the CYP11B1 protein. RESULTS All mutations (p.W116G, p.A165D, p.K254_A259del) found in patients with classic 11OHD have absent or very little 11beta-hydroxylase activity relative to WT. The mutations detected in patients with nonclassic 11OHD showed partial functional impairment, with one patient being homozygous (p.P159L; 25% of WT) and the other patient compound heterozygous for a novel mild p.M88I (40% of WT) and the known severe p.R383Q mutation. The two mutations detected in heterozygous carriers (p.R366C, p.T401A) also reduced CYP11B1 activity by 23 to 37%, respectively. CONCLUSION Functional analysis results allow for the classification of novel CYP11B1 mutations as causative for classic and nonclassic 11OHD, respectively. Four partially inactivating mutations are predicted to result in nonclassic 11OHD. These findings double the number of mild CYP11B1 mutations previously described as associated with mild 11OHD. Our data are important to predict phenotypic expression and provide important information for clinical and genetic counseling in 11OHD.
Collapse
Affiliation(s)
- Silvia Parajes
- Centre for Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Institute of Biomedical Research, Wolfson Drive, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|