1
|
Ahmed MZ, Billah MM, Ferdous J, Antar SI, Al Mamun A, Hossain MJ. Pan-cancer analysis reveals immunological and prognostic significance of CCT5 in human tumors. Sci Rep 2025; 15:14405. [PMID: 40274875 PMCID: PMC12022336 DOI: 10.1038/s41598-025-88339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/28/2025] [Indexed: 04/26/2025] Open
Abstract
The chaperonin containing TCP1 subunit 5 (CCT5) is believed to function as a tumor driver. However, a systematic pan-cancer analysis of CCT5 is still lacking. Therefore, this study aimed to identify the potential role of CCT5 in different types of tumors. This study comprehensively investigated the gene expression, proteomic expression, immune infiltration, DNA methylation, genetic alterations, correlation with TMB and MSI, drug sensitivity, enrichment analysis, and prognostic significance of CCT5 in 33 different tumors based on the TIMER2.0, GEPIA2, UALCAN, SMART, cBioPortal, GSCA databases, and TCGAplot R package. The results revealed significant CCT5 overexpression in most tumors and was significantly associated with poor OS and DFS in different tumor types. Reduced promoter and N-shore methylation of CCT5, indicating its potential oncogenic and epigenetic roles. Amplification was the most common type of CCT5 alterations. Immune infiltration analysis revealed a strong correlation between CCT5 and different immune cells. CCT5 exhibited a significant correlation with TMB and MSI in KIRC and STAD. Furthermore, enrichment analysis revealed associations between CCT5 and cell cycle pathway and various cellular functions. These findings suggested that CCT5 might serve as a potential prognostic biomarker and target for immunotherapy in various cancers.
Collapse
Affiliation(s)
- Md Zabir Ahmed
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Md Mohtasim Billah
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Jannatul Ferdous
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Shoriful Islam Antar
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Animal Science and Veterinary Medicine, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Jubayer Hossain
- Center for Health Innovation, Research, Action, and Learning-Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh.
| |
Collapse
|
2
|
Liu Y, Chen L, Wang J, Bao X, Huang J, Qiu Y, Wang T, Yu H. Repurposing cyclovirobuxine D as a novel inhibitor of colorectal cancer progression via modulating the CCT3/YAP axis. Br J Pharmacol 2024; 181:4348-4368. [PMID: 38992898 DOI: 10.1111/bph.16494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND AND PURPOSE Colorectal cancer (CRC) ranks second in mortality worldwide and requires effective and affordable remedies. Cyclovirobuxine D (CVB-D) is the main effective component of Huangyangning tablet, an approved traditional patent medicine, which is mainly used for cardiovascular treatment. As a multibioactive natural compound, CVB-D possesses underlying anticancer activities. EXPERIMENTAL APPROACH Cell viability and clone-forming ability were determined in human CRC lines. Western blot, immunofluorescence assay, transmission electron microscopy and senescence-associated β-galactosidase (SA-β-Gal) staining were utilized to investigate cell autophagy and senescence. The molecular mechanisms were explored by virtual prediction and experimental validation. Patient-derived xenograft (PDX), dextran sulfate sodium salt (DSS), and azomethane (AOM)/DSS mouse models were employed for in vivo studies. KEY RESULTS CVB-D inhibited the growth and development of advanced CRC cells / mice by inducing autophagic and senescent activities through the chaperonin containing TCP1 subunit 3 (CCT3)/yes-associated protein (YAP) axis. CVB-D acted as a promising inhibitor of CCT3 by interacting with its ATP site. In PDX tumours, CVB-D showed potential therapeutic effects by targeting CCT3. Treatment with CVB-D alleviated the mouse model of colitis induced by DSS and attenuated AOM/DSS-induced formation of adenomatous polyps by its action on CCT3. CONCLUSIONS AND IMPLICATIONS Our study has provided a scientific basis for the suggestion that CVB-D may be recognized as a prospective drug candidate for the therapy of CRC in patients.
Collapse
Affiliation(s)
- Yiman Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiaomei Bao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiayan Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Chen B, Weng Y, Li M, Bian Z, Tao Y, Zhou W, Lu H, He S, Liao R, Huang J, Wang Q, Xu M, Ge Y, Cao W, Lei M, Zhang Y. LINC02454-CCT complex interaction is essential for telomerase activity and cell proliferation in head and neck squamous cell carcinoma. Cancer Lett 2024; 588:216734. [PMID: 38401886 DOI: 10.1016/j.canlet.2024.216734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Telomerase activity is upregulated in head and neck squamous cell carcinoma (HNSCC), yet its regulatory mechanisms remain unclear. Here, we identified a cancer-specific lncRNA (LINC02454) associated with poor prognosis by using LncRNA chip of our HNSCC cohorts and external datasets. Through employing negative-stain transmission electron microscopy (NS-TEM), we discovered an interaction between LINC02454 and CCT complex which would augment telomerase activity for maintaining telomere homeostasis. Supporting this, in the telomerase repeat amplification protocol (TRAP) assay and quantitative fluorescence in situ hybridization (Q-FISH) analysis, LINC02454 depletion significantly reduced telomerase activity and shortened telomere length. Consistently, pathways related to telomerase, mitosis, and apoptosis were significantly impacted upon LINC02454 knockdown in RNAseq analysis. Functionally, LINC02454-deficient cells exhibited a more significant senescence phenotype in β-galactosidase staining, cell cycle, and apoptosis assays. We further confirmed the role of LINC02454 in HNSCC proliferation through a combination of in vitro and in vivo experiments. The therapeutic potential of targeting LINC02454 was verified by adenovirus-shRNA approach in HNSCC patient-derived xenograft (PDX) models. In summary, our findings provided valuable insights into the molecular mechanisms of HNSCC tumorigenesis and potential targets for future treatment modalities.
Collapse
Affiliation(s)
- Biying Chen
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Yue Weng
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mingyue Li
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhouliang Bian
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Ye Tao
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenkai Zhou
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Hong Lu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shufang He
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rijing Liao
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Huang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Wang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Ming Xu
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Yunhui Ge
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
4
|
Tang C, Li C, Chen C, Chen T, Zhu J, Sun M, Wang P, Han C. LINC01234 promoted malignant behaviors of breast cancer cells via hsa-miR-30c-2-3p/CCT4/mTOR signaling pathway. Taiwan J Obstet Gynecol 2024; 63:46-56. [PMID: 38216268 DOI: 10.1016/j.tjog.2023.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVE Despite continuous progress in treatment, recurrence and metastasis limit further improvement in the prognosis of breast cancer (BC) patients. Our aim was to search for a crucial prognostic biomarker of BC. MATERIALS AND METHODS Patient data were selected from The Cancer Genome Atlas (TCGA) and GTEx databases. Several online public databases, including Gene Expression Profiling Interactive Analysis (GEPIA), miRWalk, miRDB, and LncBase Predicted v.2, were used to identify potential upstream miRNAs and lncRNAs. These findings were validated through in vitro experiments. RESULTS A total of 1, 097 invasive BC samples and 572 normal breast tissues (including 113 samples from TCGA and 459 samples from GTEx) were collected for the study. CCT4 was not only significantly overexpressed in BC compared with normal breast tissues but also had important prognostic significance (P < 0.001). By intersecting miRWalk and miRDB and conducting correlation analysis, hsa-miR-30c-2-3p was identified as the most probable upstream miRNA of CCT4. Following an extensive assessment that included survival analysis, correlation analysis, and common binding-site prediction, LINC01234 was chosen as the most likely upstream lncRNA. In vitro experiments showed that LINC01234-siRNA inhibited the proliferation, invasion, and migration abilities of BC cells. Western blot analysis further confirmed that LINC01234 promoted malignant behaviors of BC cells via the CCT4/mTOR signaling pathway. CONCLUSION The LINC01234/hsa-miR-30c-2-3p/CCT4/mTOR axis was identified as a potential ceRNA regulatory mechanism in BC. These findings established the foundation for systematically unveiling the pathological mechanisms of BC and provided new insights for targeted therapy of BC patients.
Collapse
Affiliation(s)
- Chuangang Tang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China; Department of Breast Surgery, Xuzhou Central Hospital, Postgraduate Workstation of Soochow University Xuzhou, Jiangsu, 221009, China
| | - Changwen Li
- Department of Breast Surgery, Xuzhou Central Hospital, Jiangsu, 221009, China
| | - Chengling Chen
- Department of Breast Surgery, Xuzhou Central Hospital, Jiangsu, 221009, China
| | - Tao Chen
- The Xuzhou Clinical College of Xuzhou Medical University, Jiangsu, 221009, China
| | - Juan Zhu
- Department of Breast Surgery, Xuzhou Central Hospital, Jiangsu, 221009, China
| | - Mingyu Sun
- Department of Breast Surgery, Xuzhou Central Hospital, Jiangsu, 221009, China.
| | - Pei Wang
- Department of Breast Surgery, Xuzhou Central Hospital, Jiangsu, 221009, China.
| | - Conghui Han
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China; Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China; Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, 221009, China; Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, 150036, China; College of Life Sciences, Jiangsu Normal University, Jiangsu, 221116, China.
| |
Collapse
|
5
|
Vlasenkova R, Konysheva D, Nurgalieva A, Kiyamova R. Characterization of Cancer/Testis Antigens as Prognostic Markers of Ovarian Cancer. Diagnostics (Basel) 2023; 13:3092. [PMID: 37835834 PMCID: PMC10572515 DOI: 10.3390/diagnostics13193092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The main goal of this study was to characterize cancer/testis antigens (CTAs) as potential molecular markers of ovarian cancer. First, we gathered and analyzed a significantly large dataset of 21 selected CTAs that are encoded by 32 genes; the dataset consisted of the mutation data, expression data, and survival data of patients with ovarian cancer (n = 15,665). The 19 functionally significant missense mutations were identified in 9 CTA genes: ACRBP, CCT4, KDM5B, MAGEA1, MAGEA4, PIWIL1, PIWIL2, PRAME, and SPA17. The analysis of the mRNA expression levels of 21 CTAs in healthy and tumor ovarian tissue showed an up-regulation in the expression level of AKAP3, MAGEA4, PIWIL1, and PRAME in tumor samples and a down-regulation in the expression level of CTAG1A, CTAG1B, MAGEC1, and PIWIL2. The CCT4 up-regulation and PRAME mutations were correlated with a good prognosis for ovarian cancer, while higher levels of GAGE2A and CT45A1 mRNAs were correlated with a poor prognosis for ovarian cancer patients. Thus, GAGE2, CT45, CCT4, and PRAME cancer/testis antigens can be considered as potential prognostic markers for ovarian tumors, and GAGE2, CCT4, and PRAME were revealed to be correlated with the prognosis for ovarian cancer patients for the first time.
Collapse
Affiliation(s)
| | | | | | - Ramziya Kiyamova
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (R.V.)
| |
Collapse
|
6
|
Saikia M, Bhattacharyya DK, Kalita JK. Identification of Potential Biomarkers Using Integrative Approach: A Case Study of ESCC. SN COMPUTER SCIENCE 2023; 4:114. [PMID: 36573207 PMCID: PMC9769493 DOI: 10.1007/s42979-022-01492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
This paper presents a consensus-based approach that incorporates three microarray and three RNA-Seq methods for unbiased and integrative identification of differentially expressed genes (DEGs) as potential biomarkers for critical disease(s). The proposed method performs satisfactorily on two microarray datasets (GSE20347 and GSE23400) and one RNA-Seq dataset (GSE130078) for esophageal squamous cell carcinoma (ESCC). Based on the input dataset, our framework employs specific DE methods to detect DEGs independently. A consensus based function that first considers DEGs common to all three methods for further downstream analysis has been introduced. The consensus function employs other parameters to overcome information loss. Differential co-expression (DCE) and preservation analysis of DEGs facilitates the study of behavioral changes in interactions among DEGs under normal and diseased circumstances. Considering hub genes in biologically relevant modules and most GO and pathway enriched DEGs as candidates for potential biomarkers of ESCC, we perform further validation through biological analysis as well as literature evidence. We have identified 25 DEGs that have strong biological relevance to their respective datasets and have previous literature establishing them as potential biomarkers for ESCC. We have further identified 8 additional DEGs as probable potential biomarkers for ESCC, but recommend further in-depth analysis.
Collapse
Affiliation(s)
- Manaswita Saikia
- Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur, Assam 784028 India
| | - Dhruba K Bhattacharyya
- Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur, Assam 784028 India
| | - Jugal K Kalita
- Department of Computer Science, College of Engineering and Applied Science, University of Colorado, Colorado Springs, CO 80918 USA
| |
Collapse
|
7
|
Smith TM, Willardson BM. Mechanistic insights into protein folding by the eukaryotic chaperonin complex CCT. Biochem Soc Trans 2022; 50:1403-1414. [PMID: 36196890 PMCID: PMC9704529 DOI: 10.1042/bst20220591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
The cytosolic chaperonin CCT is indispensable to eukaryotic life, folding the cytoskeletal proteins actin and tubulin along with an estimated 10% of the remaining proteome. However, it also participates in human diseases such as cancer and viral infections, rendering it valuable as a potential therapeutic target. CCT consists of two stacked rings, each comprised of eight homologous but distinct subunits, that assists the folding of a remarkable substrate clientele that exhibits both broad diversity and specificity. Much of the work in recent years has been aimed at understanding the mechanisms of CCT substrate recognition and folding. These studies have revealed new binding sites and mechanisms by which CCT uses its distinctive subunit arrangement to fold structurally unrelated substrates. Here, we review recent structural insights into CCT-substrate interactions and place them into the broader context of CCT function and its implications for human health.
Collapse
Affiliation(s)
- Theresa M. Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, U.S.A
| | - Barry M. Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, U.S.A
| |
Collapse
|
8
|
Ma J, Song P, Liu X, Ma C, Zheng M, Ren X, Wang R, Liu W, Lu Z, Li J. Insights into the roles and driving forces of CCT3 in human tumors. Front Pharmacol 2022; 13:1005855. [PMID: 36313331 PMCID: PMC9596777 DOI: 10.3389/fphar.2022.1005855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
CCT3 played a key role in many cancers. This study aimed to further explore the characteristics of CCT3 from a pan-cancer perspective and reveal the driving forces for CCT3. By bioinformatic analysis, we found that the mRNA and protein levels of CCT3 were abnormally elevated in most tumor types and were correlated with poor prognosis. Single-cell sequencing data indicated an abnormal increase of CCT3 expression in both malignant cells and multiple immune cells. In the tumor microenvironment, CCT3 expression was negatively relevant with immune cell infiltration and immune checkpoint genes expression. In colon cancer, knockdown of CCT3 inhibited cell proliferation. Gene set enrichment analysis showed that CCT3 may be oncogenic by regulating amino acid metabolism. Furthermore, we predicted sensitive drugs for CCT3 by virtual screening and sensitivity analysis. Many driver genes such as TP53 and KRAS were essential for CCT3 overexpression. Epigenetic factors, enhancers in particular, were also critical for CCT3 expression. Additionally, we constructed the lncRNA/circRNA-miRNA-CCT3 regulatory network. Collectively, CCT3 had the potential to be a diagnostic and prognostic biomarker for multiple tumor types. CCT3 expression was relevant with an immunosuppressive tumor microenvironment. CCT3 could be a new molecular target for colon cancer. Both genetic and epigenetic factors were responsible for CCT3 expression in tumors.
Collapse
Affiliation(s)
- Jingang Ma
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Ping Song
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xinling Liu
- Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Changgeng Ma
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Mingzhu Zheng
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xiaomin Ren
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Rui Wang
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Wenshan Liu
- Shandong Key Laboratory of Clinical Applied Pharmacology, Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Wenshan Liu, ; Zhong Lu, ; Jiaqiu Li,
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Wenshan Liu, ; Zhong Lu, ; Jiaqiu Li,
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Wenshan Liu, ; Zhong Lu, ; Jiaqiu Li,
| |
Collapse
|
9
|
Liu W, Lu Y, Yan X, Lu Q, Sun Y, Wan X, Li Y, Zhao J, Li Y, Jiang G. Current understanding on the role of CCT3 in cancer research. Front Oncol 2022; 12:961733. [PMID: 36185198 PMCID: PMC9520704 DOI: 10.3389/fonc.2022.961733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Chaperonin containing TCP1 Subunit 3 (CCT3) is an important member of the chaperone protein family, providing a favorable environment for the correct folding of proteins in cell division, proliferation, and apoptosis pathways, which is involved in a variety of biological processes as well as the development and invasion of many malignant tumors. Many malignancies have been extensively examined with CCT3. It is presently used as a possible target for the treatment of many malignancies since it is not only a novel biomarker for the screening and diagnosis of different tumors, but it is also closely associated with tumor progression, prognosis, and survival. Recent studies have shown that the expression of CCT3 is up-regulated in some tumors, such as liver cancer, breast cancer, colon cancer, acute myeloid leukemia, etc. In this paper, we review the role of CCT3 in various tumors.
Collapse
Affiliation(s)
- Wenlou Liu
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Lu
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiang Yan
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Quansheng Lu
- Department of Dermatology, The People’s Hospital of Jiawang District of Xuzhou, Xuzhou, China
| | - Yujin Sun
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao Wan
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yizhi Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiaqin Zhao
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuchen Li
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Guan Jiang,
| |
Collapse
|
10
|
Ghozlan H, Cox A, Nierenberg D, King S, Khaled AR. The TRiCky Business of Protein Folding in Health and Disease. Front Cell Dev Biol 2022; 10:906530. [PMID: 35602608 PMCID: PMC9117761 DOI: 10.3389/fcell.2022.906530] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 01/03/2023] Open
Abstract
Maintenance of the cellular proteome or proteostasis is an essential process that when deregulated leads to diseases like neurological disorders and cancer. Central to proteostasis are the molecular chaperones that fold proteins into functional 3-dimensional (3D) shapes and prevent protein aggregation. Chaperonins, a family of chaperones found in all lineages of organisms, are efficient machines that fold proteins within central cavities. The eukaryotic Chaperonin Containing TCP1 (CCT), also known as Tailless complex polypeptide 1 (TCP-1) Ring Complex (TRiC), is a multi-subunit molecular complex that folds the obligate substrates, actin, and tubulin. But more than folding cytoskeletal proteins, CCT differs from most chaperones in its ability to fold proteins larger than its central folding chamber and in a sequential manner that enables it to tackle proteins with complex topologies or very large proteins and complexes. Unique features of CCT include an asymmetry of charges and ATP affinities across the eight subunits that form the hetero-oligomeric complex. Variable substrate binding capacities endow CCT with a plasticity that developed as the chaperonin evolved with eukaryotes and acquired functional capacity in the densely packed intracellular environment. Given the decades of discovery on the structure and function of CCT, much remains unknown such as the scope of its interactome. New findings on the role of CCT in disease, and potential for diagnostic and therapeutic uses, heighten the need to better understand the function of this essential molecular chaperone. Clues as to how CCT causes cancer or neurological disorders lie in the early studies of the chaperonin that form a foundational knowledgebase. In this review, we span the decades of CCT discoveries to provide critical context to the continued research on the diverse capacities in health and disease of this essential protein-folding complex.
Collapse
Affiliation(s)
- Heba Ghozlan
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
- Department of Physiology and Biochemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Amanda Cox
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Daniel Nierenberg
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Stephen King
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Annette R. Khaled
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
11
|
Shi H, Zhang Y, Wang Y, Fang P, Liu Y, Li W. Restraint of chaperonin containing T-complex protein-1 subunit 3 has antitumor roles in non-small cell lung cancer via affection of YAP1. Toxicol Appl Pharmacol 2022; 439:115926. [PMID: 35182550 DOI: 10.1016/j.taap.2022.115926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/10/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
The implication of chaperonin containing T-complex protein-1 subunit 3 (CCT3) in carcinogenesis has been observed in a diverse malignancies. However, the relevance of CCT3 in non-small cell lung cancer (NSCLC) has not been well addressed. This research is dedicated to investigating the expression pattern and functional role of CCT3 in NSCLC. An elevation in CCT3 levels was observed in NSCLC tissue, which was linked to a reduced overall survival rate. The inhibition of CCT3 by shRNA-mediated gene silencing induced suppressive effects on the transformative phenotypes of NSCLC cells, including the inhibition of cell proliferation and invasion, and the induction of cell cycle arrest and apoptosis. Further investigation revealed that the silencing of CCT3 led to the suppression of Yes-associated protein 1 (YAP1), and decreased the expression of YAP1 target genes in NSCLC cells. The activation of YAP1 via forced expression of constitutively active YAP1 mutant reversed CCT3-restraint-evoked antitumor effects in NSCLC cells. Crucially, NSCLC cells with CCT3 silencing also exhibited weakened oncogenicity in nude mice associated with the down-regulation of YAP1 activation in xenografts. To sum up, these observations of our work show that the inhibition of CCT3 produces antitumor effects in NSCLC via the suppression of YAP1. This study unveils a possible role CCT3/YAP1 axis in NSCLC and suggests CCT3 as a candidate anticancer target.
Collapse
Affiliation(s)
- Hongyang Shi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi 71004, China.
| | - Yonghong Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi 71004, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi 71004, China
| | - Ping Fang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi 71004, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi 71004, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi 71004, China
| |
Collapse
|
12
|
Sial N, Rehman J, Saeed S, Ahmad M, Hameed Y, Atif M, Rehman A, Asif R, Ahmed H, Hussain M, Khan M, Ambreen A, Ambreen A. Integrative analysis reveals methylenetetrahydrofolate dehydrogenase 1-like as an independent shared diagnostic and prognostic biomarker in five different human cancers. Biosci Rep 2022; 42:BSR20211783. [PMID: 34908119 PMCID: PMC8738869 DOI: 10.1042/bsr20211783] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Defects in methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) expression have earlier been examined in only a few human cancers. OBJECTIVES Multi-omics profiling of MTHFD1L as a shared biomarker in distinct subtypes of human cancers. METHODS In the current study, for the multi-omics analysis of MTHFD1L in 24 major subtypes of human cancers, a comprehensive in silico approach was adopted to mine different open access online databases including UALCAN, Kaplan-Meier (KM) plotter, LOGpc, GEPIA, Human Protein Atlas (HPA), Gene Expression across Normal and Tumor tissue (GENT2), MEXPRESS, cBioportal, STRING, DAVID, TIMER, and Comparative Toxicogenomics Database (CTD). RESULTS We noticed that the expression of MTHFD1L was significantly higher in all the analyzed 24 subtypes of human cancers as compared with the normal controls. Moreover, MTHDF1L overexpression was also found to be significantly associated with the reduced overall survival (OS) duration of Bladder urothelial cancer (BLCA), Head and neck cancer (HNSC), Kidney renal papillary cell carcinoma (KIRP), Lung adenocarcinoma (LUAD), and Uterine corpus endometrial carcinoma (UCEC). This implies that MTHFD1L plays a significant role in the development and progression of these cancers. We further noticed that MTHFD1L was also overexpressed in BLCA, HNSC, KIRP, LUAD, and UCEC patients of different clinicopathological features. Pathways enrichment analysis revealed the involvement of MTHFD1L-associated genes in five diverse pathways. We also explored few interesting correlations between MTHFD1L expression and its promoter methylation, genetic alterations, CNVs, and between CD8+ T immune cells level. CONCLUSION In conclusion, our results elucidated that MTHFD1L can serve as a shared diagnostic and prognostic biomarker in BLCA, HNSC, KIRP, LUAD, and UCEC patients of different clinicopathological features.
Collapse
Affiliation(s)
- Nuzhat Sial
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jalil Ur Rehman
- Department of Eastern Medicine, Qarshi University, Lahore, Pakistan
- University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saba Saeed
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Mukhtiar Ahmad
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasir Hameed
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Atif
- University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Rehman
- Department of Eastern Medicine, Qarshi University, Lahore, Pakistan
| | - Rizwan Asif
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hamad Ahmed
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Safdar Hussain
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rashid Khan
- University College of Eastern Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Atifa Ambreen
- Allied Department, The Sahara College, Narowal, Pakistan
| | - Ayesha Ambreen
- Allied Department, The Sahara College, Narowal, Pakistan
| |
Collapse
|
13
|
Identification of CCT3 as a prognostic factor and correlates with cell survival and invasion of head and neck squamous cell carcinoma. Biosci Rep 2021; 41:229752. [PMID: 34505628 PMCID: PMC8529339 DOI: 10.1042/bsr20211137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Recurrent locally advanced or metastatic head and neck squamous cell carcinoma (HNSCC) is associated with dismal prognosis because of its highly invasive behavior and resistance to conventional intensive chemotherapy. The identification of effective markers for early diagnosis and prognosis is important for reducing mortality and ensuring that therapy for HNSCC is effective. Chaperonin-containing TCP-1 3 (CCT3) folds cancer-related proteins to control carcinogenesis. The prognostic value and growth association of CCT3 and HNSCC remain unknown. METHODS The GEO, Oncomine and UALCAN databases were used to examine CCT3 expression in HNSCC. A few clinical HNSCC samples with normal tissues were used to detect CCT3 expression by using immunohistochemistry method. The TCGA-HNSC dataset was used to evaluate the association between expression of CCT3 and prognosis. The molecular mechanism was investigated with gene set enrichment analysis (GSEA). CCK-8 and wound healing assays were used to detect cell growth and invasion of HNSCC, respectively. RESULTS CCT3 expression was significantly up-regulated in HNSCC in both mRNA and protein levels. In addition, up-regulated CCT3 expression was associated with various clinicopathological parameters. High expression of CCT3 was significantly correlated with inferior survival of HNSCC patients. Knockdown of CCT3 significantly inhibited cell growth and invasion of HNSCC cell lines. GSEA analysis indicated that CCT3 was closely correlated with tumor-related signaling pathways and HNSCC cell survival. CONCLUSION Our findings suggest that CCT3 is a biomarker of poor prognosis and related to the process of HNSCC.
Collapse
|
14
|
Sial N, Saeed S, Ahmad M, Hameed Y, Rehman A, Abbas M, Asif R, Ahmed H, Hussain MS, Rehman JU, Atif M, Khan MR. Multi-Omics Analysis Identified TMED2 as a Shared Potential Biomarker in Six Subtypes of Human Cancer. Int J Gen Med 2021; 14:7025-7042. [PMID: 34707394 PMCID: PMC8544130 DOI: 10.2147/ijgm.s327367] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Cancer is one of the most common malignancies and the leading cause of death worldwide. As a member of the transmembrane emp24 domain (Tmed)/p24 family of proteins, TMED2 expression variations have been documented earlier in only a few subtypes of human cancers, and the multi-omics profiling of TMED2 as a shared biomarker in different other subtypes of human cancers remains to be uncovered. METHODS In the current study, TMED2 multi-omics analysis in 24 major subtypes of human cancer was performed using different authentic online databases and bioinformatics analysis including UALCAN, Kaplan-Meier (KM) plotter, Human Protein Atlas (HPA), GENT2, MEXPRESS, cBioportal, STRING, DAVID, TIMER, and CTD. RESULTS In general, the TMED2 expression in 24 major subtypes of human cancers was higher relative to normal controls and was also strongly associated with the lower overall survival (OS) and relapse-free survival (RFS) duration of CESC, ESCA, HNSC, KIRC, LIHC, and LUAD patients. This implies that TMED2 plays a significant role in the development and progression of these cancers. Furthermore, the TMED2 overexpression was also correlated with different clinicopathological features of CESC, ESCA, HNSC, KIRC, LIHC, and LUAD patients. TMED2-associated genes network was involved in 3 diverse pathways, and finally, few stronger correlations were also explored between TMED2 expression and its promoter methylation level, genetic alterations, and CD8+ T immune cells level. CONCLUSION In conclusion, via this in silico study, we have elucidated that TMED2 can serve as a shared diagnostic and prognostic biomarker in CESC, ESCA, HNSC, KIRC, LIHC, and LUAD patients of different clinicopathological features but, further in vitro and in vivo research should be carried out to confirm these findings.
Collapse
Affiliation(s)
- Nuzhat Sial
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saba Saeed
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Mukhtiar Ahmad
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasir Hameed
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Rehman
- Department of Eastern Medicine, Qarshi University, Lahore, Pakistan
| | - Mustansar Abbas
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rizwan Asif
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hamad Ahmed
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Safdar Hussain
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jalil Ur Rehman
- University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Atif
- University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rashid Khan
- University College of Eastern Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
15
|
Liu Q, Dong Y, Yuan S, Yu M, Liu L, Zhang Q. Prognostic value of α2δ1 in hypopharyngeal carcinoma: A retrospective study. Open Med (Wars) 2021; 16:1395-1402. [PMID: 34611550 PMCID: PMC8447976 DOI: 10.1515/med-2021-0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022] Open
Abstract
Voltage-dependent calcium channel subunit alpha-2/delta-1 (α2δ1) has been identified as a marker of cancer stem cells in multiple malignant tumor types. However, α2δ1’s role in the prognosis of hypopharyngeal squamous cell carcinoma (HSCC) was not reported. In our study, ten pairs of HSCC and peritumoral normal tissues were used for immunohistochemistry assessment. And α2δ1 expression levels of 34 more HSCC samples were also evaluated, represented by the integral optic density using Image-Pro Plus. Clinicopathological associations and prognostic value of α2δ1 were analyzed. As a result, α2δ1 expression was frequently increased in HSCC tissues. Although the correlation between patients’ clinicopathological characteristics and their α2δ1 expression levels was not significant, α2δ1 expression was significantly correlated with unfavorable overall survival (OS) (P = 0.018) and progression-free survival (PFS) (P = 0.023). Univariate and multivariate cox regression analyses suggested α2δ1’s prognostic role for both OS and PFS (P = 0.013 and 0.011, respectively). This study specifically demonstrated that α2δ1 regularly increased in HSCC compared with peritumoral tissues, and α2δ1 could act as a promising prognostic marker in HSCC patients.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Yanbo Dong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shuoqing Yuan
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Minghang Yu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Liangfa Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Qing Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|