1
|
Bengl D, Koparir A, Prastyo WE, Remmele C, Dittrich M, Flandin S, Shehata-Dieler W, Grimm C, Haaf T, Hofrichter MAH. Whole-genome sequencing, as a powerful diagnostic tool in hearing loss, reveals novel variants in PTPRQ missed by whole-exome sequencing. BMC Med Genomics 2025; 18:59. [PMID: 40165225 PMCID: PMC11956499 DOI: 10.1186/s12920-025-02122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND/OBJECTIVES Hearing loss (HL) is one of the most common congenital disorders, affecting 1-2 in 1,000 newborns. Modern genetic diagnostics using large gene panels and/or whole exome analysis (WES) can identify disease-causing mutations in 25-50 % of patients, with higher solve rates in individuals with earlier onset. RESULTS Here, we used whole-genome sequencing (WGS) to reanalyze 14 index patients/families who remained without genetic diagnosis by WES. We were able to identify the genetic cause of HL in 6 families ( ∼ 43 %). Two families were diagnosed with DFNB84A caused by compound heterozygous recessive mutations in PTPRQ. Three of the four underlying variants, including a structural variant, a deep intronic variant, and a splice variant, escaped detection by WES. Minigene assays confirmed the pathogenicity of the intronic and the splice variants. In addition, we used protein 3D structure prediction and rigid ligand docking to study the pathogenicity of variants that escape nonsense-mediated decay. CONCLUSION In our study, we present four novel variants in PTPRQ, three of which were detected only by WGS. To our knowledge, we report here the first pathogenic deep intronic PTPRQ variant causing HL. Our results suggest that the mutational spectrum of PTPRQ is not well covered by standard WES and that PTPRQ-associated hearing loss may be more frequent than previously thought. WGS provides an additional layer of information in the diagnostics of HL.
Collapse
Affiliation(s)
- Daniel Bengl
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Asuman Koparir
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany.
| | - Wahyu Eka Prastyo
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Christian Remmele
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
- Center for Rare Diseases, University Clinics, Josef-Schneider-Straße 2, Würzburg, 97080, Bavaria, Germany
- Bavarian Genomes Network for Rare Diseases, Technical University of Munich, Trogerstraße 32, Munich, 81675, Bavaria, Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
- Department of Bioinformatics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Sophie Flandin
- Department of Otorhinolaryngology, Comprehensive Hearing Center, Würzburg University Hospital, Josef-Schneider-Straße 11, Würzburg, 97080, Bavaria, Germany
| | - Waafa Shehata-Dieler
- Department of Otorhinolaryngology, Comprehensive Hearing Center, Würzburg University Hospital, Josef-Schneider-Straße 11, Würzburg, 97080, Bavaria, Germany
| | - Clemens Grimm
- Chair of Biochemistry, Theodor-Boveri-Institute at the Biocentre University of Würzburg, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| | - Michaela A H Hofrichter
- Institute of Human Genetics, Julius Maximilians University, Am Hubland, Würzburg, 97074, Bavaria, Germany
| |
Collapse
|
2
|
Vona B. Rethinking non-syndromic hearing loss and its mimics in the genomic era. Eur J Hum Genet 2025; 33:147-150. [PMID: 38443547 PMCID: PMC11840094 DOI: 10.1038/s41431-024-01579-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
The many syndromes involving hearing loss.
Collapse
Affiliation(s)
- Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, 37073, Göttingen, Germany.
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
3
|
Asaad M, Mahfood M, Al Mutery A, Tlili A. Loss-of-function mutations in MYO15A and OTOF cause non-syndromic hearing loss in two Yemeni families. Hum Genomics 2023; 17:42. [PMID: 37189200 DOI: 10.1186/s40246-023-00489-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/06/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Hearing loss is a rare hereditary deficit that is rather common among consanguineous populations. Autosomal recessive non-syndromic hearing loss is the predominant form of hearing loss worldwide. Although prevalent, hearing loss is extremely heterogeneous and poses a pitfall in terms of diagnosis and screening. Using next-generation sequencing has enabled a rapid increase in the identification rate of genes and variants in heterogeneous conditions, including hearing loss. We aimed to identify the causative variants in two consanguineous Yemeni families affected with hearing loss using targeted next-generation sequencing (clinical exome sequencing). The proband of each family was presented with sensorineural hearing loss as indicated by pure-tone audiometry results. RESULTS We explored variants obtained from both families, and our analyses collectively revealed the presence and segregation of two novel loss-of-function variants: a frameshift variant, c.6347delA in MYO15A in Family I, and a splice site variant, c.5292-2A > C, in OTOF in Family II. Sanger sequencing and PCR-RFLP of DNA samples from 130 deaf and 50 control individuals confirmed that neither variant was present in our in-house database. In silico analyses predicted that each variant has a pathogenic effect on the corresponding protein. CONCLUSIONS We describe two novel loss-of-function variants in MYO15A and OTOF that cause autosomal recessive non-syndromic hearing loss in Yemeni families. Our findings are consistent with previously reported pathogenic variants in the MYO15A and OTOF genes in Middle Eastern individuals and suggest their implication in hearing loss.
Collapse
Affiliation(s)
- Maria Asaad
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 - Room 107, P.O. Box 27272, Sharjah, UAE
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 - Room 107, P.O. Box 27272, Sharjah, UAE
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 - Room 107, P.O. Box 27272, Sharjah, UAE
- Human Genetics and Stem Cells Research Group, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, UAE
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Building W8 - Room 107, P.O. Box 27272, Sharjah, UAE.
- Human Genetics and Stem Cells Research Group, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, UAE.
| |
Collapse
|
4
|
Consequences of genetic variants in miRNA genes. Comput Struct Biotechnol J 2022; 20:6443-6457. [DOI: 10.1016/j.csbj.2022.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022] Open
|
5
|
Xiang J, Jin Y, Song N, Chen S, Shen J, Xie W, Sun X, Peng Z, Sun Y. Comprehensive genetic testing improves the clinical diagnosis and medical management of pediatric patients with isolated hearing loss. BMC Med Genomics 2022; 15:142. [PMID: 35761346 PMCID: PMC9235092 DOI: 10.1186/s12920-022-01293-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose Genetic testing is widely used in diagnosing genetic hearing loss in patients. Other than providing genetic etiology, the benefits of genetic testing in pediatric patients with hearing loss are less investigated. Methods From 2018–2020, pediatric patients who initially presented isolated hearing loss were enrolled. Comprehensive genetic testing, including GJB2/SLC26A4 multiplex amplicon sequencing, STRC/OTOA copy number variation analysis, and exome sequencing, were hierarchically offered. Clinical follow-up and examinations were performed. Results A total of 80 pediatric patients who initially presented isolated hearing loss were considered as nonsyndromic hearing loss and enrolled in this study. The definitive diagnosis yield was 66% (53/80) and the likely diagnosis yield was 8% (6/80) through comprehensive genetic testing. With the aid of genetic testing and further clinical follow-up and examinations, the clinical diagnoses and medical management were altered in eleven patients (19%, 11/59); five were syndromic hearing loss; six were nonsyndromic hearing loss mimics. Conclusion Syndromic hearing loss and nonsyndromic hearing loss mimics are common in pediatric patients who initially present with isolated hearing loss. The comprehensive genetic testing provides not only a high diagnostic yield but also valuable information for clinicians to uncover subclinical or pre-symptomatic phenotypes, which allows early diagnosis of SHL, and leads to precise genetic counseling and changes the medical management. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01293-x.
Collapse
|
6
|
Acharya A, Schrauwen I, Leal SM. Identification of autosomal recessive nonsyndromic hearing impairment genes through the study of consanguineous and non-consanguineous families: past, present, and future. Hum Genet 2022; 141:413-430. [PMID: 34291353 PMCID: PMC10416318 DOI: 10.1007/s00439-021-02309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
Hearing impairment (HI) is one of the most common sensory disabilities with exceptionally high genetic heterogeneity. Of genetic HI cases, 30% are syndromic and 70% are nonsyndromic. For nonsyndromic (NS) HI, 77% of the cases are due to autosomal recessive (AR) inheritance. ARNSHI is usually congenital/prelingual, severe-to-profound, affects all frequencies and is not progressive. Thus far, 73 ARNSHI genes have been identified. Populations with high rates of consanguinity have been crucial in the identification of ARNSHI genes, and 92% (67/73) of these genes were identified in consanguineous families. Recent changes in genomic technologies and analyses have allowed a shift towards ARNSHI gene discovery in outbred populations. The latter is crucial towards understanding the genetic architecture of ARNSHI in diverse and understudied populations. We present an overview of the 73 ARNSHI genes, the methods used to identify them, including next-generation sequencing which revolutionized the field, and new technologies that show great promise in advancing ARNSHI discoveries.
Collapse
Affiliation(s)
- Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
Pavlenkova Z, Varga L, Borecka S, Karhanek M, Huckova M, Skopkova M, Profant M, Gasperikova D. Comprehensive molecular-genetic analysis of mid-frequency sensorineural hearing loss. Sci Rep 2021; 11:22488. [PMID: 34795337 PMCID: PMC8602250 DOI: 10.1038/s41598-021-01876-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
The genetic heterogeneity of sensorineural hearing loss (SNHL) is a major hurdle to the detection of disease-causing variants. We aimed to identify underlying causal genes associated with mid-frequency hearing loss (HL), which contributes to less than about 1% of SNHL cases, by whole exome sequencing (WES). Thirty families segregating mid-frequency SNHL, in whom biallelic GJB2 mutations had been previously excluded, were selected from among 851 families in our DNA repository of SNHL. DNA samples from the probands were subjected to WES analysis and searched for candidate variants associated with SNHL. We were able to identify the genetic aetiology in six probands (20%). In total, we found three pathogenic and three likely pathogenic variants in four genes (COL4A5, OTOGL, TECTA, TMPRSS3). One more proband was a compound heterozygote for a pathogenic variant and a variant of uncertain significance (VUS) in MYO15A gene. To date, MYO15A and TMPRSS3 have not yet been described in association with mid-frequency SNHL. In eight additional probands, eight candidate VUS variants were detected in five genes (DIAPH1, MYO7A, TECTA, TMC1, TSPEAR). Seven of these 16 variants have not yet been published or mentioned in the available databases. The most prevalent gene was TECTA, identified in 23% of all tested families. Furthermore, we confirmed the hypothesis that a substantive portion of cases with this conspicuous audiogram shape is a consequence of a genetic disorder.
Collapse
Affiliation(s)
- Zuzana Pavlenkova
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, Bratislava, Slovakia.,DIABGENE Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lukas Varga
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, Bratislava, Slovakia. .,DIABGENE Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Silvia Borecka
- DIABGENE Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miloslav Karhanek
- Laboratory of Bioinformatics, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miloslava Huckova
- DIABGENE Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Skopkova
- DIABGENE Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Profant
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, Bratislava, Slovakia
| | - Daniela Gasperikova
- DIABGENE Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
8
|
Souissi A, Gibriel AA, Masmoudi S. Genetics and meta-analysis of recessive non-syndromic hearing impairment and Usher syndrome in Maghreb population: lessons from the past, contemporary actualities and future challenges. Hum Genet 2021; 141:583-593. [PMID: 34268600 DOI: 10.1007/s00439-021-02314-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Hereditary hearing impairment (HI) is a heterogeneous condition with over 130 genes associated with genetic non-syndromic HI (NSHI) and Usher syndrome (USH). Approximately 80% of hereditary NSHI cases have autosomal recessive (AR) mode of inheritance. The high rate of consanguinity and endogamy in the Maghreb countries, including Tunisia, Algeria and Morocco, represents a major contributing factor to the development of ARHI. Since the 90s, those populations, with their particular large familiar structure, represented an effective key towards the discovery of the first HI loci and genes. In this study, we performed a deep literature database search to analyze the mutational spectrum and the distribution of pathogenic variants responsible of USH and the NSHI among those populations. To date, 124 pathogenic variants were identified in 32 genes of which over 70% represent population-specific variants. The particular variants' distribution is related to the high rate of consanguinity as well as the multiple shared features such as demographic history of migrations and social behavior that promoted the spreading of several founder mutations within those countries. This is the first study to report lessons from the past and current actualities of HI within the three Maghreb countries. However, despite the great impact placed by such population for the HI genetic studies, only a few next-generation sequencing platforms have so far been implemented with those countries. We, therefore, believe that those countries should be supported to implement this technology that would definitely be of great value in the discovery of additional novel HI genes/variants.
Collapse
Affiliation(s)
- Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour road Km 6, BP "1177", 3018, Sfax, Tunisia
| | - Abdullah A Gibriel
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour road Km 6, BP "1177", 3018, Sfax, Tunisia.
| |
Collapse
|
9
|
Tesolin P, Morgan A, Notarangelo M, Ortore RP, Concas MP, Notarangelo A, Girotto G. Non-Syndromic Autosomal Dominant Hearing Loss: The First Italian Family Carrying a Mutation in the NCOA3 Gene. Genes (Basel) 2021; 12:1043. [PMID: 34356059 PMCID: PMC8304864 DOI: 10.3390/genes12071043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Hearing loss (HL) is the most frequent sensory disorder, affecting about 1-3 per 1000 live births, with more than half of the cases attributable to genetic causes. Despite the fact that many HL causative genes have already been identified, current genetic tests fail to provide a diagnosis for about 40% of the patients, suggesting that other causes still need to be discovered. Here, we describe a four-generation Italian family affected by autosomal dominant non-syndromic hearing loss (ADNSHL), in which exome sequencing revealed a likely pathogenic variant in NCOA3 (NM_181659.3, c.2909G>C, p.(Gly970Ala)), a gene recently described as a novel candidate for ADNSHL in a Brazilian family. A comparison between the two families highlighted a series of similarities: both the identified variants are missense, localized in exon 15 of the NCOA3 gene and lead to a similar clinical phenotype, with non-syndromic, sensorineural, bilateral, moderate to profound hearing loss, with a variable age of onset. Our findings (i.e., the identification of the second family reported globally with HL caused by a variant in NCOA3) further support the involvement of NCOA3 in the etiopathogenesis of ADNSHL, which should, thus, be considered as a new gene for autosomal dominant non-syndromic hearing loss.
Collapse
Affiliation(s)
- Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Anna Morgan
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (M.P.C.)
| | - Michela Notarangelo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Rocco Pio Ortore
- UOC Otolaryngology, Institute I.R.C.C.S. “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Maria Pina Concas
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (M.P.C.)
| | - Angelantonio Notarangelo
- UOC Medical Genetics, Institute I.R.C.C.S. “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (M.P.C.)
| |
Collapse
|