1
|
Jia D, Chen DX, Guo QP, Ou HY, Liu B, Dai WP, Peng ZL, Liu YJ, Wang QP, Tan QY, Chen W, Liu JY. From TCM "Shen-nourishing" and "Yang-strengthening" theory to blood-testis barrier reorganization, GuiLuBuShen attenuates age-related male reproductive dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119899. [PMID: 40339836 DOI: 10.1016/j.jep.2025.119899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/10/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM) provides a theoretical foundation for treating reproductive dysfunction via "Shen" system regulation. The classical formulation GuiLuBuShen pill (GLBS), recognized as a principal TCM therapy for male urogenital disorders, clinically enhances "Shen-Yang" nourishment in middle-aged and elderly males with genitourinary degeneration. AIM OF THE STUDY This study aims to elucidate the therapeutic efficacy and molecular mechanisms underlying GLBS in mitigating age-associated male genitourinary dysfunction, with particular focus on its regulatory effects on "Shen" deficiency-related pathophysiology during reproductive system senescence. MATERIALS AND METHODS In this study, 14-month-old Wistar rats were used to model natural male aging (vs. 6-week controls), and GLBS was administered at low (0.81 g/kg/d), medium (1.62 g/kg/d), and high (3.24 g/kg/d) doses for 8 weeks. The multimodal evaluation comprised physiological aging markers (body condition/fatigue recovery), reproductive competence (hormonal profiles/mating behavior/sperm parameters), organ integrity (morphometrics/urogenital histopathology) and molecular mechanisms (testicular transcriptomics & pathway validation). RESULTS GLBS treatment effectively attenuated age-related physiological decline, including weight loss, thermoregulatory dysfunction, and loco-motor impairment in open field test. Systemic anti physiological stress effects were demonstrated through reduced serum corticosterone, decreased organ degeneration and suppressed prostatic oxidative stress. GLBS restored reproductive function via reduced testicular oxidative damage, hormonal rebalancing, improved sperm motility/viability and attenuated seminiferous tubule degeneration with suppressed germ cell apoptosis. Mechanistic studies revealed that these effects were mechanistically linked to blood-testis barrier reinforcement and steroidogenic activation, collectively preserving spermatogenic homeostasis. CONCLUSIONS GLBS emerges as a multi-target therapeutic candidate for age-related urogenital disorders, uniquely combining systemic anti-aging effects with direct testicular rejuvenation. Its dual-action mechanism coordinates blood-testis barrier reinforcement through junctional remodeling with endocrine rebalancing, effectively preserving spermatogenic microenvironment homeostasis. The findings provide translational validation of traditional "Shen-nourishing" theory through contemporary molecular evidence, positioning GLBS as a promising intervention addressing both systemic senescence and organ-specific pathophysiology in male reproductive aging.
Collapse
Affiliation(s)
- Dan Jia
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China.
| | - Di-Xin Chen
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Qiu-Ping Guo
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Hui-Yu Ou
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Bo Liu
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Wei-Ping Dai
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Zi-Lun Peng
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Yong-Jun Liu
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Qi-Peng Wang
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Qiu-Yi Tan
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Wei Chen
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China.
| | - Ju-Yan Liu
- National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, PR China.
| |
Collapse
|
2
|
Cui X, Li H, Zhu X, Huang X, Xue T, Wang S, Jing X. CCDC134 enhances ovarian reserve function and angiogenesis by directly interacting with INHA in a mouse model of premature ovarian insufficiency. Apoptosis 2025; 30:1311-1330. [PMID: 40042746 DOI: 10.1007/s10495-025-02092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2025] [Indexed: 06/16/2025]
Abstract
Premature ovarian insufficiency (POI) is a multifactorial condition characterized by diminished ovarian function, granulosa cell (GC) apoptosis, and impaired ovarian angiogenesis, leading to infertility and long-term health complications. Despite its prevalence, effective therapeutic targets for POI remain limited. This study investigates the role of CCDC134 in maintaining ovarian reserve and promoting angiogenesis and its interaction with INHA in a mouse model of POI. Ovarian granulosa cells from POI patients and unaffected women were analyzed for apoptosis and CCDC134 expression. A cisplatin-induced mouse model of POI was used to evaluate the therapeutic potential of AAV-mediated ovary-specific overexpression of CCDC134. Ovarian morphology, hormonal levels, follicular development, granulosa cell viability, and angiogenesis were assessed. The interaction between CCDC134 and INHA was examined using co-immunoprecipitation, immunofluorescence, and molecular pathway analyses. CCDC134 expression was significantly downregulated in ovarian tissues and granulosa cells of POI patients and cisplatin-induced POI mice. CCDC134 overexpression improved ovarian morphology, restored follicular development across all stages, and enhanced reproductive outcomes in POI mice. Hormonal imbalances, including decreased AMH and E2 and elevated FSH and LH, were reversed following CCDC134 overexpression. Moreover, CCDC134 treatment significantly reduced GC apoptosis by downregulating pro-apoptotic markers (Caspase-3 and Bax) and upregulating anti-apoptotic Bcl-2. Angiogenesis was enhanced, as indicated by increased expression of CD34 and vWF, improved endothelial cell viability, and restored VEGF levels. Mechanistic studies revealed a direct interaction between CCDC134 and INHA, with CCDC134 promoting INHA expression and modulating apoptotic and angiogenic pathways. CCDC134 plays a critical role in maintaining ovarian reserve and promoting angiogenesis by directly interacting with INHA. Its overexpression restores ovarian function, mitigates granulosa cell apoptosis, and enhances angiogenesis in a mouse model of POI. These findings highlight the therapeutic potential of the CCDC134-INHA axis as a novel strategy for treating POI.
Collapse
Affiliation(s)
- Xiangrong Cui
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi, The Affiliated Children's Hospital of Shanxi Medical University, Shanxi Maternal and Child Health Hospital, Taiyuan, 030001, China
| | - Huihui Li
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi, The Affiliated Children's Hospital of Shanxi Medical University, Shanxi Maternal and Child Health Hospital, Taiyuan, 030001, China
| | - Xinyu Zhu
- Department of Clinical Laboratory, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Xia Huang
- Department of Clinical Laboratory, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Tingting Xue
- Department of Clinical Laboratory, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Shu Wang
- Department of Clinical Laboratory, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Xuan Jing
- Department of Clinical Laboratory, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
3
|
de Campos AM, Dias JS, Lopes GF, Pires TM, da Silva DC, Ruiz TFR, Martins TMM, Perez APS. Dysregulation of AR and ERα caused ovarian alterations in gerbils prenatally exposed to 17α-ethinylestradiol and pequi oil. Histochem Cell Biol 2025; 163:57. [PMID: 40402306 DOI: 10.1007/s00418-025-02389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
This study investigated the effects of prenatal exposure to pequi oil and 17α-ethinylestradiol (EE2) on the histomorphometry and receptor expression (androgen receptor (AR) and estrogen receptor alpha (ERα) in gerbil ovaries (Meriones unguiculatus) during aging. Experimental groups included: control, vehicle (mineral oil), EE2: 15 µg/kg/day from gestational days 18-22, EE2/Pe: EE2 from days 18-22 and 300 mg/kg of pequi oil from days 18-26, and Pe: pequi oil only, via gavage. Female offspring were euthanized at 12 months, and ovaries were collected, processed histologically, and sectioned. Histological sections were stained with hematoxylin-eosin to analyze the superficial epithelium height and the tunica albuginea thickness. Immunohistochemistry for AR and ERα was performed, and the percentage of positive nuclei for these receptors was quantified in the theca interna, granulosa cells within follicles, and the interstitial gland. Data were analyzed using analysis of variance (ANOVA), Tukey's, and Kruskal-Wallis tests. The data revealed a significant decrease (p < 0.05) in the thickness of the tunica albuginea in the EE2 group, whereas this thickness was increased in the EE2/Pe and Pe groups. Epithelial height was lower in the EE2 group and higher in the EE2/Pe group. No significant changes in AR immunoreactivity were observed. In multilaminar follicles, ERα immunostaining was elevated in granulosa cells in the Pe group and in theca cells of the EE2 group. Additionally, the interstitial gland in the Pe group showed an increase in ERα expression. Pequi oil exposure upregulated ERα more markedly than AR during folliculogenesis and in interstitial cells, suggesting endocrine-modulating potential and relevance for ovarian regulation during aging.
Collapse
Affiliation(s)
- Amanda M de Campos
- Institute of Health Sciences, Medicine Course, Medicine Course, Federal University of Jataí (UFJ), Jatobá Campus, Jataí, GO, Brazil
| | - Jordana S Dias
- Institute of Health Sciences, Medicine Course, Medicine Course, Federal University of Jataí (UFJ), Jatobá Campus, Jataí, GO, Brazil
| | - Gabriel F Lopes
- Institute of Health Sciences, Medicine Course, Medicine Course, Federal University of Jataí (UFJ), Jatobá Campus, Jataí, GO, Brazil
| | - Thaisla M Pires
- Institute of Health Sciences, Medicine Course, Medicine Course, Federal University of Jataí (UFJ), Jatobá Campus, Jataí, GO, Brazil
| | - Daniele C da Silva
- Institute of Agricultural Sciences, Postgraduate Program in Animal Bioscience, Federal University of Jataí (UFJ), Jataí, Goiás, Brazil
| | - Thalles F Rocha Ruiz
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, Microscopy and Microanalysis Center, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Tracy M M Martins
- Faculty of Medicine, Federal University of Pará (UFPA), Altamira, Pará, Brazil
| | - Ana P S Perez
- Institute of Health Sciences, Medicine Course, Medicine Course, Federal University of Jataí (UFJ), Jatobá Campus, Jataí, GO, Brazil.
- Institute of Agricultural Sciences, Postgraduate Program in Animal Bioscience, Federal University of Jataí (UFJ), Jataí, Goiás, Brazil.
| |
Collapse
|
4
|
Liu X, Yu Z, Xu Y, Xue W, Du X, Yuan G, Wang X, Liu Y, Chen S, Hao C, Li D. A case-control study on the link between trace element exposure in follicular fluid and premature ovarian insufficiency. Reprod Toxicol 2025; 135:108947. [PMID: 40383403 DOI: 10.1016/j.reprotox.2025.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/29/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Premature ovarian insufficiency (POI), affecting 3.5 % of women under 40, significantly impacts reproductive health. The unknown etiology in over 50 % of POI cases impedes accurate diagnosis and treatment. Evidence shows that environmental agents can adversely affect health and reduce fertility. Trace elements are critical pollutants impacting human health. However, research on populations with POI and their links to these elements is limited. We enrolled 367 female patients, dividing them into a POI group and a control group. We employed ICP-MS to measure 25 trace elements in follicular fluid. Bayesian kernel machine regression analyzed combined exposure effects and restricted cubic splines evaluated the relationships between individual trace elements and ovarian reserve markers, focusing on anti-Müllerian hormone (AMH) and basal FSH (bFSH). Logistic regression assessed the association between specific element concentrations and POI occurrence, and the posterior inclusion probability model tested the robustness of key driving factors. The study identified 24 trace elements in follicular fluid samples, revealing significant differences in 23 elements between the two groups. There were positive correlations between Cu, I, Se, and Zn with AMH levels, while negative correlations were observed for Ca, Co, Li, and AMH. Nonlinear relationships were noted for Ba, Cd, Fe, Mg, Mn, Mo, and Pb. Ca, Li, and Ni showed a significant positive correlation with bFSH, while Cu, I, Mg, Se, and Zn demonstrated a significant negative correlation with bFSH. Additionally, Ba, Mn, and Pb exhibited a nonlinear correlation with bFSH. Individuals in the medium and high tertiles for Cu, I, Pb, Se, and Zn were less likely to develop POI. In contrast, those in the medium and high tertiles for Ba, Ca, Cd, Li, Mn, and Ni had an increased likelihood of POI. Our study addresses a crucial gap by examining trace element exposure in follicular fluid and its link to POI risk, enhancing understanding of their effects on female ovarian function. This study lays a foundation for monitoring female fertility and emphasizes the importance of environmental pollutants on reproductive health.
Collapse
Affiliation(s)
- Xiaowen Liu
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China; Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China; College of Medicine, Qingdao University, Qingdao, China
| | - Zewei Yu
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China; Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China; College of Medicine, Qingdao University, Qingdao, China
| | - Yangying Xu
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China; Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China; College of Medicine, Qingdao University, Qingdao, China
| | - Wei Xue
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China; Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China; College of Medicine, Qingdao University, Qingdao, China
| | - Xin Du
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China; Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China; College of Medicine, Qingdao University, Qingdao, China
| | - Guanghui Yuan
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China; Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China; College of Medicine, Qingdao University, Qingdao, China
| | - Xiaoxiao Wang
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China; Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China; College of Medicine, Qingdao University, Qingdao, China
| | - Yingxue Liu
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China; Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China; College of Medicine, Qingdao University, Qingdao, China
| | - Shuyuan Chen
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China; Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China; College of Medicine, Qingdao University, Qingdao, China
| | - Cuifang Hao
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China; Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China; College of Medicine, Qingdao University, Qingdao, China.
| | - Duan Li
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China; Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China; College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Bezdíček J, Sekaninová J, Janků M, Makarevič A, Luhová L, Dujíčková L, Petřivalský M. Reactive oxygen and nitrogen species: multifaceted regulators of ovarian activity†. Biol Reprod 2025; 112:789-806. [PMID: 39936599 PMCID: PMC12078082 DOI: 10.1093/biolre/ioaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/10/2024] [Accepted: 02/11/2025] [Indexed: 02/13/2025] Open
Abstract
Reactive oxygen and nitrogen species are essential components of diverse intracellular signaling pathways. In addition to their involvement in apoptosis, reactive oxygen and nitrogen species are crucial in the regulation of multiple developmental and physiological processes. This review aims to summarize their role in the regulation of key ovarian stages: ovulation, maturation and postovulatory ageing of the oocyte, and the formation and regression of the corpus luteum. At the cellular level, a mild increase in reactive oxygen and nitrogen species is associated with the initiation of a number of regulatory mechanisms, which might be suppressed by increased activity of the antioxidant system. Moreover, a mild increase in reactive oxygen and nitrogen species has been linked to the control of mitochondrial biogenesis and abundance in response to increased cellular energy demands. Thus, reactive oxygen and nitrogen species should also be perceived in terms of their positive role in cellular signaling. On the other hand, an uncontrolled increase in reactive oxygen species production or strong down-regulation of the antioxidant system results in oxidative stress and damage of cellular components associated with ovarian pathologies and ageing. Similarly, the disturbance of signaling functions of reactive nitrogen species caused by dysregulation of nitric oxide production by nitric oxide synthases in ovarian tissues interferes with the proper regulation of physiological processes in the ovary.
Collapse
Affiliation(s)
- Jiří Bezdíček
- Department of Zoology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Jana Sekaninová
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Martina Janků
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Alexander Makarevič
- National Agricultural and Food Centre, Research Institute for Animal Production Nitra, Lužianky-near-Nitra, Slovak Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Linda Dujíčková
- National Agricultural and Food Centre, Research Institute for Animal Production Nitra, Lužianky-near-Nitra, Slovak Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
6
|
Zhang F, Zhu M, Chen Y, Wang G, Yang H, Lu X, Li Y, Chang HM, Wu Y, Ma Y, Yuan S, Zhu W, Dong X, Zhao Y, Yu Y, Wang J, Mu L. Harnessing omics data for drug discovery and development in ovarian aging. Hum Reprod Update 2025; 31:240-268. [PMID: 39977580 DOI: 10.1093/humupd/dmaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Ovarian aging occurs earlier than the aging of many other organs and has a lasting impact on women's overall health and well-being. However, effective interventions to slow ovarian aging remain limited, primarily due to an incomplete understanding of the underlying molecular mechanisms and drug targets. Recent advances in omics data resources, combined with innovative computational tools, are offering deeper insight into the molecular complexities of ovarian aging, paving the way for new opportunities in drug discovery and development. OBJECTIVE AND RATIONALE This review aims to synthesize the expanding multi-omics data, spanning genome, transcriptome, proteome, metabolome, and microbiome, related to ovarian aging, from both tissue-level and single-cell perspectives. We will specially explore how the analysis of these emerging omics datasets can be leveraged to identify novel drug targets and guide therapeutic strategies for slowing and reversing ovarian aging. SEARCH METHODS We conducted a comprehensive literature search in the PubMed database using a range of relevant keywords: ovarian aging, age at natural menopause, premature ovarian insufficiency (POI), diminished ovarian reserve (DOR), genomics, transcriptomics, epigenomics, DNA methylation, RNA modification, histone modification, proteomics, metabolomics, lipidomics, microbiome, single-cell, genome-wide association studies (GWAS), whole-exome sequencing, phenome-wide association studies (PheWAS), Mendelian randomization (MR), epigenetic target, drug target, machine learning, artificial intelligence (AI), deep learning, and multi-omics. The search was restricted to English-language articles published up to September 2024. OUTCOMES Multi-omics studies have uncovered key mechanisms driving ovarian aging, including DNA damage and repair deficiencies, inflammatory and immune responses, mitochondrial dysfunction, and cell death. By integrating multi-omics data, researchers can identify critical regulatory factors and mechanisms across various biological levels, leading to the discovery of potential drug targets. Notable examples include genetic targets such as BRCA2 and TERT, epigenetic targets like Tet and FTO, metabolic targets such as sirtuins and CD38+, protein targets like BIN2 and PDGF-BB, and transcription factors such as FOXP1. WIDER IMPLICATIONS The advent of cutting-edge omics technologies, especially single-cell technologies and spatial transcriptomics, has provided valuable insights for guiding treatment decisions and has become a powerful tool in drug discovery aimed at mitigating or reversing ovarian aging. As technology advances, the integration of single-cell multi-omics data with AI models holds the potential to more accurately predict candidate drug targets. This convergence offers promising new avenues for personalized medicine and precision therapies, paving the way for tailored interventions in ovarian aging. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Fengyu Zhang
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ming Zhu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yi Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guiquan Wang
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Haiyan Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmei Lu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yunlong Ma
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuai Yuan
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Wencheng Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jia Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Voros C, Varthaliti A, Mavrogianni D, Athanasiou D, Athanasiou A, Athanasiou A, Papahliou AM, Zografos CG, Topalis V, Kondili P, Darlas M, Sina S, Daskalaki MA, Theodora M, Antsaklis P, Daskalakis G. Epigenetic Alterations in Ovarian Function and Their Impact on Assisted Reproductive Technologies: A Systematic Review. Biomedicines 2025; 13:730. [PMID: 40149706 PMCID: PMC11940184 DOI: 10.3390/biomedicines13030730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Epigenetic modifications have an important role in controlling ovarian function, modulating ovarian response and implantation success in Assisted Reproductive Technologies (ART). The alterations, such as DNA methylation and non-coding RNA control, have been identified as key variables regulating ovarian physiology and reproductive outcomes. This systematic review investigates the significance of epigenetic pathways in ovarian function, with an emphasis on their effect on ART success rates. Methods: A thorough search of the PubMed, Scopus, and EMBASE databases was performed to find articles published between 2015 and 2024 that investigated the connection between epigenetic changes and ovarian function in ART patients. Studies that examined miRNA expression, DNA methylation, and histone changes in follicular fluid, granulosa cells, and embryos were included. The study followed the PRISMA recommendations to guarantee scientific rigor and repeatability. The data were combined into a thorough study of epigenetic markers linked to ovarian aging, ovarian reserve, and implantation success. Results: A total of 15 studies satisfied the inclusion criteria, with substantial relationships found between distinct epigenetic markers and ovarian function. Changes in miRNA expression patterns in follicular fluid and granulosa cells were associated with oocyte maturation, ovarian reserve, and implantation potential. Women with low ovarian reserve and polycystic ovary syndrome (PCOS) have different DNA methylation patterns. MiR-27a-3p and miR-15a-5p were shown to be involved with granulosa cell malfunction and poor ovarian response, whereas global DNA hypomethylation was linked to ovarian aging and ART results. Conclusions: Epigenetic alterations affect ovarian function via pathways that control hormone signaling, follicular development, and implantation success. Further study is needed to determine the practical applicability of epigenetic biomarkers in predicting ART effectiveness and enhancing patient treatment procedures.
Collapse
Affiliation(s)
- Charalampos Voros
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece
| | - Antonia Varthaliti
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece
| | - Despoina Mavrogianni
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece
| | | | | | | | - Anthi-Maria Papahliou
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece
| | | | - Vasileios Topalis
- Department of Internal Medicine, Hospital of Thun, 3600 Thun, Switzerland
| | - Panagiota Kondili
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece
| | - Menelaos Darlas
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece
| | - Sophia Sina
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece
| | - Maria Anastasia Daskalaki
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece
| | - Panos Antsaklis
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece
| | - Georgios Daskalakis
- 1st Department of Obstetrics and Gynecology, ‘Alexandra’ General Hospital, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece
| |
Collapse
|
8
|
Srikanth Y, Reddy DH, Anusha VL, Dumala N, Viswanadh MK, Chakravarthi G, Nalluri BN, Yadagiri G, Ramakrishna K. Unveiling the Multifaceted Pharmacological Actions of Indole-3-Carbinol and Diindolylmethane: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:827. [PMID: 40094833 PMCID: PMC11902694 DOI: 10.3390/plants14050827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Cruciferae family vegetables are remarkably high in phytochemicals such as Indole-3-carbinol (I3C) and Diindolylmethane (DIM), which are widely known as nutritional supplements. I3C and DIM have been studied extensively in different types of cancers like breast, prostate, endometrial, colorectal, gallbladder, hepatic, and cervical, as well as cancers in other tissues. In this review, we summarized the protective effects of I3C and DIM against cardiovascular, neurological, reproductive, metabolic, bone, respiratory, liver, and immune diseases, infections, and drug- and radiation-induced toxicities. Experimental evidence suggests that I3C and DIM offer protection due to their antioxidant, anti-inflammatory, antiapoptotic, immunomodulatory, and xenobiotic properties. Apart from the beneficial effects, the present review also discusses the possible toxicities of I3C and DIM that are reported in various preclinical investigations. So far, most of the reports about I3C and DIM protective effects against various diseases are only from preclinical studies; this emphasizes the dire need for large-scale clinical trials on these phytochemicals against human diseases. Further, in-depth research is required to improve the bioavailability of these two phytochemicals to achieve the desirable protective effects. Overall, our review emphasizes that I3C and DIM may become potential drug candidates for combating dreadful human diseases.
Collapse
Affiliation(s)
- Yadava Srikanth
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| | - Dontiboina Harikrishna Reddy
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| | - Vinjavarapu Lakshmi Anusha
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| | - Naresh Dumala
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| | - Guntupalli Chakravarthi
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| | - Buchi N. Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| | - Ganesh Yadagiri
- Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India; (Y.S.); (D.H.R.); (V.L.A.); (N.D.); (M.K.V.); (G.C.); (B.N.N.)
| |
Collapse
|
9
|
Maculan R, de Vasconcelos GL, Viafara JAS, Moreira GM, Vanin C, Alves N, Ferreira MBD, de Souza JC. Beef cows with larger vulvar width have greater antral follicle count, viable oocytes, and higher circulating AMH. Anim Reprod 2025; 22:e20240077. [PMID: 40013120 PMCID: PMC11864730 DOI: 10.1590/1984-3143-ar2024-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/18/2024] [Indexed: 02/28/2025] Open
Abstract
Owing to the low heritability of reproductive traits, the search for markers and their interrelationship that could indicate reproductively superior individuals is important in the selection process for bovine reproductive efficiency. This study aimed to investigate the possible interrelationships between the antral follicle count (AFC), vulvar-width (VW), anti-Müllerian hormone (AMH) concentrations, fertility in Bos Taurus and Bos Indicus females. Brahman (Bos Taurus-Indicus, n = 126) and Simmental and Angus (Bos Taurus-Taurus, n = 155) cows were classified as having large (≥86 mm) and small (<86 mm) VW. From each group, one blood sample per animal was collected to determine the AMH serum concentrations. The GLIMMIX procedure in SAS® was used to determine whether vulva width (VW) and AMH classes, associated or not with breed, could influence the age at first calving (FCA), calving to first service interval (CFSI), calving interval (CI), number of services per pregnancy (SP), and number of viable oocytes (VO). Antral follicle count (AFC) (36.10 ± 1.90 vs. 22.78 ± 1.64, for large and small VW, respectively), AMH (1.17 ± 0.07 vs. 0.48 ± 0.007 ng/mL), and viable oocytes or VO (18.86 ± 1.76 vs. 10.15 ± 1.49) were greater (P < 0.05) in the large VW than in the small VW. Brahman cows had greater AFC (36.30 ± 1.34 vs. 22.09 ± 1.67), VW (106.94 ± 15.83 vs. 69.78 ± 14.11 mm), and AMH (1.18 ± 0.07 vs. 0.42 ± 0.05 ng/mL) compared to that of taurine cows. In conclusion, VW was an efficient predictor of AFC and AMH concentrations in both genetic groups, but under the conditions of this trial no link could be detected between these variables and the reproductive indices studied.
Collapse
Affiliation(s)
| | | | - Jesús Alfonso Sánchez Viafara
- Facultad de Ciencias Agrícolas y Veterinarias, Universidad de Santander, Valledupar, Colombia
- Grupo Investigación y Desarrollo en Sistemas Agropecuarios, Unidad de Investigación Ganadera, Centro de Desarrollo Tecnológico del Cesar, Valledupar, Cesar, Colombia
| | | | - Cintia Vanin
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, MG, Brasil
| | - Nathalia Alves
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, MG, Brasil
| | | | | |
Collapse
|
10
|
Li D, Liu Y, Hui Y, Li B, Hao C. A Glimpse of Research Trends and Frontiers in the Etiology of Premature Ovarian Insufficiency via Bibliometric Analysis. Endocr Metab Immune Disord Drug Targets 2025; 25:310-325. [PMID: 38919087 PMCID: PMC12079320 DOI: 10.2174/0118715303313887240624071238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Premature Ovarian Insufficiency (POI) is the most common reproductive aging disorder in women of reproductive age, which is characterized by decreased ovarian function in women before the age of 40. Etiology research of POI has garnered interest and attention from scholars worldwide over the past decades. METHODS However, to the best of our knowledge, no comprehensive survey with bibliometric analysis has been conducted yet on the research trends of POI etiology. This article aimed to analyze current scientific findings on the etiology of POI, offering innovative ideas for further research. Research articles on the etiology of POI from 1994 to 2023 were collected from the Web of Science Core Collection. A total of 456 research articles were included, and the total number of publications increased annually. We used VOSviewer and bibliometric.com to analyze the keywords, terms, institution, publication country/region, author name, publication journal, and the sum of times the articles have been cited. RESULTS This study has shown that a research hotspot is the genetic etiology of POI; however, there is still a lack of research on the impact of epigenetic alterations, iatrogenic injuries, environmental pollution, social stress, and unhealthy lifestyles on the pathogenesis of POI. CONCLUSION The factors illustrated here represent potential future directions for POI etiology research and warrant more attention from researchers.
Collapse
Affiliation(s)
- Duan Li
- Centre for Reproductive Medicine, Women and Children’s Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Yingxue Liu
- Centre for Reproductive Medicine, Women and Children’s Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Yameng Hui
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Cuifang Hao
- Centre for Reproductive Medicine, Women and Children’s Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Lin LT, Li CJ, Lee YS, Tsui KH. Recombinant Follicle-Stimulating Hormone and Luteinizing Hormone Enhance Mitochondrial Function and Metabolism in Aging Female Reproductive Cells. Int J Mol Sci 2024; 26:83. [PMID: 39795942 PMCID: PMC11720038 DOI: 10.3390/ijms26010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Ovarian aging significantly impacts female fertility, with mitochondrial dysfunction emerging as a key factor. This study investigated the effects of recombinant follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on mitochondrial function and metabolism in aging female reproductive cells. Human granulosa cells (HGL5) were treated with FSH/LH or not. Mitochondrial function was assessed through various assays, including mitochondrial mass, membrane potential, ROS levels, and ATP production. Mitochondrial dynamics and morphology were analyzed using MitoTracker staining. Cellular respiration was measured using a Seahorse Bioenergetics Analyzer. Metabolic reprogramming was evaluated through gene expression analysis and metabolite profiling. In vivo effects were studied using aging mouse oocytes. FSH/LH treatment significantly improved mitochondrial function in aging granulosa cells, increasing mitochondrial mass and membrane potential while reducing ROS levels. Mitochondrial dynamics showed a shift towards fusion and elongation. Cellular respiration, ATP production, and spare respiratory capacity were enhanced. FSH/LH-induced favorable alterations in cellular metabolism, favoring oxidative phosphorylation. In aging mouse oocytes, FSH/LH treatment improved in vitro maturation and mitochondrial health. In conclusion, FSH/LH supplementation ameliorates age-related mitochondrial dysfunction and improves cellular metabolism in aging female reproductive cells.
Collapse
Affiliation(s)
- Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (L.-T.L.); (Y.-S.L.)
- College of Health and Nursing, Meiho University, Pingtung 912, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (L.-T.L.); (Y.-S.L.)
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Shan Lee
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (L.-T.L.); (Y.-S.L.)
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (L.-T.L.); (Y.-S.L.)
- College of Health and Nursing, Meiho University, Pingtung 912, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
12
|
Kobayashi H, Imanaka S. Mitochondrial DNA Damage and Its Repair Mechanisms in Aging Oocytes. Int J Mol Sci 2024; 25:13144. [PMID: 39684855 DOI: 10.3390/ijms252313144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The efficacy of assisted reproductive technologies (ARTs) in older women remains constrained, largely due to an incomplete understanding of the underlying pathophysiology. This review aims to consolidate the current knowledge on age-associated mitochondrial alterations and their implications for ovarian aging, with an emphasis on the causes of mitochondrial DNA (mtDNA) mutations, their repair mechanisms, and future therapeutic directions. Relevant articles published up to 30 September 2024 were identified through a systematic search of electronic databases. The free radical theory proposes that reactive oxygen species (ROS) inflict damage on mtDNA and impair mitochondrial function essential for ATP generation in oocytes. Oocytes face prolonged pressure to repair mtDNA mutations, persisting for up to five decades. MtDNA exhibits limited capacity for double-strand break repair, heavily depending on poly ADP-ribose polymerase 1 (PARP1)-mediated repair of single-strand breaks. This process depletes nicotinamide adenine dinucleotide (NAD⁺) and ATP, creating a detrimental cycle where continued mtDNA repair further compromises oocyte functionality. Interventions that interrupt this destructive cycle may offer preventive benefits. In conclusion, the cumulative burden of mtDNA mutations and repair demands can lead to ATP depletion and elevate the risk of aneuploidy, ultimately contributing to ART failure in older women.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| |
Collapse
|
13
|
Morales-Sánchez E, Campuzano-Caballero JC, Cervantes A, Martínez-Ibarra A, Cerbón M, Vital-Reyes VS. Which Side of the Coin Are You on Regarding Possible Postnatal Oogenesis? Arch Med Res 2024; 55:103071. [PMID: 39236439 DOI: 10.1016/j.arcmed.2024.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
It is well known that oocytes are produced during fetal development and that the total number of primary follicles is determined at birth. In humans, there is a constant loss of follicles after birth until about two years of age. The number of follicles is preserved until the resumption of meiosis at puberty and there is no renewal of the oocytes; this dogma was maintained in the last century because there were no suitable techniques to detect and obtain stem cells. However, following stem cell markers, several scientists have detected them in developing and adult human ovarian tissues, especially in the ovarian surface epithelial cells. Furthermore, many authors using different methodological strategies have indicated this possibility. This evidence has led many scientists to explore this hypothesis; there is no definitive consensus to accept this idea. Interestingly, oocyte retrieval from mature ovaries and other tissue sources of stem cells has contributed to the development of strategies for the retrieval of mature oocytes, useful for assisted reproductive technology. Here, we review the evidence and controversies on oocyte neooogenesis in adult women; in addition, we agree with the idea that this process may occur in adulthood and that its alteration may be related to various pathologies in women, such as polycystic ovary syndrome, premature ovarian insufficiency, diminished ovarian reserve and several infertility and genetic disorders.
Collapse
Affiliation(s)
- Elizabeth Morales-Sánchez
- Unidad de Histología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Carlos Campuzano-Caballero
- Departamento de Biología Comparada, Facultad de Ciencias, Laboratorio de Biología de la Reproducción Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia Cervantes
- Servicio de Genética, Hospital General de México, Eduardo Liceaga, Mexico City, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandra Martínez-Ibarra
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Escolar, Mexico City, Coyoacán 04510, Mexico
| | - Marco Cerbón
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Escolar, Mexico City, Coyoacán 04510, Mexico.
| | | |
Collapse
|
14
|
Tanaka Y, Amano T, Nakamura A, Deguchi M, Takahashi A, Tsuji S, Murakami T. mTOR inhibitors potentially preserve fertility in female patients with haematopoietic malignancies: a narrative review. Ann Hematol 2024; 103:4953-4969. [PMID: 39537993 DOI: 10.1007/s00277-024-06090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Haematologic malignancies are considered among the more common adolescent and young adult (AYA) cancers. Many female AYA patients with haematopoietic malignancies face impaired fertility. Haematologic malignancies patients tend to be treated with more aggressive systemic chemotherapy than that of solid tumours. In adult women, treatment-related contraception causes age-related fertility loss. Graft-versus-host disease (GVHD) after allogeneic haematopoietic stem cell transplantation is associated with decreased fertility. Ovarian cryopreservation is often indicated for haematopoietic malignancies; however, follicle loss associated with ovarian cryopreservation and ovarian minimal residual disease, which result in the withdrawal of the transplantation, are important issues. These problems may not be fully addressed by conventional methods of fertility preservation, such as oocyte, embryo, and ovarian cryopreservation, leaving room for research into new treatment approaches, such as fertility preservation drugs. In recent years, preclinical studies have shown that mTOR inhibitors may preserve chemotherapy-induced follicular loss, may have follicle-preserving effects on follicle loss associated with cryopreservation and transplantation of ovarian tissue, may have fertility-preserving effects on aging-related infertility. Clinical studies have shown that mTOR inhibitors may have the potential for indirect fertility preservation by controlling GVHD, have a limited anti-tumor effect against haematopoietic malignancies. The purpose of this article is to outline the various issues faced by female survivors of haematopoietic malignancies and discuss the potential of mTOR inhibitors as a safe treatment option. Based on current research, mTOR inhibitors seem promising and innovative fertility preservation agents regarding preclinical conditions, and further study, including clinical trials, should be expected.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan.
| | - Tsukuru Amano
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Akiko Nakamura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mari Deguchi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Akimasa Takahashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shunichiro Tsuji
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan
| |
Collapse
|
15
|
Wang S, Ren J, Jing Y, Qu J, Liu GH. Perspectives on biomarkers of reproductive aging for fertility and beyond. NATURE AGING 2024; 4:1697-1710. [PMID: 39672897 DOI: 10.1038/s43587-024-00770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/29/2024] [Indexed: 12/15/2024]
Abstract
Reproductive aging, spanning an age-related functional decline in the female and male reproductive systems, compromises fertility and leads to a range of health complications. In this Perspective, we first introduce a comprehensive framework for biomarkers applicable in clinical settings and discuss the existing repertoire of biomarkers used in practice. These encompass functional, imaging-based and biofluid-based biomarkers, all of which reflect the physiological characteristics of reproductive aging and help to determine the reproductive biological age. Next, we delve into the molecular alterations associated with aging in the reproductive system, highlighting the gap between these changes and their potential as biomarkers. Finally, to enhance the precision and practicality of assessing reproductive aging, we suggest adopting cutting-edge technologies for identifying new biomarkers and conducting thorough validations in population studies before clinical applications. These advancements will foster improved comprehension, prognosis and treatment of subfertility, thereby increasing chances of preserving reproductive health and resilience in populations of advanced age.
Collapse
Affiliation(s)
- Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jie Ren
- Aging Biomarker Consortium, Beijing, China
- Key Laboratory of RNA Science and Engineering, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Jing
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Qu
- Aging Biomarker Consortium, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
16
|
Guo X, Tan C, Shi L, Khishe M, Bagi K. Foot fractures diagnosis using a deep convolutional neural network optimized by extreme learning machine and enhanced snow ablation optimizer. Sci Rep 2024; 14:28428. [PMID: 39558102 PMCID: PMC11574293 DOI: 10.1038/s41598-024-80132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
The current investigation proposes a novel hybrid methodology for the diagnosis of the foot fractures. The method uses a combination of deep learning methods and a metaheuristic to provide an efficient model for the diagnosis of the foot fractures problem. the method has been first based on applying some preprocessing steps before using the model for the features extraction and classification of the problem. the main model is based on a pre-trained ZFNet. The final layers of the network have been substituted using an extreme learning machine (ELM) in its entirety. The ELM part also optimized based on a new developed metaheuristic, called enhanced snow ablation optimizer (ESAO), to achieve better results. for validating the effectiveness of the proposed ZFNet/ELM/ESAO-based model, it has been applied to a standard benchmark from Institutional Review Board (IRB) and the findings have been compared to some different high-tech methods, including Decision Tree / K-Nearest Neighbour (DT/KNN), Linear discriminant analysis (LDA), Inception-ResNet Faster R-CNN architecture (FRCNN), Transfer learning‑based ensemble convolutional neural network (TL-ECNN), and combined model containing a convolutional neural network and long short-term memory (DCNN/LSTM). Final results show that using the proposed ZFNet/ELM/ESAO-based can be utilized as an efficient model for the diagnosis of the foot fractures.
Collapse
Affiliation(s)
- Xin Guo
- College of Modern Education Technology, College of Yiyang Normal, Yiyang, 413000, Hunan, China
| | - Chao Tan
- Changjun Yueliangdao School No. 3 Primary School, Changsha, 410000, Hunan, China
| | - Li Shi
- Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China.
| | - Mohammad Khishe
- Department of Electrical Engineering, Imam Khomeini Marine Science University, Nowshahr, Iran
- Center for Artificial Intelligence Applications, Yuan Ze University, Taoyuan City, Taiwan
| | - Kambiz Bagi
- Shiraz University of Technology, Shiraz, Iran.
- College of Technical Engineering, The Islamic University, Najaf, Iraq.
| |
Collapse
|
17
|
Mani S, Srivastava V, Shandilya C, Kaushik A, Singh KK. Mitochondria: the epigenetic regulators of ovarian aging and longevity. Front Endocrinol (Lausanne) 2024; 15:1424826. [PMID: 39605943 PMCID: PMC11598335 DOI: 10.3389/fendo.2024.1424826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Ovarian aging is a major health concern for women. Ovarian aging is associated with reduced health span and longevity. Mitochondrial dysfunction is one of the hallmarks of ovarian aging. In addition to providing oocytes with optimal energy, the mitochondria provide a co-substrate that drives epigenetic processes. Studies show epigenetic alterations, both nuclear and mitochondrial contribute to ovarian aging. Both, nuclear and mitochondrial genomes cross-talk with each other, resulting in two ways orchestrated anterograde and retrograde response that involves epigenetic changes in nuclear and mitochondrial compartments. Epigenetic alterations causing changes in metabolism impact ovarian function. Key mitochondrial co-substrate includes acetyl CoA, NAD+, ATP, and α-KG. Thus, enhancing mitochondrial function in aging ovaries may preserve ovarian function and can lead to ovarian longevity and reproductive and better health outcomes in women. This article describes the role of mitochondria-led epigenetics involved in ovarian aging and discusses strategies to restore epigenetic reprogramming in oocytes by preserving, protecting, or promoting mitochondrial function.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Vidushi Srivastava
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Chesta Shandilya
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Aditi Kaushik
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Women’s Reproductive Health, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Cai XF, Wang BY, Zhao JM, Nian MX, Lin QC, Huang JF. Association of sleep disturbances with diminished ovarian reserve in women undergoing infertility treatment. Sci Rep 2024; 14:26279. [PMID: 39487261 PMCID: PMC11530423 DOI: 10.1038/s41598-024-78123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
With an aging population seeking infertility treatment, diminished ovarian reserve (DOR) is a prevalent indication for assisted reproductive technology (ART). This study aims to investigate the relationship between sleep parameters and DOR among women attending an infertility clinic. Methods We consecutively enrolled women attending an infertility clinic from July 2020 to June 2021. Participants completed the Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale(ESS), and STOP-Bang Questionnaire to assess self-reported sleep quality. DOR-related indices including antral follicle count, anti-Müllerian hormone(AMH), follicle-stimulating hormone (FSH) were evaluated. A total of 979 women were enrolled, with 148 classified into the DOR group and 831 in the non-DOR group. The DOR group was notably older compared to the non-DOR group. Analysis showed that the DOR group exhibited significantly shorter sleep onset latency (p = 0.001) and shorter total sleep duration (p = 0.014) compared to the non-DOR group. Logistic regression analysis identified age, PSQI-sleep latency, and PSQI score as independent factors associated with an increased risk of DOR(all p < 0.05). Furthermore, stratified analysis by age group revealed that snoring and PSQI-sleep latency were particularly notable risk factors for DOR among women aged 35 years and older (OR = 2.489, p = 0.040; OR = 2.007, p = 0.008, respectively). Our study highlights that shorter sleep onset latency and shorter total sleep duration may be associated with DOR among women undergoing ART treatments. Particularly noteworthy, snoring and sleep latency were identified as additional risk factors for DOR among women aged 35 years and older.
Collapse
Affiliation(s)
- Xue-Fen Cai
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Bi-Ying Wang
- Department of respiratory and critical care medicine, Institute of Respiratory Disease, First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fujian Provincial Sleep-disordered Breathing Clinic Center, Fuzhou, China
- Department of Respiratory and Critical Care Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jian-Ming Zhao
- Department of respiratory and critical care medicine, Institute of Respiratory Disease, First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fujian Provincial Sleep-disordered Breathing Clinic Center, Fuzhou, China
- Department of Respiratory and Critical Care Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Mei-Xin Nian
- Department of respiratory and critical care medicine, Institute of Respiratory Disease, First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fujian Provincial Sleep-disordered Breathing Clinic Center, Fuzhou, China
- Department of Respiratory and Critical Care Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Qi-Chang Lin
- Department of respiratory and critical care medicine, Institute of Respiratory Disease, First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fujian Provincial Sleep-disordered Breathing Clinic Center, Fuzhou, China.
- Department of Respiratory and Critical Care Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, People's Republic of China.
| | - Jie-Feng Huang
- Department of respiratory and critical care medicine, Institute of Respiratory Disease, First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fujian Provincial Sleep-disordered Breathing Clinic Center, Fuzhou, China.
- Department of Respiratory and Critical Care Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
19
|
Zhu J, Xie Y. Construction and validation of a novel nomogram for predicting spontaneous preterm birth in patients with gestational diabetes mellitus. Am J Transl Res 2024; 16:5466-5476. [PMID: 39544809 PMCID: PMC11558387 DOI: 10.62347/mqqf2601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/06/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE To explore the influencing factors of spontaneous preterm birth (sPTB) in patients with gestational diabetes mellitus (GDM) and construct a nomogram model. METHODS A retrospective analysis was conducted on the clinical data of 289 GDM patients who gave birth at Yangzhou University Affiliated Hospital from January 2021 to December 2022. The patients were divided into the sPTB (n = 52) and non-sPTB (n = 237) groups based on whether sPTB occurred. Logistic multivariate analysis was used to explore the influencing factors of sPTB in GDM patients and construct a nomogram model. The predictive performance of the nomogram model was evaluated using ROC curves and calibration curves in internal validation. Additionally, 62 GDM patients who visited Yangzhou University Affiliated Hospital from January 2023 to June 2023 were retrospectively selected for external validation of the prediction model. RESULTS Logistic analysis showed that maternal age ≥30 years, pre-pregnancy BMI ≥26.3 kg/m2, history of spontaneous abortion, premature rupture of membranes, and oral glucose tolerance test (OGTT) fasting blood glucose ≥5.1 mmol/L were independent risk factors for sPTB in GDM patients (all P<0.05). In internal validation, the AUC value of the model's ROC curve was 0.901, and in external validation, the AUC value was 0.939. The calibration curve showed that the predicted probability was consistent with the actual probability. In addition, the sensitivity, specificity, and accuracy of the model in external validation were 84.21%, 81.40%, and 82.26%, respectively. CONCLUSION Maternal age ≥30 years, pre-pregnancy BMI ≥26.3 kg/m2, history of spontaneous abortion, premature rupture of membranes, and OGTT fasting blood glucose ≥5.1 mmol/L are independent risk factors for sPTB in GDM patients. The nomogram model based on these risk factors has high discrimination and accuracy in predicting sPTB in GDM patients.
Collapse
Affiliation(s)
- Jianfei Zhu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou University Yangzhou 225009, Jiangsu, China
| | - Yanyan Xie
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou University Yangzhou 225009, Jiangsu, China
| |
Collapse
|
20
|
Lu M, Li W, Zhou J, Shang J, Lin L, Liu Y, Zhu X. Integrative bioinformatics analysis for identifying the mitochondrial-related gene signature associated with immune infiltration in premature ovarian insufficiency. BMC Med 2024; 22:444. [PMID: 39379953 PMCID: PMC11462806 DOI: 10.1186/s12916-024-03675-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a reproductive disorder characterized by the cessation of ovarian function before the age of 40. Although mitochondrial dysfunction and immune disorders are believed to contribute to ovarian damage in POI, the interplay between these factors remains understudied. METHODS In this research, transcriptomic data related to POI were obtained from the NCBI GEO database. Hub biomarkers were identified through the construction of a protein‒protein interaction (PPI) network and further validated using RT‒qPCR and Western blot. Moreover, their expression across various cell types was elucidated via single-cell RNA sequencing analysis. A comprehensive investigation of the mitochondrial and immune profiles of POI was carried out through correlation analysis. Furthermore, potential therapeutic agents were predicted utilizing the cMap database. RESULTS A total of 119 mitochondria-related differentially expressed genes (MitoDEGs) were identified and shown to be significantly enriched in metabolic pathways. Among these genes, Hadhb, Cpt1a, Mrpl12, and Mrps7 were confirmed both in a POI model and in human granulosa cells (GCs), where they were found to accumulate in GCs and theca cells. Immune analysis revealed variations in macrophages, monocytes, and 15 other immune cell types between the POI and control groups. Notably, strong correlations were observed between seven hub-MitoDEGs (Hadhb, Cpt1a, Cpt2, Mrpl12, Mrps7, Mrpl51, and Eci1) and various functions, such as mitochondrial respiratory complexes, dynamics, mitophagy, mitochondrial metabolism, immune-related genes, and immunocytes. Additionally, nine potential drugs (calyculin, amodiaquine, eudesmic acid, cefotaxime, BX-912, prostratin, SCH-79797, HU-211, and pizotifen) targeting key genes were identified. CONCLUSIONS Our results highlight the crosstalk between mitochondrial function and the immune response in the development of POI. The identification of MitoDEGs could lead to reliable biomarkers for the early diagnosis, monitoring, and personalized treatment of POI.
Collapse
Affiliation(s)
- Minjun Lu
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
- Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
| | - Wenxin Li
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
- Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
| | - Jiamin Zhou
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
- Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
| | - Junyu Shang
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
- Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
| | - Li Lin
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
- Department of Central Laboratory, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
| | - Yueqin Liu
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China
| | - Xiaolan Zhu
- Department of Reproductive Medical Center, Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Maternity and Child Health Care Hospital), No. 20 Zhengdong Road, Zhenjiang, 212001, China.
| |
Collapse
|
21
|
Bao S, Yin T, Liu S. Ovarian aging: energy metabolism of oocytes. J Ovarian Res 2024; 17:118. [PMID: 38822408 PMCID: PMC11141068 DOI: 10.1186/s13048-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.
Collapse
Affiliation(s)
- Shenglan Bao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, , Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
| |
Collapse
|
22
|
Cushman RA, Akbarinejad V, Perry GA, Lents CA. Developmental programming of the ovarian reserve in livestock. Anim Reprod Sci 2024; 264:107458. [PMID: 38531261 DOI: 10.1016/j.anireprosci.2024.107458] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Mammalian females are born with a finite number of follicles in their ovaries that is referred to as the ovarian reserve. There is a large amount of variation between females in the number of antral follicles that they are born with, but this number is positively correlated to size of the ovarian reserve, has a strong repeatability within a female, and a moderate heritability. Although the heritability is moderate, numerous external factors including health, nutrition, ambient temperature, and litter size influence the size and function of the ovarian reserve throughout life. Depletion of the ovarian reserve contributes to reproductive senescence, and genetic and epigenetic factors can lead to a more rapid decline in follicle numbers in some females than others. The relationship of the size of the ovarian reserve to development of the reproductive tract and fertility is generally positive, although some studies report antagonistic associations of these traits. It seems likely that management decisions and environmental factors that result in epigenetic modifications to the genome throughout life may cause variability in the function of ovarian genes that influence fecundity and fertility, leading to differences in reproductive longevity among females born with ovarian reserves of similar size. This review summarizes our current understanding of factors influencing size of the ovarian reserve in cattle, sheep, and pigs and the relationship of the ovarian reserve to reproductive tract development and fertility. It provides strategies to apply this knowledge to improve diagnostics for better assessment of fertility and reproductive longevity in female livestock.
Collapse
Affiliation(s)
- Robert A Cushman
- USDA, Agricultural Research Service, U S Meat Animal Research Center, Clay Center NE 68933-0166, United States.
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - George A Perry
- Texas A&M AgriLife Research and Extension Center, Overton, TX 75684, United States
| | - Clay A Lents
- USDA, Agricultural Research Service, U S Meat Animal Research Center, Clay Center NE 68933-0166, United States
| |
Collapse
|
23
|
Ahmed M, Riaz U, Lv H, Yang L. A Molecular Perspective and Role of NAD + in Ovarian Aging. Int J Mol Sci 2024; 25:4680. [PMID: 38731898 PMCID: PMC11083308 DOI: 10.3390/ijms25094680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD+ is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD+ biology, which actively consume NAD+ in their enzymatic activities. In recent years, NAD+ has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD+ biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.
Collapse
Affiliation(s)
- Mehboob Ahmed
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Umair Riaz
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haimiao Lv
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Sysoeva A, Akhmedova Z, Nepsha O, Makarova N, Silachev D, Shevtsova Y, Goryunov K, Karyagina V, Bugrova A, Starodubtseva N, Novoselova A, Chagovets V, Kalinina E. Characteristics of the Follicular Fluid Extracellular Vesicle Molecular Profile in Women in Different Age Groups in ART Programs. Life (Basel) 2024; 14:541. [PMID: 38792563 PMCID: PMC11121889 DOI: 10.3390/life14050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of this study was to investigate the molecular composition of follicular fluid (FF) extracellular vesicles (EVs) in women of different reproductive ages and its possible relationship to sperm fertilizing ability. FF EVs were obtained by differential centrifugation. The concentration and size distribution of FF EVs were analyzed by nanoparticle tracking analysis. The lipidome and proteome were analyzed by liquid chromatography-mass spectrometry. The isolated FF EVs had a variety of shapes and sizes; their concentration and size distribution did not differ significantly between the age groups. In women younger than 35 years, the concentration of vesicular progesterone was 6.6 times higher than in women older than 35 years, and the total levels of the main lipid classes were increased in younger women. A proteomic analysis revealed that not only FF EV-specific proteins, but also proteins involved in sperm activation were present. New data were obtained on the composition of FF EVs, confirming their importance as molecular indicators of age-related changes in the female reproductive system. In addition, these results shed light on the possible interaction between the FF EVs of women in different age groups and male germ cells. Therefore, studying the transcriptomic and metabolomic profile of FF EVs may be a crucial approach to evaluate the efficacy of ART.
Collapse
Affiliation(s)
- Anastasia Sysoeva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Zumriyat Akhmedova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Oksana Nepsha
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Natalya Makarova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Victoria Karyagina
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Anna Bugrova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Natalya Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
- Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - Anastasia Novoselova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Vitaliy Chagovets
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| | - Elena Kalinina
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.S.); (Z.A.); (O.N.); (N.M.); (Y.S.); (K.G.); (V.K.); (A.B.); (N.S.); (A.N.); (V.C.); (E.K.)
| |
Collapse
|
25
|
Knight AK, Spencer JB, Smith AK. DNA methylation as a window into female reproductive aging. Epigenomics 2024; 16:175-188. [PMID: 38131149 PMCID: PMC10841041 DOI: 10.2217/epi-2023-0298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
People with ovaries experience reproductive aging as their reproductive function and system declines. This has significant implications for both fertility and long-term health, with people experiencing an increased risk of cardiometabolic disorders after menopause. Reproductive aging can be assessed through markers of ovarian reserve, response to fertility treatment or molecular biomarkers, including DNA methylation. Changes in DNA methylation with age associate with poorer reproductive outcomes, and epigenome-wide studies can provide insight into genes and pathways involved. DNA methylation-based epigenetic clocks can quantify biological age in reproductive tissues and systemically. This review provides an overview of hallmarks and theories of aging in the context of the reproductive system, and then focuses on studies of DNA methylation in reproductive tissues.
Collapse
Affiliation(s)
- Anna K Knight
- Research Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jessica B Spencer
- Reproductive Endocrinology & Infertility Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alicia K Smith
- Research Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Reproductive Endocrinology & Infertility Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Islam UN, Begum A, Rahman F, Haq MA, Kumar S, Chowdhury K, Sinha S, Haque M, Ahmad R. The Relationship Between Serum Anti-Müllerian Hormone and Basal Antral Follicle Count in Infertile Women Under 35 Years: An Assessment of Ovarian Reserve. Cureus 2023; 15:e50181. [PMID: 38077683 PMCID: PMC10706210 DOI: 10.7759/cureus.50181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 10/16/2024] Open
Abstract
Introduction Estimating ovarian reserve has been the cornerstone of designing treatment plans for female infertility over the last few years. The most reliable biomarker for assessing female fertility is the antral follicle count (AFC). Also, the anti-müllerian hormone (AMH) is a sensitive test for predicting ovarian reserve and is precisely associated with AFC value. Objective The study aimed to investigate the relationship between serum AFC and AMH levels. Methods This cross-sectional type of observational study included 101 healthy infertile women aged 20-35 years and with low serum AMH. The mean difference in basal AFC among different age groups was evaluated using an independent sample t-test, revealing no significant difference. A multiple regression model was used to assess the association between serum AMH, and other factors related to demographics and other aspects of infertile women with basal AFC. Results The mean age of infertile women in our study was 30.7±3.69, and 29.7% of females had secondary infertility. The highest ovarian reserve was notable among the group 20-25 years, and the lowest follicular volume was observed in the 31 to below 35 years. Multiple regression analyses revealed that serum AFC and AMH had a strong positive association with basal ovarian volume. Additionally, every one-unit surge in AFC and AMH was statistically significant (p<0.05) and concomitant increases with 0.45 cc and 3.98 cc in basal ovarian volume, respectively. Conclusion The AMH and AFC strongly associate with basal ovarian volume, which declines as age progresses.
Collapse
Affiliation(s)
| | - Anwara Begum
- Obstetrics and Gynecology, Colonel Malek Medical College Hospital, Manikganj, Manikganj, BGD
| | - Fatema Rahman
- Obstetrics and Gynecology, Dhaka Medical College Hospital, Dhaka, BGD
| | - Md Ahsanul Haq
- Bio-Statistics, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, BGD
| | - Santosh Kumar
- Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Kona Chowdhury
- Pediatrics, Gonoshasthaya Samaj Vittik Medical College, Dhaka, BGD
| | - Susmita Sinha
- Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Mainul Haque
- Research, School of Dentistry, Karnavati Scientific Research Center (KSRC) Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Rahnuma Ahmad
- Physiology, Medical College for Women and Hospital, Dhaka, BGD
| |
Collapse
|
27
|
Murai T, Matsuda S. Pleiotropic Signaling by Reactive Oxygen Species Concerted with Dietary Phytochemicals and Microbial-Derived Metabolites as Potent Therapeutic Regulators of the Tumor Microenvironment. Antioxidants (Basel) 2023; 12:1056. [PMID: 37237922 PMCID: PMC10215163 DOI: 10.3390/antiox12051056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The excessive generation of reactive oxygen species (ROS) plays a pivotal role in the pathogenesis of diseases. ROS are central to cellular redox regulation and act as second messengers to activate redox-sensitive signals. Recent studies have revealed that certain sources of ROS can be beneficial or harmful to human health. Considering the essential and pleiotropic roles of ROS in basic physiological functions, future therapeutics should be designed to modulate the redox state. Dietary phytochemicals, microbiota, and metabolites derived from them can be expected to be developed as drugs to prevent or treat disorders in the tumor microenvironment.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
28
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|