1
|
Seregina T, Shelomentsev I, Krivoborodov E, Vaniushenkova A, Toropygin I, Dyatlov A, Lukashov N, Dyatlov V. Physicochemical and Biological Properties of Vancomycin-Containing Antibacterial Polysaccharide Gels for Biocomposite Bone Implant Impregnation. Biomacromolecules 2024; 25:4156-4167. [PMID: 38922325 DOI: 10.1021/acs.biomac.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Polymeric drugs containing up to 60% by weight of the antibiotic vancomycin were synthesized based on dextran carriers activated with epichlorohydrin. Vancomycin was covalently bound, involving the primary amino group of the molecule through the hydroxypropyl radical to the C6 position of the anhydroglucose units of the dextran main chain. Covalent binding is necessary to prevent spontaneous release of the antibiotic from the gel, thereby reducing the risk of bacterial multiresistance. Antibacterial depot gels were obtained from those polymers, containing up to 17.5% by weight of polysaccharide with a cross-linking density of q = 3-5 nodes per macromolecule for the deposition of another type of drugs not covalently bound to the polymer gel. They were used to coat the surface of the internal pores of biocomposite bone implants based on bovine cancellous bone used in orthopedics. The chemical structure of the polymer was studied using 13C NMR spectroscopy and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The stiffness of the gels was evaluated by the values of the accumulation modulus G' = 170-270 kPa and the loss modulus G″ = 3.7-4.2 kPa determined on a rheometer. Their values are close to those typical for materials used to replace soft tissue in plastic surgery. The minimum inhibitory concentration of the gels against Staphylococcus aureus P209 depends on the antibiotic content in the polymer. It equals 2.5 mg/L for vancomycin we used and 100 mg/L for a polymer containing 50% by weight of covalently bound antibiotic. The cytotoxic concentration measured with cell culture HEK 293T exceeds 1200 mg/L in 24 h exposure. The release dynamics of drugs not covalently bound to dextran from the depot gel were studied using fluorescein as a model. The release time is independent of the gel density and lasts up to 6 days for a 2 mm thick layer. Both the gel and the bone implants impregnated with it maintained consistently high antibacterial activity throughout the experiment, up to its completion after 168 h, with the local concentration of the released antibiotic at the site of bacterial attack exceeding the therapeutic level by 200 times.
Collapse
Affiliation(s)
- Tatiana Seregina
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Ilya Shelomentsev
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Efrem Krivoborodov
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Anna Vaniushenkova
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Ilya Toropygin
- V. N. Orekhovich Institute of Biomedical Chemistry, Pogodinskaya str., 10, p. 8, 119121 Moscow, Russia
| | - Alexander Dyatlov
- The Hebrew University of Jerusalem, POB 12272, Jerusalem 9112000, Israel
| | - Nikolay Lukashov
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Valerie Dyatlov
- D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| |
Collapse
|
2
|
Ibrahim Almusi BJ, Al-Kamali RK. Effect of Platelet-Rich Fibrin Combined With Hyaluronic Acid on Bone Formation in Dental Implant Sockets: An In Vivo Study in Sheep. Cureus 2024; 16:e64651. [PMID: 39015217 PMCID: PMC11251443 DOI: 10.7759/cureus.64651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVES The goal was to evaluate the effect of the combined growth factor of hyaluronic acid (HA) and advanced platelet-rich fibrin (A-PRF) on acceleration and maturation of bone formation around titanium dental implants in the bone-free space (jumping distance) of an over-preparation socket. MATERIALS AND METHODS Thirty-two titanium dental implants were placed in four sheep and distributed into one control group (A) and three experimental groups (B, C, and D) in two different time periods. Each sheep received eight implants. The eight implants in each sheep were distributed into four groups. The first period was one month after the initial placement, 16 implants were used in two sheep. The second period was three months after the initial placement; another 16 implants were used in the other two sheep. All implants were placed in over-prepared implant sockets, resulting in minimal primary stability. In Group A: the space between the dental implant and the bone of the inner wall of the socket was left without a growth substrate material. In Group B: we added HA between the dental implant and the bone of the inner wall of the socket. In Group C: we added A-PRF between the dental implant and the bone of the inner wall of the socket. In Group D: we added a combination of HA and A-PRF between the dental implant and the bone of the inner wall of the socket. Data was collected for each group at one month and three months at the same time. A high-resolution, desktop micro-CT system (Bruker Skyscan 1275, Kontich, Belgium) was used to scan the specimens. The NRecon software (ver. 1.6.10.4, SkyScan) and CTAn (SkyScan) were used for the visualization and quantitative measurement of the samples. One-way analysis of variance (ANOVA) was used to compare the means of the four study groups in the same period. A post hoc test was used after ANOVA to compare the means of two samples at the same time. A p-value of ≤ 0.05 was considered statistically significant. RESULTS After one month and three months of using combined HA and A-PRF on Group D, significant acceleration was observed in bone formation in all tests around dental implants compared with other groups, while no significant acceleration was observed when they were used separately; all three study groups showed significant results when compared with the control group. CONCLUSION Our data showed that using a combination of HA and A-PRF had a significant effect on the acceleration of the bone formation and ossification process when added to bone-free space (jumping distance) around implants while leaving space without any growth substrates might delay the bone ossification process.
Collapse
Affiliation(s)
- Blend J Ibrahim Almusi
- Department of Oral Surgery, Khanazad Teaching Center, Erbil Health Care Institute, Ministry of Health, Erbil, IRQ
| | - Reiadh K Al-Kamali
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Hawler Medical University, Erbil, IRQ
| |
Collapse
|
3
|
Lee S, Lee J, Choi S, Kim E, Kwon H, Lee J, Kim SM, Shin H. Biofabrication of 3D adipose tissue via assembly of composite stem cell spheroids containing adipo-inductive dual-signal delivery nanofibers. Biofabrication 2024; 16:035018. [PMID: 38739412 DOI: 10.1088/1758-5090/ad4a67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Reconstruction of large 3D tissues based on assembly of micro-sized multi-cellular spheroids has gained attention in tissue engineering. However, formation of 3D adipose tissue from spheroids has been challenging due to the limited adhesion capability and restricted cell mobility of adipocytes in culture media. In this study, we addressed this problem by developing adipo-inductive nanofibers enabling dual delivery of indomethacin and insulin. These nanofibers were introduced into composite spheroids comprising human adipose-derived stem cells (hADSCs). This approach led to a significant enhancement in the formation of uniform lipid droplets, as evidenced by the significantly increased Oil red O-stained area in spheroids incorporating indomethacin and insulin dual delivery nanofibers (56.9 ± 4.6%) compared to the control (15.6 ± 3.5%) with significantly greater gene expression associated with adipogenesis (C/EBPA, PPARG, FABP4, and adiponectin) of hADSCs. Furthermore, we investigated the influence of culture media on the migration and merging of spheroids and observed significant decrease in migration and merging of spheroids in adipogenic differentiation media. Conversely, the presence of adipo-inductive nanofibers promoted spheroid fusion, allowing the formation of macroscopic 3D adipose tissue in the absence of adipogenic supplements while facilitating homogeneous adipogenesis of hADSCs. The approach described here holds promise for the generation of 3D adipose tissue constructs by scaffold-free assembly of stem cell spheroids with potential applications in clinical and organ models.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeongbok Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation, Hanyang University, Seoul 04763, Republic of Korea
| | - Soomi Choi
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyunseok Kwon
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sung Min Kim
- BK21 FOUR, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
- Major in Sport Science, Collage of Performing Arts and Sport, Hanyang University, Seoul 04763, Republic of Korea
- Center for Artificial Intelligence Muscle, Hanyang University, Seoul 04743, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
4
|
Liu H, Xing F, Yu P, Zhe M, Duan X, Liu M, Xiang Z, Ritz U. A review of biomacromolecule-based 3D bioprinting strategies for structure-function integrated repair of skin tissues. Int J Biol Macromol 2024; 268:131623. [PMID: 38642687 DOI: 10.1016/j.ijbiomac.2024.131623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
When skin is damaged or affected by diseases, it often undergoes irreversible scar formation, leading to aesthetic concerns and psychological distress for patients. In cases of extensive skin defects, the patient's life can be severely compromised. In recent years, 3D printing technology has emerged as a groundbreaking approach to skin tissue engineering, offering promising solutions to various skin-related conditions. 3D bioprinting technology enables the precise fabrication of structures by programming the spatial arrangement of cells within the skin tissue and subsequently printing skin replacements either in a 3D bioprinter or directly at the site of the defect. This study provides a comprehensive overview of various biopolymer-based inks, with a particular emphasis on chitosan (CS), starch, alginate, agarose, cellulose, and fibronectin, all of which are natural polymers belonging to the category of biomacromolecules. Additionally, it summarizes artificially synthesized polymers capable of enhancing the performance of these biomacromolecule-based bioinks, thereby composing hybrid biopolymer inks aimed at better application in skin tissue engineering endeavors. This review paper examines the recent advancements, characteristics, benefits, and limitations of biological 3D bioprinting techniques for skin tissue engineering. By utilizing bioinks containing seed cells, hydrogels with bioactive factors, and biomaterials, complex structures resembling natural skin can be accurately fabricated in a layer-by-layer manner. The importance of biological scaffolds in promoting skin wound healing and the role of 3D bioprinting in skin tissue regeneration processes is discussed. Additionally, this paper addresses the challenges and constraints associated with current 3D bioprinting technologies for skin tissue and presents future perspectives. These include advancements in bioink formulations, full-thickness skin bioprinting, vascularization strategies, and skin appendages bioprinting.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Pediatric Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Duan
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopedics, Sanya People's Hospital, 572000 Sanya, Hainan, China.
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
5
|
Oskarsdotter K, Nordgård CT, Apelgren P, Säljö K, Solbu AA, Eliasson E, Sämfors S, Sætrang HEM, Asdahl LC, Thompson EM, Troedsson C, Simonsson S, Strand BL, Gatenholm P, Kölby L. Injectable In Situ Crosslinking Hydrogel for Autologous Fat Grafting. Gels 2023; 9:813. [PMID: 37888386 PMCID: PMC10606883 DOI: 10.3390/gels9100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Autologous fat grafting is hampered by unpredictable outcomes due to high tissue resorption. Hydrogels based on enzymatically pretreated tunicate nanocellulose (ETC) and alginate (ALG) are biocompatible, safe, and present physiochemical properties capable of promoting cell survival. Here, we compared in situ and ex situ crosslinking of ETC/ALG hydrogels combined with lipoaspirate human adipose tissue (LAT) to generate an injectable formulation capable of retaining dimensional stability in vivo. We performed in situ crosslinking using two different approaches; inducing Ca2+ release from CaCO3 microparticles (CMPs) and physiologically available Ca2+ in vivo. Additionally, we generated ex situ-crosslinked, 3D-bioprinted hydrogel-fat grafts. We found that in vitro optimization generated a CMP-crosslinking system with comparable stiffness to ex situ-crosslinked gels. Comparison of outcomes following in vivo injection of each respective crosslinked hydrogel revealed that after 30 days, in situ crosslinking generated fat grafts with less shape retention than 3D-bioprinted constructs that had undergone ex situ crosslinking. However, CMP addition improved fat-cell distribution and cell survival relative to grafts dependent on physiological Ca2+ alone. These findings suggested that in situ crosslinking using CMP might promote the dimensional stability of injectable fat-hydrogel grafts, although 3D bioprinting with ex situ crosslinking more effectively ensured proper shape stability in vivo.
Collapse
Affiliation(s)
- Kristin Oskarsdotter
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Catherine T. Nordgård
- Department of Biotechnology and Food Science, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Peter Apelgren
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Karin Säljö
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Anita A. Solbu
- Department of Biotechnology and Food Science, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Edwin Eliasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Sanna Sämfors
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | | | - Lise Cathrine Asdahl
- DuPont Nutrition Norge AS d/b/a NovaMatrix, Postboks 223, 1377 Billingstad, Norway
| | - Eric M. Thompson
- Ocean TuniCell AS, 5258 Blomsterdalen, Norway
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
| | | | - Stina Simonsson
- Department of Medicinal Chemistry & Cell Biology, Institution of Biomedicine, Sahlgrenska University Hospital, 405 30 Gothenburg, Sweden
| | - Berit L. Strand
- Department of Biotechnology and Food Science, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Lars Kölby
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| |
Collapse
|
6
|
Karamikamkar S, Yalcintas EP, Haghniaz R, de Barros NR, Mecwan M, Nasiri R, Davoodi E, Nasrollahi F, Erdem A, Kang H, Lee J, Zhu Y, Ahadian S, Jucaud V, Maleki H, Dokmeci MR, Kim H, Khademhosseini A. Aerogel-Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease-Targeting Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204681. [PMID: 37217831 PMCID: PMC10427407 DOI: 10.1002/advs.202204681] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 05/24/2023]
Abstract
Aerogel-based biomaterials are increasingly being considered for biomedical applications due to their unique properties such as high porosity, hierarchical porous network, and large specific pore surface area. Depending on the pore size of the aerogel, biological effects such as cell adhesion, fluid absorption, oxygen permeability, and metabolite exchange can be altered. Based on the diverse potential of aerogels in biomedical applications, this paper provides a comprehensive review of fabrication processes including sol-gel, aging, drying, and self-assembly along with the materials that can be used to form aerogels. In addition to the technology utilizing aerogel itself, it also provides insight into the applicability of aerogel based on additive manufacturing technology. To this end, how microfluidic-based technologies and 3D printing can be combined with aerogel-based materials for biomedical applications is discussed. Furthermore, previously reported examples of aerogels for regenerative medicine and biomedical applications are thoroughly reviewed. A wide range of applications with aerogels including wound healing, drug delivery, tissue engineering, and diagnostics are demonstrated. Finally, the prospects for aerogel-based biomedical applications are presented. The understanding of the fabrication, modification, and applicability of aerogels through this study is expected to shed light on the biomedical utilization of aerogels.
Collapse
Affiliation(s)
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Elham Davoodi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Fatemeh Nasrollahi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los Angeles (UCLA)Los AngelesCA90095USA
| | - Ahmet Erdem
- Department of Biomedical EngineeringKocaeli UniversityUmuttepe CampusKocaeli41001Turkey
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Junmin Lee
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| | | | - Han‐Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- College of PharmacyKorea UniversitySejong30019Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| |
Collapse
|
7
|
Silveira BBB, Teixeira LN, Miron RJ, Martinez EF. Effect of platelet-rich fibrin (PRF) membranes on the healing of infected skin wounds. Arch Dermatol Res 2023; 315:559-567. [PMID: 36201046 DOI: 10.1007/s00403-022-02401-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/02/2022]
Abstract
Tissue engineering focuses on wound healing and tissue regeneration. Platelet-rich fibrin (PRF) is a fibrin matrix containing cytokines, growth factors and cells that are gradually released into the wound over time. This study aimed to evaluate the effect of PRF membranes on wound repair and microbial control in infected wounds. Skin wounds were performed on the dorsum of rats using a 6 mm diameter metal punch. The defects were randomly assigned into four groups (n = 12/each) accordingly to the treatment: G1, noninfected wound filled only with clot; G2, noninfected wound with PRF; G3, infected wound (S. aureus) without PRF; G4, infected wound (S. aureus) with PRF. After 7 and 14 days, macroscopic and histological analyses of the wounds were performed. Furthermore, the quantification of β-defensin in PRF was measured by ELISA. At 14 days, the groups with PRF (G2 and G4) had wound sizes significantly smaller than the original defects (6 mm) (p < 0.05) and significantly smaller than those not treated with PRF, in both the infected and noninfected groups (p < 0.05). Furthermore, the groups with infected wounds (G3 and G4) demonstrated a significantly lower inflammation score in the PRF group than in the noninfected groups (p < 0.05). In vitro analysis of β-defensin was performed in all PRF membrane groups, and the median value was 1.444 pg/mL. PRF in the wounds of both control and infected rats played an important role in the modulation of tissue healing, most notably in infected sites.
Collapse
Affiliation(s)
| | - Lucas Novaes Teixeira
- Division of Cell Biology, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Rua José Rocha Junqueira, 13, CEP, Campinas, São Paulo, 13045-610, Brazil
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Elizabeth Ferreira Martinez
- Division of Cell Biology, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Rua José Rocha Junqueira, 13, CEP, Campinas, São Paulo, 13045-610, Brazil.
| |
Collapse
|
8
|
Revati R, Majid MSA, Ridzuan MJM, Mamat N, Cheng EM, Alshahrani HA. In vitro biodegradation, cytotoxicity, and biocompatibility of polylactic acid/napier cellulose nanofiber scaffold composites. Int J Biol Macromol 2022; 223:479-489. [PMID: 36368357 DOI: 10.1016/j.ijbiomac.2022.11.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
This study aimed to evaluate the bioactivities and biocompatibilities of porous polylactic acid (PLA) reinforced with cellulose nanofiber (CNF) scaffolds. The in vitro degradation behaviors of the porous PLA/CNF scaffolds were systematically measured for up to 8 weeks in a phosphate-buffered saline medium at 37 °C. The reinforcement of CNF resisted the biodegradation of the scaffolds. The in vitro cytotoxicity and biocompatibility of the scaffolds were determined using the Beas2B American Type Culture Collection cells. The 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide cytotoxicity and proliferation tests showed that the scaffolds were non-toxic, and epithelial cells grew well on the scaffold after 7 days of culture, whereas the percentage of cell proliferation on the PLA/CNF15 scaffold was the largest, 130 %. A scratch wound-healing assay was performed to evaluate the suitability of the scaffolds for cell migration. The results demonstrated that the scaffolds exhibited good cell migration towards nearly complete wound closure.
Collapse
Affiliation(s)
- R Revati
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau 02600, Perlis, Malaysia; Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau 02600, Perlis, Malaysia
| | - M S Abdul Majid
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau 02600, Perlis, Malaysia.
| | - M J M Ridzuan
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau 02600, Perlis, Malaysia
| | - N Mamat
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau 02600, Perlis, Malaysia
| | - E M Cheng
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau 02600, Perlis, Malaysia
| | - Hassan A Alshahrani
- Department of Mechanical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
9
|
Louis F, Sowa Y, Irie S, Higuchi Y, Kitano S, Mazda O, Matsusaki M. Injectable Prevascularized Mature Adipose Tissues (iPAT) to Achieve Long-Term Survival in Soft Tissue Regeneration. Adv Healthc Mater 2022; 11:e2201440. [PMID: 36103662 DOI: 10.1002/adhm.202201440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 09/01/2022] [Indexed: 01/28/2023]
Abstract
Soft tissue regeneration remains a challenge in reconstructive surgery. So far, both autologous fat implantations and artificial implants methods used in clinical applications lead to various disadvantages and limited lifespan. To overcome these limitations and improve the graft volume maintenance, reproducing a mature adipose tissue already including vasculature structure before implantation can be the solution. Therefore, injectable prevascularized adipose tissues (iPAT) are made from physiological collagen microfibers mixed with human mature adipocytes, adipose-derived stem cells, and human umbilical vein endothelial cells, embedded in fibrin gel. Following murine subcutaneous implantation, the iPAT show a higher cell survival (84% ± 6% viability) and volume maintenance after 3 months (up to twice heavier) when compared to non-prevascularized balls and liposuctioned fat implanted controls. This higher survival can be explained by the greater amount of blood vessels found (up to 1.6-fold increase), with balanced host anastomosis (51% ± 1% of human/mouse lumens), also involving infiltration by the lymphatic and neural vasculature networks. Furthermore, with the cryopreservation possibility enabling their later reinjection, the iPAT technology has the merit to allow noninvasive soft tissue regeneration for long-term outcomes.
Collapse
Affiliation(s)
- Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Shinji Irie
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,TOPPAN INC, Taito, Tokyo, 110-0016, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Shiro Kitano
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,TOPPAN INC, Taito, Tokyo, 110-0016, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
10
|
Terzopoulou Z, Zamboulis A, Koumentakou I, Michailidou G, Noordam MJ, Bikiaris DN. Biocompatible Synthetic Polymers for Tissue Engineering Purposes. Biomacromolecules 2022; 23:1841-1863. [PMID: 35438479 DOI: 10.1021/acs.biomac.2c00047] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgia Michailidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michiel Jan Noordam
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Translational considerations for adipose-derived biological scaffolds for soft tissue repair. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Xing F, Zhou C, Hui D, Du C, Wu L, Wang L, Wang W, Pu X, Gu L, Liu L, Xiang Z, Zhang X. Hyaluronic acid as a bioactive component for bone tissue regeneration: Fabrication, modification, properties, and biological functions. NANOTECHNOLOGY REVIEWS 2020. [DOI: 10.1515/ntrev-2020-0084] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Hyaluronic acid (HA) is widely distributed in the human body, and it is heavily involved in many physiological functions such as tissue hydration, wound repair, and cell migration. In recent years, HA and its derivatives have been widely used as advanced bioactive polymers for bone regeneration. Many medical products containing HA have been developed because this natural polymer has been proven to be nontoxic, noninflammatory, biodegradable, and biocompatible. Moreover, HA-based composite scaffolds have shown good potential for promoting osteogenesis and mineralization. Recently, many HA-based biomaterials have been fabricated for bone regeneration by combining with electrospinning and 3D printing technology. In this review, the polymer structures, processing, properties, and applications in bone tissue engineering are summarized. The challenges and prospects of HA polymers are also discussed.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
- College of Biomedical Engineering, Sichuan University , 610064 , Chengdu , China
| | - Didi Hui
- Innovatus Oral Cosmetic & Surgical Institute , Norman , OK, 73069 , United States of America
| | - Colin Du
- Innovatus Oral Cosmetic & Surgical Institute , Norman , OK, 73069 , United States of America
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
- College of Biomedical Engineering, Sichuan University , 610064 , Chengdu , China
| | - Linnan Wang
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Wenzhao Wang
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Xiaobing Pu
- Department of Orthopedics Medical Center, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Sciences, College of Engineering & Science, Florida Institute of Technology , Melbourne , FL, 32901 , United States of America
| | - Lei Liu
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University , 610041 , Chengdu , China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , 610064 , Chengdu , China
- College of Biomedical Engineering, Sichuan University , 610064 , Chengdu , China
| |
Collapse
|
13
|
Peng W, Peng Z, Tang P, Sun H, Lei H, Li Z, Hui D, Du C, Zhou C, Wang Y. Review of Plastic Surgery Biomaterials and Current Progress in Their 3D Manufacturing Technology. MATERIALS 2020; 13:ma13184108. [PMID: 32947925 PMCID: PMC7560273 DOI: 10.3390/ma13184108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/05/2023]
Abstract
Plastic surgery is a broad field, including maxillofacial surgery, skin flaps and grafts, liposuction and body contouring, breast surgery, and facial cosmetic procedures. Due to the requirements of plastic surgery for the biological safety of materials, biomaterials are widely used because of its superior biocompatibility and biodegradability. Currently, there are many kinds of biomaterials clinically used in plastic surgery and their applications are diverse. Moreover, with the rise of three-dimensional printing technology in recent years, the macroscopically more precise and personalized bio-scaffolding materials with microporous structure have made good progress, which is thought to bring new development to biomaterials. Therefore, in this paper, we reviewed the plastic surgery biomaterials and current progress in their 3D manufacturing technology.
Collapse
Affiliation(s)
- Wei Peng
- Department of Palliative Care, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China;
- Occupational Health Emergency Key Laboratory of West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyu Peng
- Department of Thoracic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Pei Tang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (P.T.); (Z.L.)
| | - Huan Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (H.S.); (H.L.); (C.Z.)
| | - Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (H.S.); (H.L.); (C.Z.)
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (P.T.); (Z.L.)
| | - Didi Hui
- Innovatus Oral Cosmetic & Surgical Institute, Norman, OK 73069, USA; (D.H.); (C.D.)
| | - Colin Du
- Innovatus Oral Cosmetic & Surgical Institute, Norman, OK 73069, USA; (D.H.); (C.D.)
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (H.S.); (H.L.); (C.Z.)
| | - Yongwei Wang
- Department of Palliative Care, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China;
- Occupational Health Emergency Key Laboratory of West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|