1
|
Severcan F, Ozyurt I, Dogan A, Severcan M, Gurbanov R, Kucukcankurt F, Elibol B, Tiftikcioglu I, Gursoy E, Yangin MN, Zorlu Y. Decoding myasthenia gravis: advanced diagnosis with infrared spectroscopy and machine learning. Sci Rep 2024; 14:19316. [PMID: 39164310 PMCID: PMC11336246 DOI: 10.1038/s41598-024-66501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/02/2024] [Indexed: 08/22/2024] Open
Abstract
Myasthenia Gravis (MG) is a rare neurological disease. Although there are intensive efforts, the underlying mechanism of MG still has not been fully elucidated, and early diagnosis is still a question mark. Diagnostic paraclinical tests are also time-consuming, burden patients financially, and sometimes all test results can be negative. Therefore, rapid, cost-effective novel methods are essential for the early accurate diagnosis of MG. Here, we aimed to determine MG-induced spectral biomarkers from blood serum using infrared spectroscopy. Furthermore, infrared spectroscopy coupled with multivariate analysis methods e.g., principal component analysis (PCA), support vector machine (SVM), discriminant analysis and Neural Network Classifier were used for rapid MG diagnosis. The detailed spectral characterization studies revealed significant increases in lipid peroxidation; saturated lipid, protein, and DNA concentrations; protein phosphorylation; PO2-asym + sym /protein and PO2-sym/lipid ratios; as well as structural changes in protein with a significant decrease in lipid dynamics. All these spectral parameters can be used as biomarkers for MG diagnosis and also in MG therapy. Furthermore, MG was diagnosed with 100% accuracy, sensitivity and specificity values by infrared spectroscopy coupled with multivariate analysis methods. In conclusion, FTIR spectroscopy coupled with machine learning technology is advancing towards clinical translation as a rapid, low-cost, sensitive novel approach for MG diagnosis.
Collapse
Affiliation(s)
- Feride Severcan
- Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Türkiye.
| | - Ipek Ozyurt
- Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Türkiye
| | - Ayca Dogan
- Department of Physiology, Faculty of Medicine, Altinbas University, Istanbul, Türkiye
| | - Mete Severcan
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Türkiye
| | - Rafig Gurbanov
- Department of Bioengineering, Faculty of Engineering, Bilecik Seyh Edebali University, Bilecik, Türkiye
| | - Fulya Kucukcankurt
- Department of Medical Biology, Faculty of Medicine, Altinbas University, Istanbul, Türkiye
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Türkiye
| | - Irem Tiftikcioglu
- Cigli Training and Research Hospital, Neurology Clinic, Bakircay University, İzmir, Türkiye
| | - Esra Gursoy
- Department of Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Türkiye
- Basaksehir Cam and Sakura City Hospital, Neurology Clinics, Istanbul, Türkiye
| | - Melike Nur Yangin
- Biomedical Sciences Graduate Program, Institute of Graduate Studies, Altinbas University, Istanbul, Türkiye
| | - Yasar Zorlu
- Tepecik Educational and Training Hospital, Neurology Department, University of Health Sciences, Izmir, Türkiye
| |
Collapse
|
2
|
Roecher E, Mösch L, Zweerings J, Thiele FO, Caspers S, Gaebler AJ, Eisner P, Sarkheil P, Mathiak K. Motion Artifact Detection for T1-Weighted Brain MR Images Using Convolutional Neural Networks. Int J Neural Syst 2024:2450052. [PMID: 38989919 DOI: 10.1142/s0129065724500527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Quality assessment (QA) of magnetic resonance imaging (MRI) encompasses several factors such as noise, contrast, homogeneity, and imaging artifacts. Quality evaluation is often not standardized and relies on the expertise, and vigilance of the personnel, posing limitations especially with large datasets. Machine learning based on convolutional neural networks (CNNs) is a promising approach to address these challenges by performing automated inspection of MR images. In this study, a CNN for the detection of random head motion artifacts (RHM) in T1-weighted MRI as one aspect of image quality is proposed. A two-step approach aimed to first identify images exhibiting pronounced motion artifacts, and second to evaluate the feasibility of a more detailed three-class classification. The utilized dataset consisted of 420 T1-weighted whole-brain image volumes with isotropic resolution. Human experts assigned each volume to one of three classes of artifact prominence. Results demonstrate an accuracy of 95% for the identification of images with pronounced artifact load. The addition of an intermediate class retained an accuracy of 76%. The findings highlight the potential of CNN-based approaches to increase the efficiency of post-hoc QAs in large datasets by flagging images with potentially relevant artifact loads for closer inspection.
Collapse
Affiliation(s)
- Erik Roecher
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany
| | - Lucas Mösch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany
| | | | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty & University, Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Arnim Johannes Gaebler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany
- JARA-BRAIN, Jülich Aachen Research Alliance (JARA), Translational Brain Medicine, Germany
- Institute of Neurophysiology, Faculty of Medicine, RWTH Aachen, Germany
| | - Patrick Eisner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany
| | - Pegah Sarkheil
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Germany
- JARA-BRAIN, Jülich Aachen Research Alliance (JARA), Translational Brain Medicine, Germany
| |
Collapse
|
3
|
Yang Y, Mirzaei G. Performance analysis of data resampling on class imbalance and classification techniques on multi-omics data for cancer classification. PLoS One 2024; 19:e0293607. [PMID: 38422094 PMCID: PMC10903850 DOI: 10.1371/journal.pone.0293607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/17/2023] [Indexed: 03/02/2024] Open
Abstract
Cancer, in any of its forms, remains a significant public health concern worldwide. Advances in early detection and treatment could lead to a decline in the overall death rate from cancer in recent decades. Therefore, tumor prediction and classification play an important role in fighting cancer. This study built computational models for a joint analysis of RNA seq, copy number variation (CNV), and DNA methylation to classify normal and tumor samples across liver cancer, breast cancer, and colon adenocarcinoma from The Cancer Genome Atlas (TCGA) dataset. Total of 18 machine learning methods were evaluated based on the AUC, precision, recall, and F-measure. Besides, five techniques were compared to ameliorate problems of class imbalance in the cancer datasets. Synthetic Minority Oversampling Technique (SMOTE) demonstrated the best performance. The results indicate that the model applying Stochastic Gradient Descent (SGD) for learning binary class SVM with hinge loss has the highest classification results on liver cancer and breast cancer datasets, with accuracy over 99% and AUC greater than or equal to 0.999. For colon adenocarcinoma dataset, both SGD and Sequential Minimal Optimization (SMO) that implements John Platt's sequential minimal optimization algorithm for training a support vector machine shows an outstanding classification performance with accuracy of 100%, AUC, precision, recall, and F-measure all at 1.000.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Golrokh Mirzaei
- Department of Computer Science and Engineering, The Ohio State University, Marion, Ohio, United States of America
| |
Collapse
|
4
|
Mercaldo F, Di Giammarco M, Ravelli F, Martinelli F, Santone A, Cesarelli M. Alzheimer's Disease Evaluation Through Visual Explainability by Means of Convolutional Neural Networks. Int J Neural Syst 2024; 34:2450007. [PMID: 38273799 DOI: 10.1142/s0129065724500072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Background and Objective: Alzheimer's disease is nowadays the most common cause of dementia. It is a degenerative neurological pathology affecting the brain, progressively leading the patient to a state of total dependence, thus creating a very complex and difficult situation for the family that has to assist him/her. Early diagnosis is a primary objective and constitutes the hope of being able to intervene in the development phase of the disease. Methods: In this paper, a method to automatically detect the presence of Alzheimer's disease, by exploiting deep learning, is proposed. Five different convolutional neural networks are considered: ALEX_NET, VGG16, FAB_CONVNET, STANDARD_CNN and FCNN. The first two networks are state-of-the-art models, while the last three are designed by authors. We classify brain images into one of the following classes: non-demented, very mild demented and mild demented. Moreover, we highlight on the image the areas symptomatic of Alzheimer presence, thus providing a visual explanation behind the model diagnosis. Results: The experimental analysis, conducted on more than 6000 magnetic resonance images, demonstrated the effectiveness of the proposed neural networks in the comparison with the state-of-the-art models in Alzheimer's disease diagnosis and localization. The best results in terms of metrics are the best with STANDARD_CNN and FCNN with accuracy, precision and recall between 98% and 95%. Excellent results also from a qualitative point of view are obtained with the Grad-CAM for localization and visual explainability. Conclusions: The analysis of the heatmaps produced by the Grad-CAM algorithm shows that in almost all cases the heatmaps highlight regions such as ventricles and cerebral cortex. Future work will focus on the realization of a network capable of analyzing the three anatomical views simultaneously.
Collapse
Affiliation(s)
- Francesco Mercaldo
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
- Institute for Informatics and Telematics, National Research Council of Italy (CNR), Pisa, Italy
| | - Marcello Di Giammarco
- Institute for Informatics and Telematics, National Research Council of Italy (CNR), Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Fabrizio Ravelli
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Fabio Martinelli
- Institute for Informatics and Telematics, National Research Council of Italy (CNR), Pisa, Italy
| | - Antonella Santone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Mario Cesarelli
- Department of Engineering, University of Sannio, Benevento, Italy
| |
Collapse
|
5
|
Hu J, Yu C, Yi Z, Zhang H. Enhancing Robustness of Medical Image Segmentation Model with Neural Memory Ordinary Differential Equation. Int J Neural Syst 2023; 33:2350060. [PMID: 37743765 DOI: 10.1142/s0129065723500600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Deep neural networks (DNNs) have emerged as a prominent model in medical image segmentation, achieving remarkable advancements in clinical practice. Despite the promising results reported in the literature, the effectiveness of DNNs necessitates substantial quantities of high-quality annotated training data. During experiments, we observe a significant decline in the performance of DNNs on the test set when there exists disruption in the labels of the training dataset, revealing inherent limitations in the robustness of DNNs. In this paper, we find that the neural memory ordinary differential equation (nmODE), a recently proposed model based on ordinary differential equations (ODEs), not only addresses the robustness limitation but also enhances performance when trained by the clean training dataset. However, it is acknowledged that the ODE-based model tends to be less computationally efficient compared to the conventional discrete models due to the multiple function evaluations required by the ODE solver. Recognizing the efficiency limitation of the ODE-based model, we propose a novel approach called the nmODE-based knowledge distillation (nmODE-KD). The proposed method aims to transfer knowledge from the continuous nmODE to a discrete layer, simultaneously enhancing the model's robustness and efficiency. The core concept of nmODE-KD revolves around enforcing the discrete layer to mimic the continuous nmODE by minimizing the KL divergence between them. Experimental results on 18 organs-at-risk segmentation tasks demonstrate that nmODE-KD exhibits improved robustness compared to ODE-based models while also mitigating the efficiency limitation.
Collapse
Affiliation(s)
- Junjie Hu
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu 610065, P. R. China
| | - Chengrong Yu
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu 610065, P. R. China
| | - Zhang Yi
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu 610065, P. R. China
| | - Haixian Zhang
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
6
|
Winchester LM, Harshfield EL, Shi L, Badhwar A, Khleifat AA, Clarke N, Dehsarvi A, Lengyel I, Lourida I, Madan CR, Marzi SJ, Proitsi P, Rajkumar AP, Rittman T, Silajdžić E, Tamburin S, Ranson JM, Llewellyn DJ. Artificial intelligence for biomarker discovery in Alzheimer's disease and dementia. Alzheimers Dement 2023; 19:5860-5871. [PMID: 37654029 PMCID: PMC10840606 DOI: 10.1002/alz.13390] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 09/02/2023]
Abstract
With the increase in large multimodal cohorts and high-throughput technologies, the potential for discovering novel biomarkers is no longer limited by data set size. Artificial intelligence (AI) and machine learning approaches have been developed to detect novel biomarkers and interactions in complex data sets. We discuss exemplar uses and evaluate current applications and limitations of AI to discover novel biomarkers. Remaining challenges include a lack of diversity in the data sets available, the sheer complexity of investigating interactions, the invasiveness and cost of some biomarkers, and poor reporting in some studies. Overcoming these challenges will involve collecting data from underrepresented populations, developing more powerful AI approaches, validating the use of noninvasive biomarkers, and adhering to reporting guidelines. By harnessing rich multimodal data through AI approaches and international collaborative innovation, we are well positioned to identify clinically useful biomarkers that are accurate, generalizable, unbiased, and acceptable in clinical practice. HIGHLIGHTS: Artificial intelligence and machine learning approaches may accelerate dementia biomarker discovery. Remaining challenges include data set suitability due to size and bias in cohort selection. Multimodal data, diverse data sets, improved machine learning approaches, real-world validation, and interdisciplinary collaboration are required.
Collapse
Affiliation(s)
| | - Eric L Harshfield
- Department of Clinical Neurosciences, Stroke Research Group, University of Cambridge, Cambridge, UK
| | - Liu Shi
- Novo Nordisk Research Centre Oxford (NNRCO), Headington, UK
| | - AmanPreet Badhwar
- Département de Pharmacologie et Physiologie, Institut de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montreal, Canada
- Centre de recherche de l'Institut Universitaire de Gériatrie (CRIUGM), Montreal, Canada
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Natasha Clarke
- Centre de recherche de l'Institut Universitaire de Gériatrie (CRIUGM), Montreal, Canada
| | - Amir Dehsarvi
- School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Imre Lengyel
- Wellcome-Wolfson Institute of Experimental Medicine, Queen's University, Belfast, UK
| | - Ilianna Lourida
- Health and Community Sciences, University of Exeter Medical School, Exeter, UK
| | | | - Sarah J Marzi
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Petroula Proitsi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anto P Rajkumar
- Institute of Mental Health, Mental Health and Clinical Neurosciences academic unit, University of Nottingham, Nottingham, UK, Mental health services of older people, Nottinghamshire healthcare NHS foundation trust, Nottingham, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Edina Silajdžić
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Janice M Ranson
- Health and Community Sciences, University of Exeter Medical School, Exeter, UK
| | - David J Llewellyn
- Health and Community Sciences, University of Exeter Medical School, Exeter, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
7
|
Raj A, Mirzaei G. Reinforcement-Learning-Based Localization of Hippocampus for Alzheimer's Disease Detection. Diagnostics (Basel) 2023; 13:3292. [PMID: 37958188 PMCID: PMC10649327 DOI: 10.3390/diagnostics13213292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily impacting memory and cognitive functions. The hippocampus serves as a key biomarker associated with AD. In this study, we present an end-to-end automated approach for AD detection by introducing a reinforcement-learning-based technique to localize the hippocampus within structural MRI images. Subsequently, this localized hippocampus serves as input for a deep convolutional neural network for AD classification. We model the agent-environment interaction using a Deep Q-Network (DQN), encompassing both a convolutional Target Net and Policy Net. Furthermore, we introduce an integrated loss function that combines cross-entropy and contrastive loss to effectively train the classifier model. Our approach leverages a single optimal slice extracted from each subject's 3D sMRI, thereby reducing computational complexity while maintaining performance comparable to volumetric data analysis methods. To evaluate the effectiveness of our proposed localization and classification framework, we compare its performance to the results achieved by supervised models directly trained on ground truth hippocampal regions as input. The proposed approach demonstrates promising performance in terms of classification accuracy, F1-score, precision, and recall. It achieves an F1-score within an error margin of 3.7% and 1.1% and an accuracy within an error margin of 6.6% and 1.6% when compared to the supervised models trained directly on ground truth masks, all while achieving the highest recall score.
Collapse
Affiliation(s)
- Aditya Raj
- Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Golrokh Mirzaei
- Computer Science and Engineering, The Ohio State University, Marion, OH 43302, USA
| |
Collapse
|
8
|
Huang Y, Huang Z, Yang Q, Jin H, Xu T, Fu Y, Zhu Y, Zhang X, Chen C. Predicting mild cognitive impairment among Chinese older adults: a longitudinal study based on long short-term memory networks and machine learning. Front Aging Neurosci 2023; 15:1283243. [PMID: 37937119 PMCID: PMC10626462 DOI: 10.3389/fnagi.2023.1283243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Background Mild cognitive impairment (MCI) is a transitory yet reversible stage of dementia. Systematic, scientific and population-wide early screening system for MCI is lacking. This study aimed to construct prediction models using longitudinal data to identify potential MCI patients and explore its critical features among Chinese older adults. Methods A total of 2,128 participants were selected from wave 5-8 of Chinese Longitudinal Healthy Longevity Study. Cognitive function was measured using the Chinese version of Mini-Mental State Examination. Long- short-term memory (LSTM) and three machine learning techniques, including 8 sociodemographic features and 12 health behavior and health status features, were used to predict individual risk of MCI in the next year. Performances of prediction models were evaluated through receiver operating curve and decision curve analysis. The importance of predictors in prediction models were explored using Shapley Additive explanation (SHAP) model. Results The area under the curve values of three models were around 0.90 and decision curve analysis indicated that the net benefit of XGboost and Random Forest were approximate when threshold is lower than 0.8. SHAP models showed that age, education, respiratory disease, gastrointestinal ulcer and self-rated health are the five most important predictors of MCI. Conclusion This screening method of MCI, combining LSTM and machine learning, successfully predicted the risk of MCI using longitudinal datasets, and enables health care providers to implement early intervention to delay the process from MCI to dementia, reducing the incidence and treatment cost of dementia ultimately.
Collapse
Affiliation(s)
- Yucheng Huang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zishuo Huang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Innovation and Entrepreneurship, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingren Yang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Innovation and Entrepreneurship, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haojie Jin
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tingke Xu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yating Fu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Zhu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chun Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Center for Healthy China Research, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Rani S, Dhar SB, Khajuria A, Gupta D, Jaiswal PK, Singla N, Kaur M, Singh G, Barnwal RP. Advanced Overview of Biomarkers and Techniques for Early Diagnosis of Alzheimer's Disease. Cell Mol Neurobiol 2023; 43:2491-2523. [PMID: 36847930 PMCID: PMC11410160 DOI: 10.1007/s10571-023-01330-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The development of early non-invasive diagnosis methods and identification of novel biomarkers are necessary for managing Alzheimer's disease (AD) and facilitating effective prognosis and treatment. AD has multi-factorial nature and involves complex molecular mechanism, which causes neuronal degeneration. The primary challenges in early AD detection include patient heterogeneity and lack of precise diagnosis at the preclinical stage. Several cerebrospinal fluid (CSF) and blood biomarkers have been proposed to show excellent diagnosis ability by identifying tau pathology and cerebral amyloid beta (Aβ) for AD. Intense research endeavors are being made to develop ultrasensitive detection techniques and find potent biomarkers for early AD diagnosis. To mitigate AD worldwide, understanding various CSF biomarkers, blood biomarkers, and techniques that can be used for early diagnosis is imperative. This review attempts to provide information regarding AD pathophysiology, genetic and non-genetic factors associated with AD, several potential blood and CSF biomarkers, like neurofilament light, neurogranin, Aβ, and tau, along with biomarkers under development for AD detection. Besides, numerous techniques, such as neuroimaging, spectroscopic techniques, biosensors, and neuroproteomics, which are being explored to aid early AD detection, have been discussed. The insights thus gained would help in finding potential biomarkers and suitable techniques for the accurate diagnosis of early AD before cognitive dysfunction.
Collapse
Affiliation(s)
- Shital Rani
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Sudhrita Basu Dhar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Dikshi Gupta
- JoyScore Inc., 2440 Cerritos Ave, Signal Hill, CA, 90755, USA
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX, 77843, USA
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Mandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
10
|
Hollenbenders Y, Pobiruchin M, Reichenbach A. Two Routes to Alzheimer's Disease Based on Differential Structural Changes in Key Brain Regions. J Alzheimers Dis 2023; 92:1399-1412. [PMID: 36911937 DOI: 10.3233/jad-221061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder with homogenous disease patterns. Neuropathological changes precede symptoms by up to two decades making neuroimaging biomarkers a prime candidate for early diagnosis, prognosis, and patient stratification. OBJECTIVE The goal of the study was to discern intermediate AD stages and their precursors based on neuroanatomical features for stratifying patients on their progression through different stages. METHODS Data include grey matter features from 14 brain regions extracted from longitudinal structural MRI and cognitive data obtained from 1,017 healthy controls and AD patients of ADNI. AD progression was modeled with a Hidden Markov Model, whose hidden states signify disease stages derived from the neuroanatomical data. To tie the progression in brain atrophy to a behavioral marker, we analyzed the ADAS-cog sub-scores in the stages. RESULTS The optimal model consists of eight states with differentiable neuroanatomical features, forming two routes crossing once at a very early point and merging at the final state. The cortical route is characterized by early and sustained atrophy in cortical regions. The limbic route is characterized by early decrease in limbic regions. Cognitive differences between the two routes are most noticeable in the memory domain with subjects from the limbic route experiencing stronger memory impairments. CONCLUSION Our findings corroborate that more than one pattern of grey matter deterioration with several discernable stages can be identified in the progression of AD. These neuroanatomical subtypes are behaviorally meaningful and provide a door into early diagnosis of AD and prognosis of the disease's progression.
Collapse
Affiliation(s)
- Yasmin Hollenbenders
- Medical Faculty Heidelberg, Heidelberg University, Germany.,Faculty of Computer Science, Heilbronn University of Applied Sciences, Germany.,Center for Machine Learning, Heilbronn University of Applied Sciences, Germany
| | - Monika Pobiruchin
- Faculty of Computer Science, Heilbronn University of Applied Sciences, Germany.,GECKO Institute for Medicine, Informatics and Economics, Heilbronn University of Applied Sciences, Germany
| | - Alexandra Reichenbach
- Medical Faculty Heidelberg, Heidelberg University, Germany.,Faculty of Computer Science, Heilbronn University of Applied Sciences, Germany.,Center for Machine Learning, Heilbronn University of Applied Sciences, Germany
| | | |
Collapse
|
11
|
Kumar M, Nguyen TPN, Kaur J, Singh TG, Soni D, Singh R, Kumar P. Opportunities and challenges in application of artificial intelligence in pharmacology. Pharmacol Rep 2023; 75:3-18. [PMID: 36624355 PMCID: PMC9838466 DOI: 10.1007/s43440-022-00445-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/11/2023]
Abstract
Artificial intelligence (AI) is a machine science that can mimic human behaviour like intelligent analysis of data. AI functions with specialized algorithms and integrates with deep and machine learning. Living in the digital world can generate a huge amount of medical data every day. Therefore, we need an automated and reliable evaluation tool that can make decisions more accurately and faster. Machine learning has the potential to learn, understand and analyse the data used in healthcare systems. In the last few years, AI is known to be employed in various fields in pharmaceutical science especially in pharmacological research. It helps in the analysis of preclinical (laboratory animals) and clinical (in human) trial data. AI also plays important role in various processes such as drug discovery/manufacturing, diagnosis of big data for disease identification, personalized treatment, clinical trial research, radiotherapy, surgical robotics, smart electronic health records, and epidemic outbreak prediction. Moreover, AI has been used in the evaluation of biomarkers and diseases. In this review, we explain various models and general processes of machine learning and their role in pharmacological science. Therefore, AI with deep learning and machine learning could be relevant in pharmacological research.
Collapse
Affiliation(s)
- Mandeep Kumar
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - T P Nhung Nguyen
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
- Department of Pharmacy, Da Nang University of Medical Technology and Pharmacy, Da Nang, Vietnam
| | - Jasleen Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Lucknow, Uttar Pradesh, 226002, India
| | | | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
12
|
Machine Learning-Based Blood RNA Signature for Diagnosis of Autism Spectrum Disorder. Int J Mol Sci 2023; 24:ijms24032082. [PMID: 36768401 PMCID: PMC9916487 DOI: 10.3390/ijms24032082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Early diagnosis of autism spectrum disorder (ASD) is crucial for providing appropriate treatments and parental guidance from an early age. Yet, ASD diagnosis is a lengthy process, in part due to the lack of reliable biomarkers. We recently applied RNA-sequencing of peripheral blood samples from 73 American and Israeli children with ASD and 26 neurotypically developing (NT) children to identify 10 genes with dysregulated blood expression levels in children with ASD. Machine learning (ML) analyzes data by computerized analytical model building and may be applied to building diagnostic tools based on the optimization of large datasets. Here, we present several ML-generated models, based on RNA expression datasets collected during our recently published RNA-seq study, as tentative tools for ASD diagnosis. Using the random forest classifier, two of our proposed models yield an accuracy of 82% in distinguishing children with ASD and NT children. Our proof-of-concept study requires refinement and independent validation by studies with far larger cohorts of children with ASD and NT children and should thus be perceived as starting point for building more accurate ML-based tools. Eventually, such tools may potentially provide an unbiased means to support the early diagnosis of ASD.
Collapse
|
13
|
Lin H, Jiang J, Li Z, Sheng C, Du W, Li X, Han Y. Identification of subjective cognitive decline due to Alzheimer's disease using multimodal MRI combining with machine learning. Cereb Cortex 2023; 33:557-566. [PMID: 35348655 DOI: 10.1093/cercor/bhac084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 02/03/2023] Open
Abstract
Subjective cognitive decline (SCD) is a preclinical asymptomatic stage of Alzheimer's disease (AD). Accurate diagnosis of SCD represents the greatest challenge for current clinical practice. The multimodal magnetic resonance imaging (MRI) features of 7 brain networks and 90 regions of interests from Chinese and ANDI cohorts were calculated. Machine learning (ML) methods based on support vector machine (SVM) were used to classify SCD plus and normal control. To assure the robustness of ML model, above analyses were repeated in amyloid β (Aβ) and apolipoprotein E (APOE) ɛ4 subgroups. We found that the accuracy of the proposed multimodal SVM method achieved 79.49% and 83.13%, respectively, in Chinese and ANDI cohorts for the diagnosis of the SCD plus individuals. Furthermore, adding Aβ pathology and ApoE ɛ4 genotype information can further improve the accuracy to 85.36% and 82.52%. More importantly, the classification model exhibited the robustness in the crossracial cohorts and different subgroups, which outperforms any single and 2 modalities. The study indicates that multimodal MRI imaging combining with ML classification method yields excellent and powerful performances at categorizing SCD due to AD, suggesting potential for clinical utility.
Collapse
Affiliation(s)
- Hua Lin
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Xicheng distinct, Changchun street 45, Beijing 100053, China
| | - Jiehui Jiang
- Department of Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Baoshan distinct, Shangda road 99, Shanghai 200444, China
| | - Zhuoyuan Li
- Department of Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Baoshan distinct, Shangda road 99, Shanghai 200444, China
| | - Can Sheng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Xicheng distinct, Changchun street 45, Beijing 100053, China
| | - Wenying Du
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Xicheng distinct, Changchun street 45, Beijing 100053, China
| | - Xiayu Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Xicheng distinct, Changchun street 45, Beijing 100053, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Xicheng distinct, Changchun street 45, Beijing 100053, China.,School of Biomedical Engineering, Hainan University, Renmin road 58, Haikou 570228, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Xichen distinct, Changchun street 45, Beijing 100053, China.,National Clinical Research Center for Geriatric Disorders, Xichen distinct, Changchun street 45, Beijing 100053, China
| |
Collapse
|
14
|
Xian R, Lugu R, Peng H, Yang Q, Luo X, Wang J. Edge Detection Method Based on Nonlinear Spiking Neural Systems. Int J Neural Syst 2023; 33:2250060. [PMID: 36328966 DOI: 10.1142/s0129065722500605] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nonlinear spiking neural P (NSNP) systems are a class of neural-like computational models inspired from the nonlinear mechanism of spiking neurons. NSNP systems have a distinguishing feature: nonlinear spiking mechanism. To handle edge detection of images, this paper proposes a variant, nonlinear spiking neural P (NSNP) systems with two outputs (TO), termed as NSNP-TO systems. Based on NSNP-TO system, an edge detection framework is developed, termed as ED-NSNP detector. The detection ability of ED-NSNP detector relies on two convolutional kernels. To obtain good detection performance, particle swarm optimization (PSO) is used to optimize the parameters of the two convolutional kernels. The proposed ED-NSNP detector is evaluated on several open benchmark images and compared with seven baseline edge detection methods. The comparison results indicate the availability and effectiveness of the proposed ED-NSNP detector.
Collapse
Affiliation(s)
- Ronghao Xian
- School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China
| | - Rikong Lugu
- School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China
| | - Hong Peng
- School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China
| | - Qian Yang
- School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China
| | - Xiaohui Luo
- School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China
| | - Jun Wang
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
15
|
Liu X, Shu Y, Yu P, Li H, Duan W, Wei Z, Li K, Xie W, Zeng Y, Peng D. Classification of severe obstructive sleep apnea with cognitive impairment using degree centrality: A machine learning analysis. Front Neurol 2022; 13:1005650. [PMID: 36090863 PMCID: PMC9453022 DOI: 10.3389/fneur.2022.1005650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, we aimed to use voxel-level degree centrality (DC) features in combination with machine learning methods to distinguish obstructive sleep apnea (OSA) patients with and without mild cognitive impairment (MCI). Ninety-nine OSA patients were recruited for rs-MRI scanning, including 51 MCI patients and 48 participants with no mild cognitive impairment. Based on the Automated Anatomical Labeling (AAL) brain atlas, the DC features of all participants were calculated and extracted. Ten DC features were screened out by deleting variables with high pin-correlation and minimum absolute contraction and performing selective operator lasso regression. Finally, three machine learning methods were used to establish classification models. The support vector machine method had the best classification efficiency (AUC = 0.78), followed by random forest (AUC = 0.71) and logistic regression (AUC = 0.77). These findings demonstrate an effective machine learning approach for differentiating OSA patients with and without MCI and provide potential neuroimaging evidence for cognitive impairment caused by OSA.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yongqiang Shu
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Pengfei Yu
- Big Data Center, the Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Haijun Li
- Department of PET Center, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Wenfeng Duan
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhipeng Wei
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Kunyao Li
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Wei Xie
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yaping Zeng
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Dechang Peng
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
- *Correspondence: Dechang Peng
| |
Collapse
|
16
|
Modeling the efficacy of different anti-angiogenic drugs on treatment of solid tumors using 3D computational modeling and machine learning. Comput Biol Med 2022; 146:105511. [DOI: 10.1016/j.compbiomed.2022.105511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022]
|
17
|
Wang K, Wang Y, Zhan B, Yang Y, Zu C, Wu X, Zhou J, Nie D, Zhou L. An Efficient Semi-Supervised Framework with Multi-Task and Curriculum Learning for Medical Image Segmentation. Int J Neural Syst 2022; 32:2250043. [DOI: 10.1142/s0129065722500435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Alotaibi M, Alnajjar F, Cappuccio M, Khalid S, Alhmiedat T, Mubin O. Efficacy of Emerging Technologies to Manage Childhood Obesity. Diabetes Metab Syndr Obes 2022; 15:1227-1244. [PMID: 35480851 PMCID: PMC9037732 DOI: 10.2147/dmso.s357176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
Childhood obesity is a widespread medical condition and presents a formidable challenge for public health. Long-term treatment strategies and early prevention strategies are required because obese children are more likely to carry this condition into adulthood, increasing their risk of developing other major health disorders. The present review analyses various technological interventions available for childhood obesity prevention and treatment. It also examines whether machine learning and technological interventions can play vital roles in its management. Twenty-six studies were shortlisted for the review using various technological strategies and analysed regarding their efficacy. While most of the selected studies showed positive outcomes, there was a lack of studies using robots and artificial intelligence to manage obesity in children. The use of machine learning was observed in various studies, and the integration of social robots and other efficacious strategies may be effective for treating childhood obesity in the future.
Collapse
Affiliation(s)
- Mohammad Alotaibi
- Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Fady Alnajjar
- College of Information Technology, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Massimiliano Cappuccio
- School of Engineering and IT, University of New South Wales Canberra, Canberra, Australia
| | - Sumaya Khalid
- College of Information Technology, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Tareq Alhmiedat
- Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Saudi Arabia
- Industrial Innovation & Robotics Center, University of Tabuk, Tabuk, Saudi Arabia
| | - Omar Mubin
- School of Computer, Data and Mathematical Sciences, Western Sydney University, Sydney, Australia
| |
Collapse
|
19
|
Qu C, Zou Y, Ma Y, Chen Q, Luo J, Fan H, Jia Z, Gong Q, Chen T. Diagnostic Performance of Generative Adversarial Network-Based Deep Learning Methods for Alzheimer's Disease: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2022; 14:841696. [PMID: 35527734 PMCID: PMC9068970 DOI: 10.3389/fnagi.2022.841696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Currently, only symptomatic management is available, and early diagnosis and intervention are crucial for AD treatment. As a recent deep learning strategy, generative adversarial networks (GANs) are expected to benefit AD diagnosis, but their performance remains to be verified. This study provided a systematic review on the application of the GAN-based deep learning method in the diagnosis of AD and conducted a meta-analysis to evaluate its diagnostic performance. A search of the following electronic databases was performed by two researchers independently in August 2021: MEDLINE (PubMed), Cochrane Library, EMBASE, and Web of Science. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was applied to assess the quality of the included studies. The accuracy of the model applied in the diagnosis of AD was determined by calculating odds ratios (ORs) with 95% confidence intervals (CIs). A bivariate random-effects model was used to calculate the pooled sensitivity and specificity with their 95% CIs. Fourteen studies were included, 11 of which were included in the meta-analysis. The overall quality of the included studies was high according to the QUADAS-2 assessment. For the AD vs. cognitively normal (CN) classification, the GAN-based deep learning method exhibited better performance than the non-GAN method, with significantly higher accuracy (OR 1.425, 95% CI: 1.150-1.766, P = 0.001), pooled sensitivity (0.88 vs. 0.83), pooled specificity (0.93 vs. 0.89), and area under the curve (AUC) of the summary receiver operating characteristic curve (SROC) (0.96 vs. 0.93). For the progressing MCI (pMCI) vs. stable MCI (sMCI) classification, the GAN method exhibited no significant increase in the accuracy (OR 1.149, 95% CI: 0.878-1.505, P = 0.310) or the pooled sensitivity (0.66 vs. 0.66). The pooled specificity and AUC of the SROC in the GAN group were slightly higher than those in the non-GAN group (0.81 vs. 0.78 and 0.81 vs. 0.80, respectively). The present results suggested that the GAN-based deep learning method performed well in the task of AD vs. CN classification. However, the diagnostic performance of GAN in the task of pMCI vs. sMCI classification needs to be improved. Systematic Review Registration: [PROSPERO], Identifier: [CRD42021275294].
Collapse
Affiliation(s)
- Changxing Qu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yinxi Zou
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yingqiao Ma
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiawei Luo
- West China Biomedical Big Data Center, West China Clinical Medical College of Sichuan University, Chengdu, China
| | - Huiyong Fan
- College of Education Science, Bohai University, Jinzhou, China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Porcaro C, Vecchio F, Miraglia F, Zito G, Rossini PM. Dynamics of the "Cognitive" Brain Wave P3b at Rest for Alzheimer Dementia Prediction in Mild Cognitive Impairment. Int J Neural Syst 2022; 32:2250022. [PMID: 35435134 DOI: 10.1142/s0129065722500228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia that involves a progressive and irrevocable decline in cognitive abilities and social behavior, thus annihilating the patient's autonomy. The theoretical assumption that disease-modifying drugs are most effective in the early stages hopefully in the prodromal stage called mild cognitive impairment (MCI) urgently pushes toward the identification of robust and individualized markers of cognitive decline to establish an early pharmacological intervention. This requires the combination of well-established neural mechanisms and the development of increasingly sensitive methodologies. Among the neurophysiological markers of attention and cognition, one of the sub-components of the 'cognitive brain wave' P300 recordable in an odd-ball paradigm -namely the P3b- is extensively regarded as a sensitive indicator of cognitive performance. Several studies have reliably shown that changes in the amplitude and latency of the P3b are strongly related to cognitive decline and aging both healthy and pathological. Here, we used a P3b spatial filter to enhance the electroencephalographic (EEG) characteristics underlying 175 subjects divided into 135 MCI subjects, 20 elderly controls (EC), and 20 young volunteers (Y). The Y group served to extract the P3b spatial filter from EEG data, which was later applied to the other groups during resting conditions with eyes open and without being asked to perform any task. The group of 135 MCI subjects could be divided into two subgroups at the end of a month follow-up: 75 with stable MCI (MCI-S, not converted to AD), 60 converted to AD (MCI-C). The P3b spatial filter was built by means of a signal processing method called Functional Source Separation (FSS), which increases signal-to-noise ratio by using a weighted sum of all EEG recording channels rather than relying on a single, or a small sub-set, of channels. A clear difference was observed for the P3b dynamics at rest between groups. Moreover, a machine learning approach showed that P3b at rest could correctly distinguish MCI from EC (80.6% accuracy) and MCI-S from MCI-C (74.1% accuracy), with an accuracy as high as 93.8% in discriminating between MCI-C and EC. Finally, a comparison of the Bayes factor revealed that the group differences among MCI-S and MCI-C were 138 times more likely to be detected using the P3b dynamics compared with the best performing single electrode (Pz) approach. In conclusion, we propose that P3b as measured through spatial filters can be safely regarded as a simple and sensitive marker to predict the conversion from an MCI to AD status eventually combined with other non-neurophysiological biomarkers for a more precise definition of dementia having neuropathological Alzheimer characteristics.
Collapse
Affiliation(s)
- Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.,Institute of Cognitive Sciences and Technologies, (ISTC) - National Research Council (CNR), Rome, Italy.,Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neurosciences & Neurorehabilitation, IRCCS San Raffaele-Roma, Rome, Italy.,Department of Theoretical and Applied Sciences, eCampus University, Novedrate (Como), Italy
| | - Francesca Miraglia
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate (Como), Italy.,Department of Neurology, Neurovascular Treatment Unit, San Camillo de Lellis Hospital, Rieti, Italy
| | - Giancarlo Zito
- Brain Connectivity Laboratory, Department of Neurosciences & Neurorehabilitation, IRCCS San Raffaele-Roma, Rome, Italy.,Department of Neurology, Neurovascular Treatment Unit, San Camillo de Lellis Hospital, Rieti, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neurosciences & Neurorehabilitation, IRCCS San Raffaele-Roma, Rome, Italy
| |
Collapse
|
21
|
Maliske L, Kanske P. The Social Connectome - Moving Toward Complexity in the Study of Brain Networks and Their Interactions in Social Cognitive and Affective Neuroscience. Front Psychiatry 2022; 13:845492. [PMID: 35449570 PMCID: PMC9016142 DOI: 10.3389/fpsyt.2022.845492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past 150 years of neuroscientific research, the field has undergone a tremendous evolution. Starting out with lesion-based inference of brain function, functional neuroimaging, introduced in the late 1980s, and increasingly fine-grained and sophisticated methods and analyses now allow us to study the live neural correlates of complex behaviors in individuals and multiple agents simultaneously. Classically, brain-behavior coupling has been studied as an association of a specific area in the brain and a certain behavioral outcome. This has been a crucial first step in understanding brain organization. Social cognitive processes, as well as their neural correlates, have typically been regarded and studied as isolated functions and blobs of neural activation. However, as our understanding of the social brain as an inherently dynamic organ grows, research in the field of social neuroscience is slowly undergoing the necessary evolution from studying individual elements to how these elements interact and their embedding within the overall brain architecture. In this article, we review recent studies that investigate the neural representation of social cognition as interacting, complex, and flexible networks. We discuss studies that identify individual brain networks associated with social affect and cognition, interaction of these networks, and their relevance for disorders of social affect and cognition. This perspective on social cognitive neuroscience can highlight how a more fine-grained understanding of complex network (re-)configurations could improve our understanding of social cognitive deficits in mental disorders such as autism spectrum disorder and schizophrenia, thereby providing new impulses for methods of interventions.
Collapse
Affiliation(s)
- Lara Maliske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
22
|
Hua Y, Shu X, Wang Z, Zhang L. Uncertainty-Guided Voxel-Level Supervised Contrastive Learning for Semi-Supervised Medical Image Segmentation. Int J Neural Syst 2022; 32:2250016. [DOI: 10.1142/s0129065722500162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Semi-supervised learning reduces overfitting and facilitates medical image segmentation by regularizing the learning of limited well-annotated data with the knowledge provided by a large amount of unlabeled data. However, there are many misuses and underutilization of data in conventional semi-supervised methods. On the one hand, the model will deviate from the empirical distribution under the training of numerous unlabeled data. On the other hand, the model treats labeled and unlabeled data differently and does not consider inter-data information. In this paper, a semi-supervised method is proposed to exploit unlabeled data to further narrow the gap between the semi-supervised model and its fully-supervised counterpart. Specifically, the architecture of the proposed method is based on the mean-teacher framework, and the uncertainty estimation module is improved to impose constraints of consistency and guide the selection of feature representation vectors. Notably, a voxel-level supervised contrastive learning module is devised to establish a contrastive relationship between feature representation vectors, whether from labeled or unlabeled data. The supervised manner ensures that the network learns the correct knowledge, and the dense contrastive relationship further extracts information from unlabeled data. The above overcomes data misuse and underutilization in semi-supervised frameworks. Moreover, it favors the feature representation with intra-class compactness and inter-class separability and gains extra performance. Extensive experimental results on the left atrium dataset from Atrial Segmentation Challenge demonstrate that the proposed method has superior performance over the state-of-the-art methods.
Collapse
Affiliation(s)
- Yu Hua
- College of Computer Science, Sichuan University, Section 4, Southern 1st Ring Rd, Chengdu, Sichuan 610065, P. R. China
| | - Xin Shu
- College of Computer Science, Sichuan University, Section 4, Southern 1st Ring Rd, Chengdu, Sichuan 610065, P. R. China
| | - Zizhou Wang
- College of Computer Science, Sichuan University, Section 4, Southern 1st Ring Rd, Chengdu, Sichuan 610065, P. R. China
| | - Lei Zhang
- College of Computer Science, Sichuan University, Section 4, Southern 1st Ring Rd, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
23
|
Machine learning prediction and tau-based screening identifies potential Alzheimer's disease genes relevant to immunity. Commun Biol 2022; 5:125. [PMID: 35149761 PMCID: PMC8837797 DOI: 10.1038/s42003-022-03068-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2022] [Indexed: 12/19/2022] Open
Abstract
With increased research funding for Alzheimer's disease (AD) and related disorders across the globe, large amounts of data are being generated. Several studies employed machine learning methods to understand the ever-growing omics data to enhance early diagnosis, map complex disease networks, or uncover potential drug targets. We describe results based on a Target Central Resource Database protein knowledge graph and evidence paths transformed into vectors by metapath matching. We extracted features between specific genes and diseases, then trained and optimized our model using XGBoost, termed MPxgb(AD). To determine our MPxgb(AD) prediction performance, we examined the top twenty predicted genes through an experimental screening pipeline. Our analysis identified potential AD risk genes: FRRS1, CTRAM, SCGB3A1, FAM92B/CIBAR2, and TMEFF2. FRRS1 and FAM92B are considered dark genes, while CTRAM, SCGB3A1, and TMEFF2 are connected to TREM2-TYROBP, IL-1β-TNFα, and MTOR-APP AD-risk nodes, suggesting relevance to the pathogenesis of AD.
Collapse
|
24
|
Machine learning techniques for diagnosis of alzheimer disease, mild cognitive disorder, and other types of dementia. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Feng N, Hu F, Wang H, Zhou B. Motor Intention Decoding from the Upper Limb by Graph Convolutional Network Based on Functional Connectivity. Int J Neural Syst 2021; 31:2150047. [PMID: 34693880 DOI: 10.1142/s0129065721500477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Decoding brain intention from noninvasively measured neural signals has recently been a hot topic in brain-computer interface (BCI). The motor commands about the movements of fine parts can increase the degrees of freedom under control and be applied to external equipment without stimulus. In the decoding process, the classifier is one of the key factors, and the graph information of the EEG was ignored by most researchers. In this paper, a graph convolutional network (GCN) based on functional connectivity was proposed to decode the motor intention of four fine parts movements (shoulder, elbow, wrist, hand). First, event-related desynchronization was analyzed to reveal the differences between the four classes. Second, functional connectivity was constructed by using synchronization likelihood (SL), phase-locking value (PLV), H index (H), mutual information (MI), and weighted phase-lag index (WPLI) to acquire the electrode pairs with a difference. Subsequently, a GCN and convolutional neural networks (CNN) were performed based on functional topological structures and time points, respectively. The results demonstrated that the proposed method achieved a decoding accuracy of up to 92.81% in the four-class task. Besides, the combination of GCN and functional connectivity can promote the development of BCI.
Collapse
Affiliation(s)
- Naishi Feng
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Fo Hu
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Hong Wang
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Bin Zhou
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
26
|
Formoso MA, Ortiz A, Martinez-Murcia FJ, Gallego N, Luque JL. Detecting Phase-Synchrony Connectivity Anomalies in EEG Signals. Application to Dyslexia Diagnosis. SENSORS 2021; 21:s21217061. [PMID: 34770378 PMCID: PMC8588444 DOI: 10.3390/s21217061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023]
Abstract
Objective Dyslexia diagnosis is a challenging task, since traditional diagnosis methods are not based on biological markers but on behavioural tests. Although dyslexia diagnosis has been addressed by these tests in clinical practice, it is difficult to extract information about the brain processes involved in the different tasks and, then, to go deeper into its biological basis. Thus, the use of biomarkers can contribute not only to the diagnosis but also to a better understanding of specific learning disorders such as dyslexia. In this work, we use Electroencephalography (EEG) signals to discover differences among controls and dyslexic subjects using signal processing and artificial intelligence techniques. Specifically, we measure phase synchronization among channels, to reveal the functional brain network activated during auditory processing. On the other hand, to explore synchronicity patterns risen by low-level auditory processing, we used specific stimuli consisting in band-limited white noise, modulated in amplitude at different frequencies. The differential information contained in the functional (i.e., synchronization) network has been processed by an anomaly detection system that addresses the problem of subjects variability by an outlier-detection method based on vector quantization. The results, obtained for 7 years-old children, show that the proposed method constitutes an useful tool for clinical use, with the area under ROC curve (AUC) values up to 0.95 in differential diagnosis tasks.
Collapse
Affiliation(s)
- Marco A. Formoso
- Communications Engineering Department, University of Málaga, 29071 Málaga, Spain; (M.A.F.); (N.G.)
| | - Andrés Ortiz
- Communications Engineering Department, University of Málaga, 29071 Málaga, Spain; (M.A.F.); (N.G.)
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), 18014 Granada, Spain;
- Correspondence: ; Tel.: +34-952133353
| | - Francisco J. Martinez-Murcia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), 18014 Granada, Spain;
- Department of Signal Theory, Networking and Communications, University of Granada, 18014 Granada, Spain
| | - Nicolás Gallego
- Communications Engineering Department, University of Málaga, 29071 Málaga, Spain; (M.A.F.); (N.G.)
| | - Juan L. Luque
- Department of Basic Psychology, University of Malaga, 29019 Málaga, Spain;
| |
Collapse
|
27
|
Song X, Gu F, Wang X, Ma S, Wang L. Interpretable Recognition for Dementia Using Brain Images. Front Neurosci 2021; 15:748689. [PMID: 34630030 PMCID: PMC8497883 DOI: 10.3389/fnins.2021.748689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022] Open
Abstract
Machine learning-based models are widely used for neuroimage-based dementia recognition and achieve great success. However, most models omit the interpretability that is a very important factor regarding the confidence of a model. Takagi–Sugeno–Kang (TSK) fuzzy classifiers as the high interpretability and promising classification performance have widely used in many scenarios. TSK fuzzy classifier can generate interpretable fuzzy rules showing the reasoning process. However, when facing high-dimensional data, the antecedent become complex which may reduce the interpretability. In this study, to keep the antecedent of fuzzy rule concise, we introduce the subspace clustering technique and use it for antecedent learning. Experimental results show that the used model can generate promising recognition performance as well as concise fuzzy rules.
Collapse
Affiliation(s)
- Xinjian Song
- Department of Rehabilitation Medicine, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, China
| | - Feng Gu
- Department of Medical Image, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, China
| | - Xiude Wang
- Department of Medical Image, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, China
| | - Songhua Ma
- Department of Neurology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, China
| | - Li Wang
- School of Information Science and Technology, Nantong University, Nantong, China.,Research Center for Intelligence Information Technology, Nantong University, Nantong, China.,Nantong Research Institute for Advanced Communication Technologies, Nantong, China
| |
Collapse
|
28
|
The Role of Medication Data to Enhance the Prediction of Alzheimer's Progression Using Machine Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:8439655. [PMID: 34603436 PMCID: PMC8481044 DOI: 10.1155/2021/8439655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
Early detection of Alzheimer's disease (AD) progression is crucial for proper disease management. Most studies concentrate on neuroimaging data analysis of baseline visits only. They ignore the fact that AD is a chronic disease and patient's data are naturally longitudinal. In addition, there are no studies that examine the effect of dementia medicines on the behavior of the disease. In this paper, we propose a machine learning-based architecture for early progression detection of AD based on multimodal data of AD drugs and cognitive scores data. We compare the performance of five popular machine learning techniques including support vector machine, random forest, logistic regression, decision tree, and K-nearest neighbor to predict AD progression after 2.5 years. Extensive experiments are performed using an ADNI dataset of 1036 subjects. The cross-validation performance of most algorithms has been improved by fusing the drugs and cognitive scores data. The results indicate the important role of patient's taken drugs on the progression of AD disease.
Collapse
|
29
|
Zhu J, Tan C, Yang J, Yang G, Lio' P. Arbitrary Scale Super-Resolution for Medical Images. Int J Neural Syst 2021; 31:2150037. [PMID: 34304719 DOI: 10.1142/s0129065721500374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Single image super-resolution (SISR) aims to obtain a high-resolution output from one low-resolution image. Currently, deep learning-based SISR approaches have been widely discussed in medical image processing, because of their potential to achieve high-quality, high spatial resolution images without the cost of additional scans. However, most existing methods are designed for scale-specific SR tasks and are unable to generalize over magnification scales. In this paper, we propose an approach for medical image arbitrary-scale super-resolution (MIASSR), in which we couple meta-learning with generative adversarial networks (GANs) to super-resolve medical images at any scale of magnification in [Formula: see text]. Compared to state-of-the-art SISR algorithms on single-modal magnetic resonance (MR) brain images (OASIS-brains) and multi-modal MR brain images (BraTS), MIASSR achieves comparable fidelity performance and the best perceptual quality with the smallest model size. We also employ transfer learning to enable MIASSR to tackle SR tasks of new medical modalities, such as cardiac MR images (ACDC) and chest computed tomography images (COVID-CT). The source code of our work is also public. Thus, MIASSR has the potential to become a new foundational pre-/post-processing step in clinical image analysis tasks such as reconstruction, image quality enhancement, and segmentation.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Computer Science and Technology, University of Cambridge, Cambridge, CB3 0FD, UK
| | - Chuan Tan
- Department of Computer Science and Technology, University of Cambridge, Cambridge, CB3 0FD, UK
| | - Junwei Yang
- Department of Computer Science and Technology, University of Cambridge, Cambridge, CB3 0FD, UK
| | - Guang Yang
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW3 6NP, UK.,National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Pietro Lio'
- Department of Computer Science and Technology, University of Cambridge, Cambridge, CB3 0FD, UK
| |
Collapse
|
30
|
Tzimourta KD, Christou V, Tzallas AT, Giannakeas N, Astrakas LG, Angelidis P, Tsalikakis D, Tsipouras MG. Machine Learning Algorithms and Statistical Approaches for Alzheimer's Disease Analysis Based on Resting-State EEG Recordings: A Systematic Review. Int J Neural Syst 2021; 31:2130002. [PMID: 33588710 DOI: 10.1142/s0129065721300023] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder and the most common type of dementia with a great prevalence in western countries. The diagnosis of AD and its progression is performed through a variety of clinical procedures including neuropsychological and physical examination, Electroencephalographic (EEG) recording, brain imaging and blood analysis. During the last decades, analysis of the electrophysiological dynamics in AD patients has gained great research interest, as an alternative and cost-effective approach. This paper summarizes recent publications focusing on (a) AD detection and (b) the correlation of quantitative EEG features with AD progression, as it is estimated by Mini Mental State Examination (MMSE) score. A total of 49 experimental studies published from 2009 until 2020, which apply machine learning algorithms on resting state EEG recordings from AD patients, are reviewed. Results of each experimental study are presented and compared. The majority of the studies focus on AD detection incorporating Support Vector Machines, while deep learning techniques have not yet been applied on large EEG datasets. Promising conclusions for future studies are presented.
Collapse
Affiliation(s)
- Katerina D Tzimourta
- Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani, GR50100, Greece
- Department of Medical Physics, Medical School, University of Ioannina, Ioannina GR45110, Greece
| | - Vasileios Christou
- Q Base R&D, Science & Technology Park of Epirus, University of Ioannina Campus, Ioannina GR45110, Greece
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Arta GR47100, Greece
| | - Alexandros T Tzallas
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Arta GR47100, Greece
| | - Nikolaos Giannakeas
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Arta GR47100, Greece
| | - Loukas G Astrakas
- Department of Medical Physics, Medical School, University of Ioannina, Ioannina GR45110, Greece
| | - Pantelis Angelidis
- Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani GR50100, Greece
| | - Dimitrios Tsalikakis
- Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani GR50100, Greece
| | - Markos G Tsipouras
- Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani GR50100, Greece
| |
Collapse
|
31
|
An FP, Liu JE, Wang JR. Medical image segmentation algorithm based on positive scaling invariant-self encoding CCA. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Kim J, Lee M, Lee MK, Wang SM, Kim NY, Kang DW, Um YH, Na HR, Woo YS, Lee CU, Bahk WM, Kim D, Lim HK. Development of Random Forest Algorithm Based Prediction Model of Alzheimer's Disease Using Neurodegeneration Pattern. Psychiatry Investig 2021; 18:69-79. [PMID: 33561931 PMCID: PMC7897872 DOI: 10.30773/pi.2020.0304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) is the most common type of dementia and the prevalence rapidly increased as the elderly population increased worldwide. In the contemporary model of AD, it is regarded as a disease continuum involving preclinical stage to severe dementia. For accurate diagnosis and disease monitoring, objective index reflecting structural change of brain is needed to correctly assess a patient's severity of neurodegeneration independent from the patient's clinical symptoms. The main aim of this paper is to develop a random forest (RF) algorithm-based prediction model of AD using structural magnetic resonance imaging (MRI). METHODS We evaluated diagnostic accuracy and performance of our RF based prediction model using newly developed brain segmentation method compared with the Freesurfer's which is a commonly used segmentation software. RESULTS Our RF model showed high diagnostic accuracy for differentiating healthy controls from AD and mild cognitive impairment (MCI) using structural MRI, patient characteristics, and cognitive function (HC vs. AD 93.5%, AUC 0.99; HC vs. MCI 80.8%, AUC 0.88). Moreover, segmentation processing time of our algorithm (<5 minutes) was much shorter than of Freesurfer's (6-8 hours). CONCLUSION Our RF model might be an effective automatic brain segmentation tool which can be easily applied in real clinical practice.
Collapse
Affiliation(s)
- JeeYoung Kim
- Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Minho Lee
- Research Institute, NEUROPHET Inc., Seoul, Korea
| | - Min Kyoung Lee
- Department of Radiology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nak-Young Kim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent's Hospital Seoul, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Hae-Ran Na
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Sup Woo
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won-Myong Bahk
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
33
|
Jamin A, Abraham P, Humeau-Heurtier A. Machine learning for predictive data analytics in medicine: A review illustrated by cardiovascular and nuclear medicine examples. Clin Physiol Funct Imaging 2020; 41:113-127. [PMID: 33316137 DOI: 10.1111/cpf.12686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 11/01/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
The evidence-based medicine allows the physician to evaluate the risk-benefit ratio of a treatment through setting and data. Risk-based choices can be done by the doctor using different information. With the emergence of new technologies, a large amount of data is recorded offering interesting perspectives with machine learning for predictive data analytics. Machine learning is an ensemble of methods that process data to model a learning problem. Supervised machine learning algorithms consist in using annotated data to construct the model. This category allows to solve prediction data analytics problems. In this paper, we detail the use of supervised machine learning algorithms for predictive data analytics problems in medicine. In the medical field, data can be split into two categories: medical images and other data. For brevity, our review deals with any kind of medical data excluding images. In this article, we offer a discussion around four supervised machine learning approaches: information-based, similarity-based, probability-based and error-based approaches. Each method is illustrated with detailed cardiovascular and nuclear medicine examples. Our review shows that model ensemble (ME) and support vector machine (SVM) methods are the most popular. SVM, ME and artificial neural networks often lead to better results than those given by other algorithms. In the coming years, more studies, more data, more tools and more methods will, for sure, be proposed.
Collapse
Affiliation(s)
- Antoine Jamin
- COTTOS Médical, Avrillé, France.,LERIA-Laboratoire d'Etude et de Recherche en Informatique d'Angers, Univ. Angers, Angers, France.,LARIS-Laboratoire Angevin de Recherche en Ingénierie des Systèmes, Univ. Angers, Angers, France
| | - Pierre Abraham
- Sports Medicine Department, UMR Mitovasc CNRS 6015 INSERM 1228, Angers University Hospital, Angers, France
| | - Anne Humeau-Heurtier
- LARIS-Laboratoire Angevin de Recherche en Ingénierie des Systèmes, Univ. Angers, Angers, France
| |
Collapse
|
34
|
Amezquita-Sanchez JP, Mammone N, Morabito FC, Adeli H. A New dispersion entropy and fuzzy logic system methodology for automated classification of dementia stages using electroencephalograms. Clin Neurol Neurosurg 2020; 201:106446. [PMID: 33383465 DOI: 10.1016/j.clineuro.2020.106446] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/09/2023]
Abstract
A new EEG-based methodology is presented for differential diagnosis of the Alzheimer's disease (AD), Mild Cognitive Impairment (MCI), and healthy subjects employing the discrete wavelet transform (DWT), dispersion entropy index (DEI), a recently-proposed nonlinear measurement, and a fuzzy logic-based classification algorithm. The effectiveness and usefulness of the proposed methodology are evaluated by employing a database of measured EEG data acquired from 135 subjects, 45 MCI, 45 AD and 45 healthy subjects. The proposed methodology differentiates MCI and AD patients from HC subjects with an accuracy of 82.6-86.9%, sensitivity of 91 %, and specificity of 87 %.
Collapse
Affiliation(s)
- Juan P Amezquita-Sanchez
- Autonomous University of Queretaro (UAQ), Faculty of Engineering, Departments Biomedical and Electromechanical, Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, C. P. 76807, San Juan del Río, Qro., Mexico
| | - Nadia Mammone
- Department DICEAM of the Mediterranean University of Reggio Calabria, 89060, Reggio Calabria, Italy
| | - Francesco C Morabito
- Department DICEAM of the Mediterranean University of Reggio Calabria, 89060, Reggio Calabria, Italy
| | - Hojjat Adeli
- Departments of Biomedical Informatics and Neuroscience, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, 43220, USA.
| |
Collapse
|
35
|
Hu R, Zhou S, Tang ZR, Chang S, Huang Q, Liu Y, Han W, Wu EQ. DMMAN: A two-stage audio-visual fusion framework for sound separation and event localization. Neural Netw 2020; 133:229-239. [PMID: 33232859 DOI: 10.1016/j.neunet.2020.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/17/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
Videos are used widely as the media platforms for human beings to touch the physical change of the world. However, we always receive the mixed sound from the multiple sound objects, and cannot distinguish and localize the sounds as the separate entities in videos. In order to solve this problem, a model named the Deep Multi-Modal Attention Network (DMMAN), is established to model the unconstrained video datasets for further finishing the sound source separation and event localization tasks in this paper. Based on the multi-modal separator and multi-modal matching classifier module, our model focuses on the sound separation and modal synchronization problems using two stage fusion of the sound and visual features. To link the multi-modal separator and multi-modal matching classifier modules, the regression and classification losses are employed to build the loss function of the DMMAN. The estimated spectrum masks and attention synchronization scores calculated by the DMMAN can be easily generalized to the sound source and event localization tasks. The quantitative experimental results show the DMMAN not only separates the high quality of the sound sources evaluated by Signal-to-Distortion Ratio and Signal-to-Interference Ratio metrics, but also is suitable for the mixed sound scenes that are never heard jointly. Meanwhile, DMMAN achieves better classification accuracy than other contrast baselines for the event localization tasks.
Collapse
Affiliation(s)
- Ruihan Hu
- Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangdong Key Laboratory of Modern Control Technology, Guangzhou, China.
| | - Songbing Zhou
- Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangdong Key Laboratory of Modern Control Technology, Guangzhou, China.
| | - Zhi Ri Tang
- School of Physics and Technology, Wuhan University, China.
| | - Sheng Chang
- School of Physics and Technology, Wuhan University, China.
| | - Qijun Huang
- School of Physics and Technology, Wuhan University, China.
| | - Yisen Liu
- Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangdong Key Laboratory of Modern Control Technology, Guangzhou, China.
| | - Wei Han
- Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangdong Key Laboratory of Modern Control Technology, Guangzhou, China.
| | - Edmond Q Wu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
36
|
Dua M, Makhija D, Manasa PYL, Mishra P. A CNN–RNN–LSTM Based Amalgamation for Alzheimer’s Disease Detection. J Med Biol Eng 2020. [DOI: 10.1007/s40846-020-00556-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Ortiz A, Martinez-Murcia FJ, Luque JL, Giménez A, Morales-Ortega R, Ortega J. Dyslexia Diagnosis by EEG Temporal and Spectral Descriptors: An Anomaly Detection Approach. Int J Neural Syst 2020; 30:2050029. [PMID: 32496139 DOI: 10.1142/s012906572050029x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Diagnosis of learning difficulties is a challenging goal. There are huge number of factors involved in the evaluation procedure that present high variance among the population with the same difficulty. Diagnosis is usually performed by scoring subjects according to results obtained in different neuropsychological (performance-based) tests specifically designed to this end. One of the most frequent disorders is developmental dyslexia (DD), a specific difficulty in the acquisition of reading skills not related to mental age or inadequate schooling. Its prevalence is estimated between 5% and 12% of the population. Traditional tests for DD diagnosis aim to measure different behavioral variables involved in the reading process. In this paper, we propose a diagnostic method not based on behavioral variables but on involuntary neurophysiological responses to different auditory stimuli. The experiments performed use electroencephalography (EEG) signals to analyze the temporal behavior and the spectral content of the signal acquired from each electrode to extract relevant (temporal and spectral) features. Moreover, the relationship of the features extracted among electrodes allows to infer a connectivity-like model showing brain areas that process auditory stimuli in a synchronized way. Then an anomaly detection system based on the reconstruction residuals of an autoencoder using these features has been proposed. Hence, classification is performed by the proposed system based on the differences in the resulting connectivity models that have demonstrated to be a useful tool for differential diagnosis of DD as well as a method to step towards gaining a better knowledge of the brain processes involved in DD. The results corroborate that nonspeech stimulus modulated at specific frequencies related to the sampling processes developed in the brain to capture rhymes, syllables and phonemes produces effects in specific frequency bands that differentiate between controls and DD subjects. The proposed method showed relatively high sensitivity above 0.6, and up to 0.9 in some of the experiments.
Collapse
Affiliation(s)
- Andrés Ortiz
- Department of Communications Engineering, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain.,Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, C/Periodista Daniel Saucedo Aranda s/n, 18071 Granada, Spain
| | - Francisco J Martinez-Murcia
- Department of Communications Engineering, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain.,Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, C/Periodista Daniel Saucedo Aranda s/n, 18071 Granada, Spain
| | - Juan L Luque
- Department of Developmental and Educational Psychology, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Almudena Giménez
- Department of Basic Psychology, Faculty of Psychology, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain
| | - Roberto Morales-Ortega
- Department of Computer Architecture and Technology, University of Granada, Periodista Daniel Saucedo Aranda, 18071 Granada, Spain
| | - Julio Ortega
- Department of Computer Architecture and Technology, University of Granada, Periodista Daniel Saucedo Aranda, 18071 Granada, Spain
| |
Collapse
|
38
|
Feng W, Halm-Lutterodt NV, Tang H, Mecum A, Mesregah MK, Ma Y, Li H, Zhang F, Wu Z, Yao E, Guo X. Automated MRI-Based Deep Learning Model for Detection of Alzheimer’s Disease Process. Int J Neural Syst 2020; 30:2050032. [DOI: 10.1142/s012906572050032x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the context of neuro-pathological disorders, neuroimaging has been widely accepted as a clinical tool for diagnosing patients with Alzheimer’s disease (AD) and mild cognitive impairment (MCI). The advanced deep learning method, a novel brain imaging technique, was applied in this study to evaluate its contribution to improving the diagnostic accuracy of AD. Three-dimensional convolutional neural networks (3D-CNNs) were applied with magnetic resonance imaging (MRI) to execute binary and ternary disease classification models. The dataset from the Alzheimer’s disease neuroimaging initiative (ADNI) was used to compare the deep learning performances across 3D-CNN, 3D-CNN-support vector machine (SVM) and two-dimensional (2D)-CNN models. The outcomes of accuracy with ternary classification for 2D-CNN, 3D-CNN and 3D-CNN-SVM were [Formula: see text]%, [Formula: see text]% and [Formula: see text]% respectively. The 3D-CNN-SVM yielded a ternary classification accuracy of 93.71%, 96.82% and 96.73% for NC, MCI and AD diagnoses, respectively. Furthermore, 3D-CNN-SVM showed the best performance for binary classification. Our study indicated that ‘NC versus MCI’ showed accuracy, sensitivity and specificity of 98.90%, 98.90% and 98.80%; ‘NC versus AD’ showed accuracy, sensitivity and specificity of 99.10%, 99.80% and 98.40%; and ‘MCI versus AD’ showed accuracy, sensitivity and specificity of 89.40%, 86.70% and 84.00%, respectively. This study clearly demonstrates that 3D-CNN-SVM yields better performance with MRI compared to currently utilized deep learning methods. In addition, 3D-CNN-SVM proved to be efficient without having to manually perform any prior feature extraction and is totally independent of the variability of imaging protocols and scanners. This suggests that it can potentially be exploited by untrained operators and extended to virtual patient imaging data. Furthermore, owing to the safety, noninvasiveness and nonirradiative properties of the MRI modality, 3D-CNN-SMV may serve as an effective screening option for AD in the general population. This study holds value in distinguishing AD and MCI subjects from normal controls and to improve value-based care of patients in clinical practice.
Collapse
Affiliation(s)
- Wei Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Nicholas Van Halm-Lutterodt
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
- Department of Orthopaedics and Neurosurgery, Keck Medical Center of USC, Los Angeles, CA, USA
| | - Hao Tang
- School of Computer Science and Technology, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Andrew Mecum
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Mohamed Kamal Mesregah
- Department of Orthopaedics and Neurosurgery, Keck Medical Center of USC, Los Angeles, CA, USA
| | - Yuan Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Haibin Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Feng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Zhiyuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Erlin Yao
- School of Computer Science and Technology, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
39
|
Young PNE, Estarellas M, Coomans E, Srikrishna M, Beaumont H, Maass A, Venkataraman AV, Lissaman R, Jiménez D, Betts MJ, McGlinchey E, Berron D, O'Connor A, Fox NC, Pereira JB, Jagust W, Carter SF, Paterson RW, Schöll M. Imaging biomarkers in neurodegeneration: current and future practices. Alzheimers Res Ther 2020; 12:49. [PMID: 32340618 PMCID: PMC7187531 DOI: 10.1186/s13195-020-00612-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
There is an increasing role for biological markers (biomarkers) in the understanding and diagnosis of neurodegenerative disorders. The application of imaging biomarkers specifically for the in vivo investigation of neurodegenerative disorders has increased substantially over the past decades and continues to provide further benefits both to the diagnosis and understanding of these diseases. This review forms part of a series of articles which stem from the University College London/University of Gothenburg course "Biomarkers in neurodegenerative diseases". In this review, we focus on neuroimaging, specifically positron emission tomography (PET) and magnetic resonance imaging (MRI), giving an overview of the current established practices clinically and in research as well as new techniques being developed. We will also discuss the use of machine learning (ML) techniques within these fields to provide additional insights to early diagnosis and multimodal analysis.
Collapse
Affiliation(s)
- Peter N E Young
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mar Estarellas
- Centre for Medical Image Computing (CMIC), Department of Computer Science & Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Emma Coomans
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Meera Srikrishna
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helen Beaumont
- Neuroscience and Aphasia Research Unit, Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Ashwin V Venkataraman
- Division of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Rikki Lissaman
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, UK
| | - Daniel Jiménez
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
- Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Antoinette O'Connor
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen F Carter
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, MAHSC, University of Manchester, Manchester, UK
| | - Ross W Paterson
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK.
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
40
|
Computerized decision support and machine learning applications for the prevention and treatment of childhood obesity: A systematic review of the literature. Artif Intell Med 2020; 104:101844. [DOI: 10.1016/j.artmed.2020.101844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
|
41
|
Abstract
The re-kindled fascination in machine learning (ML), observed over the last few decades, has also percolated into natural sciences and engineering. ML algorithms are now used in scientific computing, as well as in data-mining and processing. In this paper, we provide a review of the state-of-the-art in ML for computational science and engineering. We discuss ways of using ML to speed up or improve the quality of simulation techniques such as computational fluid dynamics, molecular dynamics, and structural analysis. We explore the ability of ML to produce computationally efficient surrogate models of physical applications that circumvent the need for the more expensive simulation techniques entirely. We also discuss how ML can be used to process large amounts of data, using as examples many different scientific fields, such as engineering, medicine, astronomy and computing. Finally, we review how ML has been used to create more realistic and responsive virtual reality applications.
Collapse
|
42
|
Lorenzi RM, Palesi F, Castellazzi G, Vitali P, Anzalone N, Bernini S, Cotta Ramusino M, Sinforiani E, Micieli G, Costa A, D’Angelo E, Gandini Wheeler-Kingshott CAM. Unsuspected Involvement of Spinal Cord in Alzheimer Disease. Front Cell Neurosci 2020; 14:6. [PMID: 32082122 PMCID: PMC7002560 DOI: 10.3389/fncel.2020.00006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: Brain atrophy is an established biomarker for dementia, yet spinal cord involvement has not been investigated to date. As the spinal cord is relaying sensorimotor control signals from the cortex to the peripheral nervous system and vice-versa, it is indeed a very interesting question to assess whether it is affected by atrophy due to a disease that is known for its involvement of cognitive domains first and foremost, with motor symptoms being clinically assessed too. We, therefore, hypothesize that in Alzheimer's disease (AD), severe atrophy can affect the spinal cord too and that spinal cord atrophy is indeed an important in vivo imaging biomarker contributing to understanding neurodegeneration associated with dementia. Methods: 3DT1 images of 31 AD and 35 healthy control (HC) subjects were processed to calculate volume of brain structures and cross-sectional area (CSA) and volume (CSV) of the cervical cord [per vertebra as well as the C2-C3 pair (CSA23 and CSV23)]. Correlated features (ρ > 0.7) were removed, and the best subset identified for patients' classification with the Random Forest algorithm. General linear model regression was used to find significant differences between groups (p ≤ 0.05). Linear regression was implemented to assess the explained variance of the Mini-Mental State Examination (MMSE) score as a dependent variable with the best features as predictors. Results: Spinal cord features were significantly reduced in AD, independently of brain volumes. Patients classification reached 76% accuracy when including CSA23 together with volumes of hippocampi, left amygdala, white and gray matter, with 74% sensitivity and 78% specificity. CSA23 alone explained 13% of MMSE variance. Discussion: Our findings reveal that C2-C3 spinal cord atrophy contributes to discriminate AD from HC, together with more established features. The results show that CSA23, calculated from the same 3DT1 scan as all other brain volumes (including right and left hippocampi), has a considerable weight in classification tasks warranting further investigations. Together with recent studies revealing that AD atrophy is spread beyond the temporal lobes, our result adds the spinal cord to a number of unsuspected regions involved in the disease. Interestingly, spinal cord atrophy explains also cognitive scores, which could significantly impact how we model sensorimotor control in degenerative diseases with a primary cognitive domain involvement. Prospective studies should be purposely designed to understand the mechanisms of atrophy and the role of the spinal cord in AD.
Collapse
Affiliation(s)
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Neuroradiology Unit, Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Gloria Castellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Paolo Vitali
- Neuroradiology Unit, Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Sara Bernini
- Laboratory of Neuropsychology, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Cotta Ramusino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Elena Sinforiani
- Laboratory of Neuropsychology, IRCCS Mondino Foundation, Pavia, Italy
| | - Giuseppe Micieli
- Department of Emergency Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Alfredo Costa
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center (BCC), IRCCS Mondino Foundation, Pavia, Italy
| | - Claudia A. M. Gandini Wheeler-Kingshott
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
43
|
Serrano N, López-Sanz D, Bruña R, Garcés P, Rodríguez-Rojo IC, Marcos A, Crespo DP, Maestú F. Spatiotemporal Oscillatory Patterns During Working Memory Maintenance in Mild Cognitive Impairment and Subjective Cognitive Decline. Int J Neural Syst 2019; 30:1950019. [DOI: 10.1142/s0129065719500199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Working memory (WM) is a crucial cognitive process and its disruption is among the earliest symptoms of Alzheimer’s disease. While alterations of the neuronal processes underlying WM have been evidenced in mild cognitive impairment (MCI), scarce literature is available in subjective cognitive decline (SCD). We used magnetoencephalography during a WM task performed by MCI [Formula: see text], SCD [Formula: see text] and healthy elders [Formula: see text] to examine group differences during the maintenance period (0–4000[Formula: see text]ms). Data were analyzed using time–frequency analysis and significant oscillatory differences were localized at the source level. Our results indicated significant differences between groups, mainly during the early maintenance (250–1250[Formula: see text]ms) in the theta, alpha and beta bands and in the late maintenance (2750–3750[Formula: see text]ms) in the theta band. MCI showed lower local synchronization in fronto-temporal cortical regions in the early theta–alpha window relative to controls [Formula: see text] and SCD [Formula: see text], and in the late theta window relative to controls [Formula: see text] and SCD [Formula: see text]. Early theta–alpha power was significantly correlated with memory scores [Formula: see text] and late theta power was correlated with task performance [Formula: see text] and functional activity scores [Formula: see text]. In the early beta window, MCI showed reduced power in temporo-posterior regions relative to controls [Formula: see text] and SCD [Formula: see text]. Our results may suggest that these alterations would reflect that memory-related networks are damaged.
Collapse
Affiliation(s)
- N. Serrano
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Pozuelo de Alarcón, Madrid 28223, Spain
| | - D. López-Sanz
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Pozuelo de Alarcón, Madrid 28223, Spain
| | - R. Bruña
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Pozuelo de Alarcón, Madrid 28223, Spain
- CIBER’s Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
| | - P. Garcés
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Pozuelo de Alarcón, Madrid 28223, Spain
| | - I. C. Rodríguez-Rojo
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Pozuelo de Alarcón, Madrid 28223, Spain
| | - A. Marcos
- Neurology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - D. Prada Crespo
- Centro de Prevención del Deterioro Cognitivo del Ayuntamiento, de Madrid Madrid, Spain
| | - F. Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Pozuelo de Alarcón, Madrid 28223, Spain
- CIBER’s Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
44
|
Mirzaei G, Adeli H. Segmentation and clustering in brain MRI imaging. Rev Neurosci 2019; 30:31-44. [PMID: 30265656 DOI: 10.1515/revneuro-2018-0050] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
Clustering is a vital task in magnetic resonance imaging (MRI) brain imaging and plays an important role in the reliability of brain disease detection, diagnosis, and effectiveness of the treatment. Clustering is used in processing and analysis of brain images for different tasks, including segmentation of brain regions and tissues (grey matter, white matter, and cerebrospinal fluid) and clustering of the atrophy in different parts of the brain. This paper presents a state-of-the-art review of brain MRI studies that use clustering techniques for different tasks.
Collapse
Affiliation(s)
- Golrokh Mirzaei
- Department of Computer Science and Engineering, The Ohio State University, Marion, OH 43302, USA
| | - Hojjat Adeli
- Departments of Biomedical Informatics, Neurology, Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
45
|
Górriz JM, Ramírez J, Segovia F, Martínez FJ, Lai MC, Lombardo MV, Baron-Cohen S, Suckling J. A Machine Learning Approach to Reveal the NeuroPhenotypes of Autisms. Int J Neural Syst 2019; 29:1850058. [DOI: 10.1142/s0129065718500582] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although much research has been undertaken, the spatial patterns, developmental course, and sexual dimorphism of brain structure associated with autism remains enigmatic. One of the difficulties in investigating differences between the sexes in autism is the small sample sizes of available imaging datasets with mixed sex. Thus, the majority of the investigations have involved male samples, with females somewhat overlooked. This paper deploys machine learning on partial least squares feature extraction to reveal differences in regional brain structure between individuals with autism and typically developing participants. A four-class classification problem (sex and condition) is specified, with theoretical restrictions based on the evaluation of a novel upper bound in the resubstitution estimate. These conditions were imposed on the classifier complexity and feature space dimension to assure generalizable results from the training set to test samples. Accuracies above [Formula: see text] on gray and white matter tissues estimated from voxel-based morphometry (VBM) features are obtained in a sample of equal-sized high-functioning male and female adults with and without autism ([Formula: see text], [Formula: see text]/group). The proposed learning machine revealed how autism is modulated by biological sex using a low-dimensional feature space extracted from VBM. In addition, a spatial overlap analysis on reference maps partially corroborated predictions of the “extreme male brain” theory of autism, in sexual dimorphic areas.
Collapse
Affiliation(s)
- Juan M. Górriz
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Javier Ramírez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - F. Segovia
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Francisco J. Martínez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Meng-Chuan Lai
- Centre for Addiction and Mental Health and The Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M6J 1H4, Canada
| | - Michael V. Lombardo
- Department of Psychology, University of Cyprus, 2109 Aglantzia, Nicosia, Cyprus
| | - Simon Baron-Cohen
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | | |
Collapse
|
46
|
|
47
|
Segovia F, Górriz JM, Ramírez J, Martínez-Murcia FJ, Castillo-Barnes D. Assisted Diagnosis of Parkinsonism Based on the Striatal Morphology. Int J Neural Syst 2019; 29:1950011. [PMID: 31084232 DOI: 10.1142/s0129065719500114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Parkinsonism is a clinical syndrome characterized by the progressive loss of striatal dopamine. Its diagnosis is usually corroborated by neuroimaging data such as DaTSCAN neuroimages that allow visualizing the possible dopamine deficiency. During the last decade, a number of computer systems have been proposed to automatically analyze DaTSCAN neuroimages, eliminating the subjectivity inherent to the visual examination of the data. In this work, we propose a computer system based on machine learning to separate Parkinsonian patients and control subjects using the size and shape of the striatal region, modeled from DaTSCAN data. First, an algorithm based on adaptative thresholding is used to parcel the striatum. This region is then divided into two according to the brain hemisphere division and characterized with 152 measures, extracted from the volume and its three possible 2-dimensional projections. Afterwards, the Bhattacharyya distance is used to discard the least discriminative measures and, finally, the neuroimage category is estimated by means of a Support Vector Machine classifier. This method was evaluated using a dataset with 189 DaTSCAN neuroimages, obtaining an accuracy rate over 94%. This rate outperforms those obtained by previous approaches that use the intensity of each striatal voxel as a feature.
Collapse
Affiliation(s)
- Fermín Segovia
- Department of Signal Theory, Networking and Communications, DASCI Institute, University of Granada, Granada 18071, Spain
| | - Juan M. Górriz
- Department of Signal Theory, Networking and Communications, DASCI Institute, University of Granada, Granada 18071, Spain
| | - Javier Ramírez
- Department of Signal Theory, Networking and Communications, DASCI Institute, University of Granada, Granada 18071, Spain
| | - Francisco J. Martínez-Murcia
- Department of Signal Theory, Networking and Communications, DASCI Institute, University of Granada, Granada 18071, Spain
| | - Diego Castillo-Barnes
- Department of Signal Theory, Networking and Communications, DASCI Institute, University of Granada, Granada 18071, Spain
| |
Collapse
|
48
|
Mabrouk R, Chikhaoui B, Bentabet L. Machine Learning Based Classification Using Clinical and DaTSCAN SPECT Imaging Features: A Study on Parkinson’s Disease and SWEDD. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019; 3:170-177. [DOI: 10.1109/trpms.2018.2877754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
49
|
Collazos-Huertas D, Cárdenas-Peña D, Castellanos-Dominguez G. Instance-Based Representation Using Multiple Kernel Learning for Predicting Conversion to Alzheimer Disease. Int J Neural Syst 2019; 29:1850042. [DOI: 10.1142/s0129065718500429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The early detection of Alzheimer’s disease and quantification of its progression poses multiple difficulties for machine learning algorithms. Two of the most relevant issues are related to missing data and results interpretability. To deal with both issues, we introduce a methodology to predict conversion of mild cognitive impairment patients to Alzheimer’s from structural brain MRI volumes. First, we use morphological measures of each brain structure to build an instance-based feature mapping that copes with missed follow-up visits. Then, the extracted multiple feature mappings are combined into a single representation through the convex combination of reproducing kernels. The weighting parameters per structure are tuned based on the maximization of the centered-kernel alignment criterion. We evaluate the proposed methodology on a couple of well-known classification machines employing the ADNI database devoted to assessing the combined prognostic value of several AD biomarkers. The obtained experimental results show that our proposed method of Instance-based representation using multiple kernel learning enables detecting mild cognitive impairment as well as predicting conversion to Alzheimers disease within three years from the initial screening. Besides, the brain structures with larger combination weights are directly related to memory and cognitive functions.
Collapse
Affiliation(s)
- D. Collazos-Huertas
- Signal Processing and Recognition Group, Universidad Nacional de Colombia, Km 9 Vía al Aeropuerto la Nubia, Manizales, Colombia
| | - D. Cárdenas-Peña
- Signal Processing and Recognition Group, Universidad Nacional de Colombia, Km 9 Vía al Aeropuerto la Nubia, Manizales, Colombia
| | - G. Castellanos-Dominguez
- Signal Processing and Recognition Group, Universidad Nacional de Colombia, Km 9 Vía al Aeropuerto la Nubia, Manizales, Colombia
| |
Collapse
|
50
|
Ortiz A, Munilla J, Martínez-Murcia FJ, Górriz JM, Ramírez J. Empirical Functional PCA for 3D Image Feature Extraction Through Fractal Sampling. Int J Neural Syst 2019; 29:1850040. [DOI: 10.1142/s0129065718500405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Medical image classification is currently a challenging task that can be used to aid the diagnosis of different brain diseases. Thus, exploratory and discriminative analysis techniques aiming to obtain representative features from the images play a decisive role in the design of effective Computer Aided Diagnosis (CAD) systems, which is especially important in the early diagnosis of dementia. In this work, we present a technique that allows using specific time series analysis techniques with 3D images. This is achieved by sampling the image using a fractal-based method which preserves the spatial relationship among voxels. In addition, a method called Empirical functional PCA (EfPCA) is presented, which combines Empirical Mode Decomposition (EMD) with functional PCA to express an image in the space spanned by a basis of empirical functions, instead of using components computed by a predefined basis as in Fourier or Wavelet analysis. The devised technique has been used to classify images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Parkinson Progression Markers Initiative (PPMI), achieving accuracies up to 93% and 92% differential diagnosis tasks (AD versus controls and PD versus Controls, respectively). The results obtained validate the method, proving that the information retrieved by our methodology is significantly linked to the diseases.
Collapse
Affiliation(s)
- Andrés Ortiz
- Communications Engineering Department, University of Málaga, Málaga 29071, Spain
| | - Jorge Munilla
- Communications Engineering Department, University of Málaga, Málaga 29071, Spain
| | | | - Juan M. Górriz
- Department of Signal Theory, Communications and Networking, University of Granada, Granada 18060, Spain
| | - Javier Ramírez
- Department of Signal Theory, Communications and Networking, University of Granada, Granada 18060, Spain
| |
Collapse
|