1
|
Roy AS, Freed JH, Srivastava M. Differentiating Unimodal and Multimodal Distributions in Pulsed Dipolar Spectroscopy Using Wavelet Transforms. APPLIED MAGNETIC RESONANCE 2024; 55:219-237. [PMID: 39897453 PMCID: PMC11781376 DOI: 10.1007/s00723-023-01616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 02/04/2025]
Abstract
Site directed spin labeling has enabled protein structure determination using electron spin resonance (ESR) pulsed dipolar spectroscopy (PDS). Small details in a distance distribution can be key to understanding important protein structure-function relationships. A major challenge has been to differentiate unimodal and overlapped multimodal distance distributions. They often yield similar distributions and dipolar signals. Current model-free distance reconstruction techniques such as Srivastava-Freed Singular Value Decomposition (SF-SVD) and Tikhonov regularization can suppress these small features in uncertainty and/or error bounds, despite being present. In this work, we demonstrate that continuous wavelet transform (CWT) can distinguish PDS signals from unimodal and multimodal distance distributions. We show that periodicity in CWT representation reflects unimodal distributions, which is masked for multimodal cases. This work is meant as a precursor to a cross-validation technique, which could indicate the modality of the distance distribution.
Collapse
Affiliation(s)
- Aritro Sinha Roy
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- Cornell Atkinson Center for Sustainability, Cornell University, 340 Tower Road, Ithaca, 14853, NY, USA
| |
Collapse
|
2
|
Roy AS, Freed JH, Srivastava M. Differentiating Unimodal and Multimodal Distributions in Pulsed Dipolar Spectroscopy Using Wavelet Transforms. RESEARCH SQUARE 2023:rs.3.rs-3216615. [PMID: 37577617 PMCID: PMC10418556 DOI: 10.21203/rs.3.rs-3216615/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Site directed spin labeling has enabled protein structure determination using electron spin resonance (ESR) pulsed dipolar spectroscopy (PDS). Small details in a distance distribution can be key to understanding important protein structure-function relationships. A major challenge has been to differentiate unimodal and overlapped multimodal distance distributions. They often yield similar distributions and dipolar signals. Current model-free distance reconstruction techniques such as Srivastava-Freed Singular Value Decomposition (SF-SVD) and Tikhonov regularization can suppress these small features in uncertainty and/or error bounds, despite being present. In this work, we demonstrate that continuous wavelet transform (CWT) can distinguish PDS signals from unimodal and multimodal distance distributions. We show that periodicity in CWT representation reflects unimodal distributions, which is masked for multimodal cases. This work is meant as a precursor to a cross-validation technique, which could indicate the modality of the distance distribution.
Collapse
Affiliation(s)
- Aritro Sinha Roy
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- Cornell Atkinson Center for Sustainability, Cornell University, 340 Tower Road, Ithaca, 14853, NY, USA
| |
Collapse
|
3
|
Biondi B, Syryamina VN, Rocchio G, Barbon A, Formaggio F, Toniolo C, Raap J, Dzuba SA. Is Cys(MTSL) the Best α-Amino Acid Residue to Electron Spin Labeling of Synthetically Accessible Peptide Molecules with Nitroxides? ACS OMEGA 2022; 7:5154-5165. [PMID: 35187331 PMCID: PMC8851612 DOI: 10.1021/acsomega.1c06227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Electron paramagnetic resonance spectroscopy, particularly its pulse technique double electron-electron resonance (DEER) (also termed PELDOR), is rapidly becoming an extremely useful tool for the experimental determination of side chain-to-side chain distances between free radicals in molecules fundamental for life, such as polypeptides. Among appropriate probes, the most popular are undoubtedly nitroxide electron spin labels. In this context, suitable biosynthetically derived, helical regions of proteins, along with synthetic peptides with amphiphilic properties and antibacterial activities, are the most extensively investigated compounds. A strict requirement for a precise distance measurement has been identified in a minimal dynamic flexibility of the two nitroxide-bearing α-amino acid side chains. To this end, in this study, we have experimentally compared in detail the side-chain mobility properties of the two currently most widely utilized residues, namely, Cys(MTSL) and 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC). In particular, two double-labeled, chemically synthesized 20-mer peptide molecules have been adopted as appropriate templates for our investigation on the determination of the model intramolecular separations. These double-Cys(MTSL) and double-TOAC compounds are both analogues of the almost completely rigid backbone peptide ruler which we have envisaged and 3D structurally analyzed as our original, unlabeled compound. Here, we have clearly found that the TOAC side-chain labels are largely more 3D structurally restricted than the MTSL labels. From this result, we conclude that the TOAC residue offers more precise information than the Cys(MTSL) residue on the side chain-to-side chain distance distribution in synthetically accessible peptide molecules.
Collapse
Affiliation(s)
- Barbara Biondi
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| | - Victoria N. Syryamina
- Institute
of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russian Federation
| | - Gabriele Rocchio
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Antonio Barbon
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Fernando Formaggio
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Claudio Toniolo
- Institute
of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Jan Raap
- Leiden
Institute of Chemistry, Gorlaeus Laboratories,
Leiden University, 2300 RA Leiden, The Netherlands
| | - Sergei A. Dzuba
- Institute
of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russian Federation
- Department
of Physics, Novosibirsk State University, 630090 Novosibirsk, Russian Federation
| |
Collapse
|
4
|
A Peptide-Based Trap for Metal Ions Studied by Electron Paramagnetic Resonance. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Peptide-based materials provide a versatile platform for sensing and ion sequestration since peptides are endowed with stimuli-responsive properties. The mechanism of molecular sensing is often based on peptide structural changes (or switching), caused by the binding of the target molecule. One scope of sensing applications is the selection of a specific analyte, which may be achieved by adjusting the structure of the peptide binding site. Therefore, exact knowledge of peptide properties and 3D-structure in the ‘switched’ state is desirable for tuning the detection and for further molecular construction. Hence, here we demonstrate the performance of Electron Paramagnetic Resonance (EPR) spectroscopy in the identification of metal ion binding by the antimicrobial peptide trichogin GA IV. Na(I), Ca(II), and Cu(II) ions were probed as analytes to evaluate the impact of coordination number, ionic radii, and charge. Conclusions drawn by EPR are in line with literature data, where other spectroscopic techniques were exploited to study peptide-ion interactions for trichogin GA IV, and the structural switch from an extended helix to a hairpin structure, wrapped around the metal ion upon binding of divalent cations was proposed.
Collapse
|
5
|
Matveeva AG, Syryamina VN, Nekrasov VM, Bowman MK. Non-uniform sampling in pulse dipolar spectroscopy by EPR: the redistribution of noise and the optimization of data acquisition. Phys Chem Chem Phys 2021; 23:10335-10346. [PMID: 33881433 DOI: 10.1039/d1cp00705j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pulse dipolar spectroscopy (PDS) in Electron Paramagnetic Resonance (EPR) is the method of choice for determining the distance distribution function for mono-, bi- or multi- spin-labeled macromolecules and nanostructures. PDS acquisition schemes conventionally use uniform sampling of the dipolar trace, but non-uniform sampling (NUS) schemes can decrease the total measurement time or increase the accuracy of the resulting distance distributions. NUS requires optimization of the data acquisition scheme, as well as changes in data processing algorithms to accommodate the non-uniformly sampled data. We investigate in silico the applicability of the NUS approach in PDS, considering its effect on random, truncation and sampling noise in the experimental data. Each type of noise in the time-domain data propagates differently and non-uniformly into the distance spectrum as errors in the distance distribution. NUS schemes seem to be a valid approach for increasing sensitivity and/or throughput in PDS by decreasing and redistributing noise in the distance spectrum so that it has less impact on the distance spectrum.
Collapse
Affiliation(s)
- Anna G Matveeva
- Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia and Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Victoria N Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Vyacheslav M Nekrasov
- Novosibirsk State University, 630090 Novosibirsk, Russia and Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Michael K Bowman
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia and Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
6
|
Golysheva EA, Boyle AL, Biondi B, Ruzza P, Kros A, Raap J, Toniolo C, Formaggio F, Dzuba SA. Probing the E/K Peptide Coiled-Coil Assembly by Double Electron-Electron Resonance and Circular Dichroism. Biochemistry 2020; 60:19-30. [PMID: 33320519 DOI: 10.1021/acs.biochem.0c00773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Double electron-electron resonance (DEER, also known as PELDOR) and circular dichroism (CD) spectroscopies were explored for the purpose of studying the specificity of the conformation of peptides induced by their assembly into a self-recognizing system. The E and K peptides are known to form a coiled-coil heterodimer. Two paramagnetic TOAC α-amino acid residues were incorporated into each of the peptides (denoted as K** and E**), and a three-dimensional structural investigation in the presence or absence of their unlabeled counterparts E and K was performed. The TOAC spin-labels, replacing two Ala residues in each compound, are covalently and quasi-rigidly connected to the peptide backbone. They are known not to disturb the native structure, so that any conformational change can easily be monitored and assigned. DEER spectroscopy enables the measurement of the intramolecular electron spin-spin distance distribution between the two TOAC labels, within a length range of 1.5-8 nm. This method allows the individual conformational changes for the K**, K**/E, E**, and E**/K molecules to be investigated in glassy frozen solutions. Our data reveal that the conformations of the E** and K** peptides are strongly influenced by the presence of their counterparts. The results are discussed with those from CD spectroscopy and with reference to the already reported nuclear magnetic resonance data. We conclude that the combined DEER/TOAC approach allows us to obtain accurate and reliable information about the conformation of the peptides before and after their assembly into coiled-coil heterodimers. Applications of this induced fit method to other two-component, but more complex, systems, like a receptor and antagonists, a receptor and a hormone, and an enzyme and a ligand, are discussed.
Collapse
Affiliation(s)
- Elena A Golysheva
- Novosibirsk State University, Novosibirsk 630090, Russian Federation.,V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russian Federation
| | - Aimee L Boyle
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy.,Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Paolo Ruzza
- Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy.,Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Alexander Kros
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jan Raap
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Claudio Toniolo
- Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy.,Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.,Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Fernando Formaggio
- Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy.,Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Sergei A Dzuba
- Novosibirsk State University, Novosibirsk 630090, Russian Federation.,V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russian Federation
| |
Collapse
|
7
|
De Zotti M, Syryamina VN, Hussain R, Longo E, Siligardi G, Dzuba SA, Stella L, Formaggio F. A Temperature-Driven, Reversible, Helical-Handedness Inversion in Peptaibol Analogues Tuned by the C-Terminal Capping Moiety. Chembiochem 2019; 20:2125-2132. [PMID: 31095838 DOI: 10.1002/cbic.201900235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 11/07/2022]
Abstract
Trichogin is a natural peptide endowed with antimicrobial and antitumor activity. A member of the peptaibol family, trichogin possesses a C-terminal amino alcohol. In the past, this moiety was substituted for a methyl ester for synthetic purposes and it was observed that this apparently slight modification caused significant changes in the peptide bioactivity. With the aim of understanding the reasons behind such observations, a detailed spectroscopic study on a number of trichogin analogues has been performed. Herein, data obtained from synchrotron radiation circular dichroism, NMR spectroscopy, and fluorescence spectroscopy in organic solvents at cryogenic temperatures are compared with those independently acquired by means of EPR spectroscopy at 80 K. It is unambiguously revealed that the presence of a reversible, temperature-driven, screw-sense interconversion from a right- to left-handed helix is determined by the C-terminal capping moiety. Data demonstrate, for the first time, the key role of a C-terminal methyl ester in promoting peptide screw-sense inversion.
Collapse
Affiliation(s)
- Marta De Zotti
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Victoria N Syryamina
- Institute of Chemical Kinetics and Combustion, RAS, Ulitsa Institutskaya 3, Novosibirsk, 630090, Russian Federation.,Novosibirsk State University, Ulitsa Pirogova 2, Novosibirsk, 630090, Russian Federation
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Innovation Campus, Chilton, Didcot, Oxfordshire, UK
| | - Edoardo Longo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100, Bozen-Bolzano, Italy
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Innovation Campus, Chilton, Didcot, Oxfordshire, UK
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, RAS, Ulitsa Institutskaya 3, Novosibirsk, 630090, Russian Federation.,Novosibirsk State University, Ulitsa Pirogova 2, Novosibirsk, 630090, Russian Federation
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della ricerca scientifica 1, 00133, Rome, Italy
| | - Fernando Formaggio
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
8
|
Kuznetsova AA, Matveeva AG, Milov AD, Vorobjev YN, Dzuba SA, Fedorova OS, Kuznetsov NA. Substrate specificity of human apurinic/apyrimidinic endonuclease APE1 in the nucleotide incision repair pathway. Nucleic Acids Res 2019; 46:11454-11465. [PMID: 30329131 PMCID: PMC6265485 DOI: 10.1093/nar/gky912] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Human apurinic/apyrimidinic (AP) endonuclease APE1 catalyses the hydrolysis of phosphodiester bonds on the 5′ side of an AP-site (in the base excision repair pathway) and of some damaged nucleotides (in the nucleotide incision repair pathway). The range of substrate specificity includes structurally unrelated damaged nucleotides. Here, to examine the mechanism of broad substrate specificity of APE1, we performed pulsed electron–electron double resonance (PELDOR) spectroscopy and pre-steady-state kinetic analysis with Förster resonance energy transfer (FRET) detection of DNA conformational changes during DNA binding and lesion recognition. Equilibrium PELDOR and kinetic FRET data revealed that DNA binding by APE1 leads to noticeable damage-dependent bending of a DNA duplex. Molecular dynamics simulations showed that the damaged nucleotide is everted from the DNA helix and placed into the enzyme’s binding pocket, which is formed by Asn-174, Asn-212, Asn-229, Ala-230, Phe-266 and Trp-280. Nevertheless, no damage-specific contacts were detected between these amino acid residues in the active site of the enzyme and model damaged substrates containing 1,N6-ethenoadenosine, α-adenosine, 5,6-dihydrouridine or F-site. These data suggest that the substrate specificity of APE1 is controlled by the ability of a damaged nucleotide to flip out from the DNA duplex in response to an enzyme-induced DNA distortion.
Collapse
Affiliation(s)
- Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna G Matveeva
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander D Milov
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yuri N Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Matveeva AG, Nekrasov VM, Maryasov AG. Analytical solution of the PELDOR inverse problem using the integral Mellin transform. Phys Chem Chem Phys 2018; 19:32381-32388. [PMID: 29185558 DOI: 10.1039/c7cp04059h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We describe a new model-free approach to solve the inverse problem in pulsed double electron-electron resonance (PELDOR, also known as DEER) spectroscopy and obtain the distance distribution function between two radicals from time-domain PELDOR data. The approach is based on analytical solutions of the Fredholm integral equations of the first kind using integral Mellin transforms to provide the distance distribution function directly. The approach appears to confine the noise in the computed distance distribution to short distances and does not introduce systematic distortions. Thus, the proposed analysis method can be a useful supplement to current methods to determine complicated distance distributions.
Collapse
Affiliation(s)
- Anna G Matveeva
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia.
| | | | | |
Collapse
|
10
|
Syryamina VN, De Zotti M, Toniolo C, Formaggio F, Dzuba SA. Alamethicin self-assembling in lipid membranes: concentration dependence from pulsed EPR of spin labels. Phys Chem Chem Phys 2018; 20:3592-3601. [DOI: 10.1039/c7cp07298h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antimicrobial action of the peptide antibiotic alamethicin (Alm) is commonly related to peptide self-assembling resulting in the formation of voltage-dependent channels in bacterial membranes, which induces ion permeation.
Collapse
Affiliation(s)
- Victoria N. Syryamina
- Institute of Chemical Kinetics and Combustion
- RAS
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University
| | - Marta De Zotti
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Claudio Toniolo
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
- Institute of Biomolecular Chemistry
| | - Fernando Formaggio
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
- Institute of Biomolecular Chemistry
| | - Sergei A. Dzuba
- Institute of Chemical Kinetics and Combustion
- RAS
- Novosibirsk 630090
- Russian Federation
- Novosibirsk State University
| |
Collapse
|
11
|
Srivastava M, Freed JH. Singular Value Decomposition Method to Determine Distance Distributions in Pulsed Dipolar Electron Spin Resonance. J Phys Chem Lett 2017; 8:5648-5655. [PMID: 29099190 PMCID: PMC5708871 DOI: 10.1021/acs.jpclett.7b02379] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Regularization is often utilized to elicit the desired physical results from experimental data. The recent development of a denoising procedure yielding about 2 orders of magnitude in improvement in SNR obviates the need for regularization, which achieves a compromise between canceling effects of noise and obtaining an estimate of the desired physical results. We show how singular value decomposition (SVD) can be employed directly on the denoised data, using pulse dipolar electron spin resonance experiments as an example. Such experiments are useful in measuring distances and their distributions, P(r) between spin labels on proteins. In noise-free model cases exact results are obtained, but even a small amount of noise (e.g., SNR = 850 after denoising) corrupts the solution. We develop criteria that precisely determine an optimum approximate solution, which can readily be automated. This method is applicable to any signal that is currently processed with regularization of its SVD analysis.
Collapse
Affiliation(s)
- Madhur Srivastava
- National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jack H. Freed
- National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Corresponding Author:
| |
Collapse
|
12
|
Buntkowsky G, Ivanov K, Vieth HM. From Free Radicals and Spin-Chemistry Over Spin-Dynamics and Hyperpolarization to Biology and Materials Science. Z PHYS CHEM 2017. [DOI: 10.1515/zpch-2016-5006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Gerd Buntkowsky
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Straße 4, Darmstadt 64287, Germany
| | - Konstantin Ivanov
- International Tomography Center, Institutskaya 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Hans-Martin Vieth
- International Tomography Center, Institutskaya 3A, Novosibirsk 630090, Russia
- Freie Universität Berlin, Institut für Experimentalphysik, Arnimallee 14, Berlin 14195, Germany
| |
Collapse
|