1
|
Jamdar M, Goudarzi M, Dawi EA, Salavati-Niasari M. Visible light-active samarium manganite nanostructures for enhanced water-soluble pollutant degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115578. [PMID: 37856984 DOI: 10.1016/j.ecoenv.2023.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
In this study, a green approach was used to synthesize SmMnO3 magnetic nanoparticles via the auto combustion method, where pomegranate juice was utilized as a natural fuel. The concentration of fuel was varied to investigate its effect on the purity and morphology of SmMnO3 nanoparticles. The physiochemical properties of the synthesized nanoparticles, including crystal structures, morphology, optical, and magnetic properties, were investigated using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier-Transform Infrared Spectroscopy (FTIR), Vibrating Sample Magnetometer (VSM), Diffuse Reflectance Spectroscopy (DRS), X-ray fluorescence (XRF) and Brunauer-Emmett-Teller (BET). The band gap of the as-synthesized nanoparticles was determined to be 1.8 eV, indicating their potential as a photocatalyst. The photocatalytic activity of SmMnO3 nanoparticles was evaluated against Methyl violet and Erythrosine, and the mechanism of photocatalyst was determined using EDTA, benzoic acid, and benzoquinone as scavengers. Photocatalytic activity was studied in both UV and visible light, and it was found that the maximum degradation (94%) was related to the degradation of Erythrosine (10 ppm) in the presence of visible light. The stability test of SmMnO3 performed and confirmed the stability of nanoparticles after 5 cycles. The results suggest that SmMnO3 nanoparticles synthesized via the green auto combustion method using pomegranate juice as a natural fuel can serve as a promising photocatalyst for the degradation of organic pollutants in the environment. Further studies can be conducted to investigate their potential in other applications.
Collapse
Affiliation(s)
- Mina Jamdar
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317-51167, I. R., Kashan, Iran
| | - Mojgan Goudarzi
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317-51167, I. R., Kashan, Iran
| | - Elmuez A Dawi
- Nonlinear Dynamic Research Center (NDRC), College of Humanities and Sciences, Ajman University, P.O. Box 346, Ajman, UAE
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box. 87317-51167, I. R., Kashan, Iran.
| |
Collapse
|
2
|
Ali Z, Nazir R, Saleem S, Nazir A, Alfryyan N, Alwadai N, Iqbal M. Extraction of silica from fly-ash and fabrication of silica-clay composite for dye removal and kinetic studies. Z PHYS CHEM 2023. [DOI: 10.1515/zpch-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
A facile and green approach to extract silica from the coal fly-ash waste is extremely critical for environmental sustainability and economically suitable. In this study, we have used acid-alkali coupled approach to improvised the proficiency of the extraction process. The sodium hydroxide (NaOH) soaking results the formation of the sodium silicate (Na2SiO3) solution then pure silica was obtained by heating at high temperature; this coupled route-way results better yield of silica (SiO2) which is ∼ 40 g. The efficiency of pure silica is not enough to remove toxic effluents from the aqueous media. A highly versatile approach of composite formation was adopted to fabricate silica-clay composite using kaolinite-clay and extracted silica. Both materials, extracted silica and its silica-clay composite were analyzed using scanning electron microscopy (SEM), energy dispersive X-ray (EDX) method, X-ray diffraction technique (XRD) and Fourier transform infra-red spectroscopy (FTIR). The silica-clay composite showed plate-tubular like morphology with enormous binding sites available for the sorption pollutants like organic dyes. It has shown excellent sorption of methylene blue (MB) efficiency of 131.5 mg/g, while silica furnished the sorption of 70.5 mg/g. Results revealed that the synthesized material could probably have better potential for dye removal from industrial effluents.
Collapse
Affiliation(s)
- Zahid Ali
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
- State Key Laboratory of Organic–Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Rabia Nazir
- Analytical Chemistry Research Centre , Pakistan Council of Scientific and Industrial Research , Lahore , Pakistan
| | - Sumaira Saleem
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Nada Alfryyan
- Department of Physics, College of Sciences , Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Norah Alwadai
- Department of Physics, College of Sciences , Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
3
|
Mazhar F, Kausar A, Iqbal M. Photocatalytic hydrogen generation using TiO 2: a state-of-the-art review. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abstract
This review is focusing on photocatalytic hydrogen (H2) production as a viable fuel. The limitations of different production methods for H2 generation and the importance of photocatalytic process are discussed, which renders this process as highly promising to meet the future energy crises. TiO2 is one of most effective material to generate the H2 via photocatalytic processes. Therefore, advantages of the catalyst over other semiconductors have been thoroughly analyzed. Starting from synthesis of TiO2 and factors affecting the whole process of photocatalytic H2 production have been discussed. Modifications for improvement in TiO2 and the photocatalytic reaction are critically reviewed as well as the mechanism of TiO2 modification has been described. Metal doping, non-metal doping, impurity addition and defect introduction processes have been analyzed and the comparison of experimental results is developed based on H2 production efficiency. A critical review of the literature from 2004 to 2021 concludes that H2 production as fuel using TiO2 photocatalytic method is efficient and environment friendly, which have potential for practical applications for H2 generation.
Collapse
Affiliation(s)
- Fatima Mazhar
- Department of Chemical Engineering , COMSATS University Islamabad , Lahore , Pakistan
| | - Abida Kausar
- Department of Chemistry , Government College Women University Faisalabad , Faisalabad , Pakistan
- Department of Chemistry, Division of Science and Technology , University of Education , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology , University of Education , Lahore , Pakistan
| |
Collapse
|
4
|
Misbah, Bibi I, Majid F, Kamal S, Jilani K, Taj B, Nazeer Z, Iqbal M. Enhanced visible light-driven photocatalytic degradation of crystal violet dye using Cr doped BaFe12O19 prepared via facile micro-emulsion route. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Bibi I, Ghulam T, Kamal S, Jilani K, Alwadai N, Iqbal M. Green synthesis of iron nanoparticles and photocatalytic activity evaluation for the degradation of methylene blue dye. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The present study focuses on iron nanoparticles (Fe NPs) biosynthesis, characterization and photocatalytic activity (PCA) appraisal for methylene blue dye degradation. A green rapid biogenic synthesis route was employed for synthesis of Fe NPs using banana peel extract. The synthesized Fe NPs was characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy) and EDX (energy dispersive X-ray) techniques. These analysis confirmed the synthesis of zero valent Fe NPs with high crystallinity, purity and semi spherical in shape. The photocatalytic activity was assessed under ultra violet irradiation and under optimum conditions, 87% degradation of MB dye was obtained for 72 min of irradiation, which revealed promising catalytic efficiency of the Fe NPs. The result shows that photocatalytic activity of Fe NPs is promising and could possibly be used to treat dyes in industrial effluents and the use of green synthetic protocol is suggested due to its ecofriendly nature.
Collapse
Affiliation(s)
- Ismat Bibi
- Institute of Chemistry, Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Tahir Ghulam
- Institute of Chemistry, Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Shagufta Kamal
- Department of Applied Chemistry and Biochemistry , GC University , Faisalabad , Pakistan
| | - Kashif Jilani
- Department of Biochemistry , University of Agriculture , Faisalabad , Pakistan
| | - Norah Alwadai
- Department of Physics, College of Sciences , Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh , 11671 , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
6
|
Gul N, Ata S, Bibi I, Ijaz-ul-Mohsin, Azam M, Shahid A, Alwadai N, Masood N, Iqbal M. Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the present investigation, silver nanoparticles were synthesized and a comparative analysis was performed of modified Turkevich and BRUST methods. Silver nitrate precursor was reduced by trisodium citrate dihydrate and ascorbic acid was used as a surfactant. Based on Turkevich and BRUST methods, the process variables, i.e., temperature, reducing agent concentration, stirring speed, mode of injecting reducing agent/precursor to large excess volume of either precursor/reducing agent were studied. The size of the particles was preliminarily ascertained by DLS studies and it was found that modified BRUST method yielded silver nanoparticles with average particle size of 25 nm, while modified Turkevich method furnished nanoparticles with average particle size of 15 nm. The silver nanoparticles were characterized by employing the UV/visible, Zeta sizer, scanning electron microscopy (SEM) and energy dispersive microscopy (EDX) techniques. Results revealed that the silver nanoparticles size can be controlled by optimizing the conditions of modified Turkevich and BRUST methods.
Collapse
Affiliation(s)
- Nouroze Gul
- School of Chemistry , University of the Punjab , Lahore , Pakistan
- Institute of Nuclear Medicine and Oncology , Lahore , Pakistan
| | - Sadia Ata
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Ismat Bibi
- Institute of Chemistry, The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ijaz-ul-Mohsin
- Institute for Applied Materials–Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology , Karlsruhe , Germany
| | - Muhammad Azam
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Abubaker Shahid
- Institute of Nuclear Medicine and Oncology , Lahore , Pakistan
| | - Norah Alwadai
- Department of Physics, College of Sciences , Princess Nourah bint Abdulrahman University , P.O. Box 84428 , Riyadh 11671 , Saudi Arabia
| | - Nasir Masood
- Department of Environmental Sciences , COMSATS University Islamabad, Vehari Campus , Punjab , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
7
|
Naz M, Rizwan M, Jabeen S, Ghaffar A, Islam A, Gull N, Rasool A, Khan RU, Alshawwa SZ, Iqbal M. Cephradine drug release using electrospun chitosan nanofibers incorporated with halloysite nanoclay. Z PHYS CHEM 2022; 236:227-238. [DOI: 10.1515/zpch-2021-3072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Abstract
The chitosan/polyvinyl alcohol/halloysite nanoclay (CS/PVA/HNC) loaded with cephradine drug electrospun nanofibers (NFs) were fabricated and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) techniques. FTIR analysis confirmed the hydrogen bonding between the polymer chain and the developed siloxane linkages. SEM analysis revealed the formation of uniform NFs having beads free and smooth surface with an average diameter in 50–200 nm range. The thermal stability of the NFs was increased by increasing the HNC concentration. The antimicrobial activity was examined against Escherichia
coli and staphylococcus strains and the NFs revealed auspicious antimicrobial potential. The drug release was studied at pH 7.4 (in PBS) at 37 °C. The drug release analysis showed that 90% of the drug was released from NFs in 2 h and 40 min. Hence, the prepared NFs could be used as a potential drug carrier and release in a control manner for biomedical application.
Collapse
Affiliation(s)
- Mahwish Naz
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, Division of Science and Technology, University of Education , Lahore , Pakistan
| | - Sehrish Jabeen
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Abdul Ghaffar
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Atif Islam
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Nafisa Gull
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Atta Rasool
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Rafi Ullah Khan
- Institute of Polymer and Textile Engineering , University of the Punjab , Lahore , Pakistan
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences , College of Pharmacy, Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
8
|
Perveen S, Nadeem R, Ali S, Jamil Y. Biochar caged zirconium ferrite nanocomposites for the adsorptive removal of Reactive Blue 19 dye in a batch and column reactors and conditions optimizaton. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biochar caged zirconium ferrite (BC-ZrFe2O5) nanocomposites were fabricated and their adsorption capacity for Reactive Blue 19 (RB19) dye was evaluated in a fixed-bed column and batch sorption mode. The adsorption of dye onto BC-ZrFe2O5 NCs followed pseudo-second-order kinetics (R
2 = 0.998) and among isotherms, the experimental data was best fitted to Sips model as compared to Freundlich and Langmuir isotherms models. The influence of flow-rate (3–5 mL min−1), inlet RB19 dye concentration (20–100 mg L−1) and quantity of BC-ZrFe2O5 NCs (0.5–1.5 g) on fixed-bed sorption was elucidated by Box-Behnken experimental design. The saturation times (C
t
/C
o
= 0.95) and breakthrough (C
t
/C
o
= 0.05) were higher at lower flow-rates and higher dose of BC-ZrFe2O5 NCs. The saturation times decreased, but breakthrough was increased with the initial RB19 dye concentration. The treated volume was higher at low sorbent dose and influent concentration. Fractional bed utilization (FBU) increased with RB19 dye concentration and flow rates at low dose of BC-ZrFe2O5 NCs. Yan model was fitted best to breakthrough curves data as compared to Bohart-Adams and Thomas models. Results revealed that BC-ZrFe2O5 nanocomposite has promising adsorption efficiency and could be used for the adsorption of dyes from textile effluents.
Collapse
Affiliation(s)
- Shazia Perveen
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad , Pakistan
| | - Raziya Nadeem
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad , Pakistan
| | - Shaukat Ali
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad , Pakistan
| | - Yasir Jamil
- Department of Physics , University of Agriculture Faisalabad , Faisalabad , Pakistan
| |
Collapse
|
9
|
Ghafoor A, Bibi I, Ata S, Majid F, Kamal S, Iqbal M, Iqbal S, Noureen S, Basha B, Alwadai N. Energy band gap tuning of LaNiO3 by Gd, Fe and Co ions doping to enhance solar light absorption for efficient photocatalytic degradation of RhB dye: A mechanistic approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Ali F, Hamza M, Iqbal M, Basha B, Alwadai N, Nazir A. State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2021-3084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To date, the noble metal-based nanoparticles have been used in every field of life. The Au and Ag nanoparticles (NPs) have been fabricated employing different techniques to tune the properties. In this study, the methodologies developed and adopted for the fabrication of Au and Ag have been discussed, which include physical, chemical and biological routes. The Au and Ag characteristics (morphology, size, shape) along with advantages and disadvantages are discussed. The Au and Ag NPs catalytic and biomedical applications are discussed. For the Ag and Au NPs characterization, SEM (scanning electron microscope), TEM (transmission electron microscope), FTIR (Fourier transform infra-red spectroscopy), XRD (X-rays diffraction) and DLS (dynamic light scattering) techniques are employed. The properties of Au and Ag NPs found dependent to synthesis approach, i.e., the size, shape and morphologies, which showed a promising Catalytic, drug delivery and antimicrobial agent applications. The review is a comprehensive study for the comparison of Au and Ag NPs synthesis, properties and applications in different fields.
Collapse
Affiliation(s)
- Faisal Ali
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Muhammad Hamza
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Beriham Basha
- Department of Physics , College of Science, Princess Nourah bint Abdulrahman University (PNU) , Riyadh 11671 , Saudi Arabia
| | - Norah Alwadai
- Department of Physics , College of Science, Princess Nourah bint Abdulrahman University (PNU) , Riyadh 11671 , Saudi Arabia
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| |
Collapse
|
11
|
The electrochemical, dielectric, and ferroelectric properties of Gd and Fe doped LaNiO 3 with an efficient solar-light driven catalytic activity to oxidize malachite green dye. J Colloid Interface Sci 2021; 607:568-583. [PMID: 34509732 DOI: 10.1016/j.jcis.2021.08.209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022]
Abstract
This work investigates the effects of double ion substitution on the ferroelectric, electrochemical, dielectric and photocatalytic properties of Gd and Fe doped La1-yGdyNi1-xFexO3 nanoparticles (NPs). La1-yGdyNi1-xFexO3 was fabricated by facile micro-emulsion path and its properties were studied by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman scattering, Fourier Transform of Infrared (FTIR), energy dispersive x-rays (EDX) techniques. It has a distorted rhombohedral shape with crystallite size within the range of 17-23 nm. The doped material has a spherical heterogeneous morphology, and its surface area increased with increased doping. The electrochemical (CV, EIS, and I-V), conductivity and dielectric (dielectric constant and low dielectric & tangent loss) properties of La1-yGdyNi1-xFexO3 were dependent on the contents of the dopants (Gd and Fe). The doped material had improved specific capacitance compared to the undoped LaNiO3 due to the synergistic effect of Gd and Fe on the doped materials. The conductivity of Gd and Fe doped LaNiO3 5.16 × 104 Sm-1 was enhanced compared to the undoped LaNiO3 3.52 × 10-2 Sm1. Furthermore, hysteresis loop was used to investigate the coercivity (Hc), saturation magnetization (Ms) and remanence (Mr) of the material. The Ms and Mr values were enhanced with the content of the dopants. The photocatalytic activity (PCA) of the material in degrading malachite green (MG) dye was studied. La1-yGdyNi1-xFexO3 NPs was able to degrade up to 96.4% of the dye under visible light irradiation in 50 min. La1-yGdyNi1-xFexO3 has remarkable dielectric, electrochemical, ferroelectric and photo-catalytic properties and have potential applications in microwave, electrical, electronic, energy storage devices. It is also an active photo-catalyst material for the removal/oxidation of toxic pollutants from the environment.
Collapse
|
12
|
Khan MI, Touheed M, Sajjad-ul-Hasan M, Siddique M, Rouf SA, Ahmad T, Fatima M, Iqbal M, Almoneef MM, Alwadai N. Hydrothermal synthesis, characterization and photocatalytic activity of Mg doped MoS2. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this research work nanoparticles of Mg (0, 1, 2 and 3%) doped MoS2 are prepared by Hydrothermal method at 200 °C for 9 h. Scanning Electron Microscope (SEM) for surface morphology, Fourier Transform Infrared Spectroscopy (FTIR) for structural and chemical bonding and UV-visible spectroscopy for optical properties are used. SEM showed that sheet-like structure has changed into stone-like shaped when Mg has doped into MoS2. From FTIR, Mo–O, Mo=S, and H–O bond peaks are becoming dim and new chemical bonds S=O, Mo=O, Mg–O, CH and OH are forming with the increase of Mg doping. UV-visible spectroscopy showed that MoS2 has an indirect bandgap 2.21 eV. Band gap decreased from 1.84 to 1.82 eV when the Mg doping was increased from 1 to 2%, respectively. As Mg concentration was increased i.e. 3% then band gap increased to 1.88 eV. Photocatalytic activity (PCA) of undoped and Mg doped MoS2 is appraised by degrading rhodamine blue (RhB) and methylene blue (MB) dyes. The results showed that PCA (in presence of visible light) Mg doped MoS2 is greater than pure MoS2 which significantly increased the photocatalytic properties.
Collapse
Affiliation(s)
| | - Muhammad Touheed
- Department of Physics , The University of Lahore , Lahore , 53700 , Pakistan
| | | | - Muhammad Siddique
- Department of Physics , The University of Lahore , Lahore , 53700 , Pakistan
| | - Syed Awais Rouf
- Department of Physics, Division of Science and Technology , Univeristy of Education , Lahore , Pakistan
| | - Tanveer Ahmad
- Department of Physics , University of Peshawar , Peshawar , Pakistan
| | - Mahvish Fatima
- Department of physics, Deanship of Educational Services , Qassim University , Buraydah , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , 53700 , Pakistan
| | - Maha M. Almoneef
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University (PNU) , Riyadh 11671 , Saudi Arabia
| | - Norah Alwadai
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University (PNU) , Riyadh 11671 , Saudi Arabia
| |
Collapse
|
13
|
Ata S, Naz S, Bibi I, Mohsin IU, Islam A, Mehmood A, Al-Fawzan FF, Alissa SA, Iqbal M. Highly photosensitized Mg4 Si6O15 (OH)2·6H2O@guar gum nanofibers for the removal of methylene blue under solar light irradiation. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the present investigation, photosensitized nanofibers (NFs) based on guar gum (GG)/poly(vinyl alcohol) (PVA)/Mg4Si6O15(OH)2·6H2O (SP) (modified by 1, 4-diamminobutane [DAB]) was fabricated by electrospinning approach and same was used for the degradation of dye under solar light irradiation. For electrospinning of NFs, the acceleration voltage, nozzle flow rate and collector distance levels of 19,000 KV, 0.5 mL/h and 3 cm were optimum conditions along with 7% (w/v) blend of GG/PVA (1.4:5.6 wt/wt) and 0.01 g modified Mg4Si6O15(OH)2·6H2O. The exfoliation, intercalation and clay organophilization in GG/PVA/Mg4Si6O15(OH)2·6H2O (GG/PVA/SP) NFs were examined by FTIR analysis. The photocatalytic activity (PCA) of NF was studied under the solar light irradiation for methylene blue (MB) dye degradation. The photosensitized GG/PVA/SP2 (G3) showed promising PCA under visible light and G3 furnished higher degradation of MB dye (99.1%) within 10 min of irradiation. Results revealed that GG/PVA/SP based NFs are highly active under solar light, which can be applied for the treatment of wastewater.
Collapse
Affiliation(s)
- Sadia Ata
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Saba Naz
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Ismat Bibi
- Institute of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ijaz-ul Mohsin
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Atif Islam
- Department of Polymer Engineering and Technology , University of the Punjab , Lahore , Pakistan
| | - Azra Mehmood
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Foziah F. Al-Fawzan
- Chemistry Department , College of Science, Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Siham A. Alissa
- Chemistry Department , College of Science, Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| |
Collapse
|
14
|
Zada A, Khan M, Hussain Z, Shah MIA, Ateeq M, Ullah M, Ali N, Shaheen S, Yasmeen H, Ali Shah SN, Dang A. Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
The alarming energy crises has forced the scientific community to work for sustainable energy modules to meet energy requirements. As for this, ZnO/g-C3N4 nanocomposites with proper heterojunction were fabricated by coupling a proper amount of ZnO with 2D graphitic carbon nitride (g-C3N4) nanosheets and the obtained nanocomposites were applied for photocatalytic hydrogen generation from water under visible light illumination (λ > 420 nm). The morphologies and the hydrogen generation performance of fabricated photocatalysts were characterized in detail. Results showed that the optimized 5ZnO/g-C3N4 nanocomposite produced 70 µmol hydrogen gas in 1 h compare to 8 µmol by pure g-C3N4 under identical illumination conditions in the presence of methanol without the addition of cocatalyst. The much improved photoactivities of the nanocomposites were attributed to the enhanced charge separation through the heterojunction as confirmed from photoluminescence study, capacity of the fabricated samples for •OH radical generation and steady state surface photovoltage spectroscopic (SS-SPS) measurements. We believe that this work would help to fabricate low cost and effective visible light driven photocatalyst for energy production.
Collapse
Affiliation(s)
- Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | - Muhammad Khan
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University , Xi’an 710072 , China
| | - Zahid Hussain
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | | | - Muhammad Ateeq
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | - Mohib Ullah
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology , Harbin 150080 China
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar , Peshawar , Pakistan
| | - Shabana Shaheen
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology , Harbin 150080 China
| | - Humaira Yasmeen
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University , Harbin 150040 , China
| | - Syed Niaz Ali Shah
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | - Alei Dang
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University , Xi’an 710072 , China
| |
Collapse
|
15
|
Majid F, Dildar S, Ata S, Bibi I, Mohsin IU, Ali A, Almoneef MM, Iqbal M, Irshad S, Nazir A, Ali MD. Cobalt doping of nickel ferrites via sol gel approach: effect of doping on the structural and dielectric properties. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2021-3006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cobalt doped nickel ferrites were fabricated by sol gel route and the dielectric constant, tangent loss and AC conductivity were investigated as a function of Co doping. The X-ray diffractometer characterization confirmed that the Co
x
Ni1−x
Fe2O4 with doping concentration (x = 0.1, 0.2, 0.3, 0.4, and 0.5) have cubic spinel structure. In the XRD spectrum there appear extra peaks of Fe2O3 as an impurity that is gradually disappear by increasing doping ratio of cobalt ions, which is an indication of high crystallinity. The structural parameters (lattice constant, grain size, dislocation density, X-rays density and packing factor) are greatly influenced by the doping of cobalt atoms i.e., lattice constant increases. The crystal size increases from 30 to 42.26 nm by cobalt substitution in the pure nickel ferrites. The Fourier Transform IR Spectroscopy indicate shift in peaks to lower frequency region because cobalt doping reduced binding energy between metal ion and oxygen ions. Atomic structure of cobalt doped nickel ferrites examined by the Raman spectroscopy. Co
x
Ni1−x
Fe2O4 shows Raman mode at ∼285, ∼477, ∼563, ∼624 and ∼704 cm−1. There is unnoticeable Raman shift due to the doping of cobalt’s atoms.
Collapse
Affiliation(s)
- Farzana Majid
- Department of Physics , University of Punjab , Lahore , Pakistan
| | - Seemab Dildar
- Department of Physics , University of Punjab , Lahore , Pakistan
| | - Sadia Ata
- School of Chemistry , University of Punjab , Lahore , Pakistan
| | - Ismat Bibi
- Department of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ijaz ul Mohsin
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Adnan Ali
- Department of Physics , Government College University , Faisalabad , Pakistan
| | - Maha M. Almoneef
- Department of Physics , College of Sciences, Princess Nourah Bint Abdulrahman University (PNU) , Riyadh , 11671 , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Saba Irshad
- Institute of Biochemistry and Biotechnology, University of the Punjab , Lahore , Pakistan
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Muhammad D. Ali
- Department of Physics , University of Punjab , Lahore , Pakistan
| |
Collapse
|
16
|
Noreen S, Sahar I, Masood N, Iqbal M, Zahid M, Nisar J, Khan MI, Nazir A. Thermodynamic and kinetic approach of biodiesel production from waste cooking oil using nano-catalysts. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
This study focusses on the production of biodiesel by reacting the heterogeneous based nano-catalysts with used cooking oil in the presence of methanol. The CZO nanoparticles (NPs) were synthesized by co-precipitation method and characterized by different techniques. Biodiesel was characterized by the gas chromatograph (GC) and Fourier Transform Infra-red Spectroscopy (FTIR). Optimum conditions for the maximum biodiesel yield (90%) were 0.2% (w/w) catalyst dose, 3:1 methanol to oil ratio, 50 °C reaction temperature, 150 min reaction time and 136 rpm stirring speed. The kinetic modeling and the thermodynamic factors like enthalpy (ΔH), activation energy (Ea), entropy (ΔS) and free energy (ΔG) were operated on all the data. Mean and standard deviation was used for analysis of data. The results indicate the maximum biodiesel yield under the optimum reaction conditions, which is promising to reduce the pollution such as air pollution and greenhouse effect for sustainable environmetal development.
Collapse
Affiliation(s)
- Saima Noreen
- Department of Chemistry , University of Agriculture , Faisalabad , Pakistan
| | - Iqra Sahar
- Department of Chemistry , University of Agriculture , Faisalabad , Pakistan
| | - Nasir Masood
- Department of Environmental Sciences , COMSATS University Islamabad , Vehari Campus , Vehari , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Muhammad Zahid
- Department of Chemistry , University of Agriculture , Faisalabad , Pakistan
| | - Jan Nisar
- National Centre of Excellence in Physical Chemistry , University of Peshawar , Peshawar 25120 , Pakistan
| | - Muhammad I. Khan
- Department of Physics , The University of Lahore , Lahore , Pakistan
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| |
Collapse
|
17
|
Nazir A, Farooq S, Abbas M, Alabbad EA, Albalawi H, Alwadai N, Almuqrin AH, Iqbal M. Synthesis, characterization and photocatalytic application of Sophora mollis leaf extract mediated silver nanoparticles. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This study reports green synthesis and characterization of silver nanoparticles (Ag NPs) from Sophora mollis leaf extract. The use of S. mollis extract for preparation of Ag NPs was investigated using different techniques. Dark brown color indicates formation of nanoparticles. Fourier transform infra-red (FTIR) analysis revealed that plant extract act as a reducing and capping agent. Morphological aspects of Ag NPs were ascertained by means of SEM studies. Energy dispersive and FTIR spectroscopy results showed chemical composition and plant extract functionality respectively. X-ray diffraction (XRD) analysis showed particle size of 70 nm. Antibacterial activity of NPs was investigated by disc diffusion and minimum inhibitory concentration method. Antioxidant activity of NPs was shown by DPPH assay. The photo catalytic efficiency of synthesized Ag NPs was evaluated by degradation of methylene blue (MB) dye under UV irradiation. Ag NPs degraded MB dye up to 88% in 160 min. It is concluded that these NPs could be employed for degradation of toxic industrial effluents. Result proved the green synthesis of Ag NPs from S. mollis extract is clean, economical and safe method.
Collapse
Affiliation(s)
- Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore 53700 , Pakistan
| | - Saqib Farooq
- Department of Chemistry , The University of Lahore , Lahore 53700 , Pakistan
| | - Mazhar Abbas
- Department of Biochemistry, College of Veterinary and Animal Sciences (Jhang-Campus) , University of Veterinary & Animal Sciences , Lahore , Pakistan
| | - Eman A. Alabbad
- Department of Chemistry, College of Science , Imam Abdulrahman Bin Faisal University , Dammam 31441 , Saudi Arabia
| | - Hind Albalawi
- Department of Physics, College of Sciences , Princess Nourah bint Abdulrahman University (PNU) , Riyadh 11671 , Saudi Arabia
| | - Norah Alwadai
- Department of Physics, College of Sciences , Princess Nourah bint Abdulrahman University (PNU) , Riyadh 11671 , Saudi Arabia
| | - Aljohara H. Almuqrin
- Department of Physics, College of Sciences , Princess Nourah bint Abdulrahman University (PNU) , Riyadh 11671 , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore 53700 , Pakistan
| |
Collapse
|
18
|
Shaheen M, Bhatti IA, Ashar A, Mohsin M, Nisar J, Almoneef MM, Iqbal M. Synthesis of Cu-doped MgO and its enhanced photocatalytic activity for the solar-driven degradation of disperse red F3BS with condition optimization. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
In the present study, Cu (2–12%) doped MgO was synthesized and characterized by SEM, XRD, EDX, and FTIR spectroscopy. The Cu concentration significantly affected the band gap and particle size, which ranged from 4.63 to 3.78 eV and from 27.2 to 79 nm, respectively. In addition, the photocatalytic activity (PCA) of Cu-doped MgO was monitored by the photocatalytic destruction of disperse red F3BS coralene dye, and four reaction variables such as dye concentration, catalyst dose, hydrogen peroxide concentration, and irradiation time, respectively, were optimized by response surface methodology (RSM). Dye degradation was significantly affected by these process variables, and a degradation rate of up to 93% was achieved under optimized conditions. The wastewater samples were also treated under optimized conditions and water quality variables, i.e., chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were significantly improved after treatment. Cu-doped MgO exhibited excellent PCA under the solar-light exposure for the degradation of disperse red F3BS dye, which can be employed for the treatment of dye-containing effluents.
Collapse
Affiliation(s)
- Musarrat Shaheen
- Department of Chemistry , University of Agriculture , Faisalabad 38040 , Pakistan
| | - Ijaz A. Bhatti
- Department of Chemistry , University of Agriculture , Faisalabad 38040 , Pakistan
| | - Ambreen Ashar
- Department of Chemistry , Government College Women University , Faisalabad 38040 , Pakistan
| | - Muhammad Mohsin
- Department of Chemistry , University of Agriculture , Faisalabad 38040 , Pakistan
| | - Jan Nisar
- National Center of Excellence in Physical Chemistry, University of Peshawar , Peshawar 25120 , Pakistan
| | - Maha M. Almoneef
- Department of Physics , College of Sciences, Princess Nourah bint Abdulrahman University (PNU) , Riyadh 11671 , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore 53700 , Pakistan
| |
Collapse
|
19
|
Ghafoor A, Bibi I, Ata S, Majid F, Kamal S, Rehman F, Iqbal S, Aamir M, Slimani Y, Iqbal M, Mailk A. Synthesis and characterization of magnetically separable La1−x
Bi
x
Cr1−y
Fe
y
O3 and photocatalytic activity evaluation under visible light. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A series of Bi and Fe doped La1−x
Bi
x
Cr1−y
Fe
y
O3 (x = 0.00–0.10 and y = 0.02–0.12) perovskites were fabricated through a facile microemulsion method and were characterized by XRD, DC electrical-resistivity, dielectric, VSM, and UV–Visible measurements. Orthorhombic phase of synthesized substituted chromite nanocrystallite was confirmed by powdered XRD analysis with crystallite size in 47.8–32.9 nm range. DC electrical resistivity was observed to increase from 1.70–39.99 × 108 Ω-cm. Dielectric parameters analyzed in frequency range of 20 kHz–20 MHz were decreased, while magnetic parameters were observed to increase with the increase in dopant (Bi+3 and Fe+3) concentration. Whereas coercivity values was low (narrow hysteresis loop), which indicate the soft ferromagnetic of the prepared material materials which are quite useful to employ in storage devices and electronics. Moreover, La1−x
Bi
x
Cr1−y
Fe
y
O3 degraded 90.80% Rhodamine B dye under visible light irradiation within 55 min. The increase in electrical resistivity, while decrease in dielectric parameters was also observed with increase in dopant concentration, ferromagnetic nature and excellent photocatalytic properties make this material suitable for high frequency energy devices, microwave appliances as well as an excellent magnetically separable photocatalyst for the purification of contaminated wastewater.
Collapse
Affiliation(s)
- Aamir Ghafoor
- Department of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ismat Bibi
- Department of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Sadia Ata
- Institute of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Farzana Majid
- Department of Physics , University of the Punjab , Lahore , Pakistan
| | - Shagufta Kamal
- Department of Applied Chemistry & Biochemistry , GC University , Faisalabad , Pakistan
| | - Fariha Rehman
- Department of Economics , COMSATS University Islamabad, Lahore Campus , Lahore , Pakistan
| | - Shahid Iqbal
- Department of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Muhammad Aamir
- Department of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC) , Imam Abdulrahman Bin Faisal University , P.O. Box 1982 , Dammam 31441 , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Abdul Mailk
- National Institute of Lasers and Optronics (NILOP) , Islamabad , Pakistan
| |
Collapse
|
20
|
Abstract
Abstract
In view of promising sorption capacity, stability, biodegradability, cost-effectiveness, environmental friendly nature, regeneration and recycling ability, the chitosan (CS) based adsorbents are highly efficient for the sequestration of dyes. Since CS offers variable chemical structures and CS have been modified by incorporating different moieties. The CS composites with unique properties have been employed successfully for dye adsorption with reasonably high adsorption capacity versus other similar adsorbents. Modifications of CS were promising for the preparation of composites that are extensively studied for their adsorption capacities for various dyes. This review highlights the CS and its modification and their applications for the adsorption of dyes. The removal capacities of CS-based adsorbents, equilibrium modeling, kinetics studies and the thermodynamic characteristics are reported. Moreover, the FTIR, BET, SEM, TGA and XRD were employed for the characterization of CS modified adsorbents are also discussed. Results revealed that the modified CS is highly efficient and can be employed for the sequestration of dyes from effluents.
Collapse
|
21
|
Kausar A, Naeem K, Iqbal M, Nazli ZIH, Bhatti HN, Ashraf A, Nazir A, Kusuma HS, Khan MI. Kinetics, equilibrium and thermodynamics of dyes adsorption onto modified chitosan: a review. Z PHYS CHEM 2021. [DOI: 10.1515/zpc-2019-1586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In view of promising sorption capacity, stability, biodegradability, cost-effectiveness, environmental friendly nature, regeneration and recycling ability, the chitosan (CS) based adsorbents are highly efficient for the sequestration of dyes. Since CS offers variable chemical structures and CS have been modified by incorporating different moieties. The CS composites with unique properties have been employed successfully for dye adsorption with reasonably high adsorption capacity versus other similar adsorbents. Modifications of CS were promising for the preparation of composites that are extensively studied for their adsorption capacities for various dyes. This review highlights the CS and its modification and their applications for the adsorption of dyes. The removal capacities of CS-based adsorbents, equilibrium modeling, kinetics studies and the thermodynamic characteristics are reported. Moreover, the FTIR, BET, SEM, TGA and XRD were employed for the characterization of CS modified adsorbents are also discussed. Results revealed that the modified CS is highly efficient and can be employed for the sequestration of dyes from effluents.
Collapse
Affiliation(s)
- Abida Kausar
- Department of Chemistry , Government College Women University Faisalabad , Faisalabad , Pakistan
| | - Kashaf Naeem
- Department of Chemistry , Government College Women University Faisalabad , Faisalabad , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore 53700 , Pakistan
| | - Zill-i-Huma Nazli
- Department of Chemistry , Government College Women University Faisalabad , Faisalabad , Pakistan
| | - Haq N. Bhatti
- Department of Chemistry , University of Agriculture Faisalabad 38040 , Faisalabad , Pakistan
| | - Aisha Ashraf
- Department of Chemistry , Government College Women University Faisalabad , Faisalabad , Pakistan
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore 53700 , Pakistan
| | - Heri S. Kusuma
- Analytical Chemistry Research Group, Department of Chemical Education, Faculty of Education and Teachers Training , University of Nusa Cendana , Kupang 85001 , Nusa Tenggara Timur , Indonesia
| | - Muhammad I. Khan
- Department of Physics , The University of Lahore , Lahore 53700 , Pakistan
| |
Collapse
|
22
|
Aamir M, Bibi I, Ata S, Majid F, Kamal S, Alwadai N, Sultan M, Iqbal S, Aadil M, Iqbal M. Graphene oxide nanocomposite with Co and Fe doped LaCrO3 perovskite active under solar light irradiation for the enhanced degradation of crystal violet dye. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114895] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Iqbal M, Shar GA, Ibrahim SM, Iftikhar S, Asif M, Khan MI, Kusuma HS, Yaseen M, Nazir A. Synthesis and characterization of heterostructured nanoparticle for efficient photocatalytic performance for dye degradation. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2019-1562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
This paper focusses on the synthesis of cobalt vanadate (CoVO4) nanoparticles (NPs) by precipitation method. This was further augmented by assistance from microwave. Nanotechnology has been a wonderful tool with the promising application in different fields of life. The CoVO4 NPs synthesized by microwave assisted precipitation method was characterized by advanced techniques such as X-ray powder diffraction (XRD), Energy dispersive X-ray analysis (EDX), Scanning electron microscopy (SEM), Ultraviolet visible spectroscopy (UV–vis) techniques. Rhodamine B (RhB) dye was used to evaluate the photo catalytic activity (PCA) of NPs by degradation of dye. The conditions were optimized for maximum degradation of dye. The NPs were in the nano flowers form and the size was ≤100 nm. The results regarding degradation of RhB was through PCA were promising; 83% dye was degraded at pH 10, reaction time 160 min and catalyst dose 1 g. It may conclude that the synthesized NPs could further be employed for possible treatment of industrial effluents particularly textile industry.
Collapse
Affiliation(s)
- Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore 53700 , Pakistan
| | - Ghulam A. Shar
- Institute of Chemistry, Shah Abdul Latif University , Khairpur , Sindh 66020 , Pakistan
| | - Sobhy M. Ibrahim
- Department of Biochemistry , College of Science, King Saud University , P.O. Box: 2455 , Riyadh 11451 , Saudi Arabia
- Department of Analytical Chemistry and Control , Hot Laboratories and Waste Management Center, Atomic Energy Authority , Cairo 13759 , Egypt
| | - Shan Iftikhar
- Department of Chemistry , The University of Lahore , Lahore 53700 , Pakistan
| | - Muhammad Asif
- Department of Chemistry , The University of Lahore , Lahore 53700 , Pakistan
| | - Muhammad I. Khan
- Department of Physics , The University of Lahore , Lahore 53700 , Pakistan
| | - Heri S. Kusuma
- Analytical Chemistry Research Group, Department of Chemical Education , Faculty of Education and Teachers Training, University of Nusa Cendana , Kupang , Nusa Tenggara Timur 85001 , Indonesia
| | - Muhammad Yaseen
- Department of Physics , University of Agriculture , Faisalabad 38000 , Pakistan
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore 53700 , Pakistan
| |
Collapse
|
24
|
Noreen S, Ismail S, Ibrahim SM, Kusuma HS, Nazir A, Yaseen M, Khan MI, Iqbal M. ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: kinetics, equilibrium and thermodynamics studies. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2019-1599] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
In the present investigation, ZnO, CuO and Fe2O3 were prepared via green route and utilized for the sequestration of DGY (Direct Golden Yellow) dye. Affecting variables i.e., temperature, contact time, adsorbent dose and pH were optimized for maximum sequestration of dye from aqueous medium. The pH 2, adsorbent dose 0.1 g/50 mL dye solution, temperature 30 °C and 50 mg/L dye initial concentration were best levels for efficient dye adsorption and equilibrium was attained in 30 min reaction time. The dye sequestration on to ZnO, CuO and Fe2O3 was an exothermic process. Freundlich and Temkin adsorption isotherms explained well the dye adsorption onto nanoadsorbents and dye adsorption followed pseudo first order kinetic model. Effect of electrolytes and heavy metal ions was also investigated and both affected the adsorption process significantly. In the presences of surfactant/detergent, the removal of dye was reduced and 0.5 N NaOH efficiently desorbed the dye from nanoadsorbents. Findings depicted that the nanoadsorbents are effectual for the sequestration of DGY dye, which can be employed for the remediation of textile effluents.
Collapse
Affiliation(s)
- Saima Noreen
- Department of Chemistry , University of Agriculture , Faisalabad , Pakistan
| | - Safa Ismail
- Department of Chemistry , University of Agriculture , Faisalabad , Pakistan
| | - Sobhy M. Ibrahim
- Department of Biochemistry, College of Science , King Saud University, P.O. Box: 2455 , Riyadh 11451 , Saudi Arabia
| | - Heri S. Kusuma
- Department of Chemical Education, Analytical Chemistry Research Group, Faculty of Education and Teachers Training , University of Nusa Cendana , Kupang , Indonesia
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Muhammad Yaseen
- Department of Physics , University of Agriculture , Faisalabad , Pakistan
| | - Muhammad I. Khan
- Department of Physics , The University of Lahore , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| |
Collapse
|
25
|
Kinetic and thermodynamic studies for evaluation of adsorption capacity of fungal dead biomass for direct dye. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
This study focuses on evaluation of degradation aptitude of white rot fungus (Coriolus versicolor) against Indosol Turquoise FBL dye. The outcome of numerous parameters including pH, temperature, carbon sources, nitrogen sources, C/N ratio and effect of dye concentration were studied. Maximum decolorization (99.896%) of Indosol Turquoise FBL was obtained by C. versicolor under optimized conditions. After three days, the maximum dye degradation (98%) was observed at pH 4 and 30 °C. Six carbon sources fructose, glucose, maltose, sucrose, rice bran and wheat bran were used and 96.66% degradation was observed by maltose at its optimum growth concentration (0.1 g/100 mL). Various nitrogen sources were employed for decolorization but ammonium nitrate decolorized dye up to 98.05%. The activity of three different enzymes laccase, Lignin peroxidase (LiP) and Manganese peroxidase (MnP) were calculated. The dead biomass of White rot fungus (WRF) was used for biosorption experiments. Maximum q (36 mg/g) was obtained at pH 2, at 30 °C using 0.05 g biosorbent. An increase in the q value was observed with increase in dye concentration. Freundlich adsorption isotherm and pseudo second order kinetics were followed by the data. It can be concluded that C. versicolor could be an efficient source for degradation of dyes from industrial effluents.
Collapse
|
26
|
Abbas S, Bibi I, Majid F, Ata S, Ibrahim SM, Kamal S, Sultan M, Jilani K, Iqbal S, Iqbal M. Micro-emulsion synthesis of La1 − xCrxFeO3 nanoparticles: effect of Cr doping on ferroelectric, dielectric and photocatalytic properties. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2019-0201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn the present study, La1 − xCrxFeO3 (x = 0.0, 0.3, 0.6, 0.9, 1.0) was synthesized by micro-emulsion route and characterized by X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning electron microscope (SEM), Energy-dispersive X-ray (EDX) techniques. The dielectric, ferroelectric and photocatalytic properties were investigated and compared with un-doped material. The XRD analysis revealed orthorhombic geometry of La1 − xCrxFeO3 (x = 0.0, 0.3, 0.6, 0.9, 1.0), Cr was doped successfully into the lattice structure of LaFeO3 and particles were spherical and in agglomerated form. The grain sizes were recorded to be 15, 16.9, 17.1, 17.65 and 18.3 (nm) for La1 − xCrxFeO3 (x = 0.0, 0.3, 0.6, 0.9, 1.0), respectively. EDX analysis confirmed the purity of LaCrFeO3 samples. The lattice parameters, bulk density, X-ray density, crystalline size and porosity were determined were also determined of all the La1 − xCrxFeO3 samples. The dielectric constant and dielectric loss values decreased at higher frequency and Cr concentration affected the dielectric properties. The photocatalytic activity (PCA) was evaluated by degrading Congo Red (CR) dye under solar light irradiation and up to 85.43% dye degradation was achieved within 45 min of irradiation. Phyto-toxicity analysis before and after dye degradation was performed, which revealed the toxicity reduction in response of dye degradation. Results revealed that lanthanum ferrite (perovskite) doping with Cr could possibly be employed to enhance the ferroelectric, dielectric and photocatalytic properties.
Collapse
Affiliation(s)
- Sehrish Abbas
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ismat Bibi
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Farzana Majid
- Department of Physics, University of the Punjab, Lahore, Pakistan
| | - Sadia Ata
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Sobhy M. Ibrahim
- Department of Biochemistry, College of Science, King Saud University, P.O. Box: 2455, Riyadh11451, Saudi Arabia
| | - Shagufta Kamal
- Department of Applied Chemistry and Biochemistry, Government College University, Faisalabad, Pakistan
| | - Misbah Sultan
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Kashif Jilani
- Deprtment of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
27
|
Naveed R, Bhatti IA, Sohail I, Ashar A, Ibrahim SM, Iqbal M, Nazir A. Kinetic and equilibrium study of (poly amido amine) PAMAM dendrimers for the removal of chromium from tannery wastewater. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2019-1567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Water gets polluted by industrial effluents, mainly composed of heavy metals and organic materials. Water soluble heavy metals can be taken up by living organisms. Chromium mainly occurs in the form of chromate and cationic hydroxo complexes in water. Apart from conventional methods of heavy metal removal, there are some novel approaches such as using dendrimers for removal of heavy metal. Dendrimers are extremely branched nano sized polymers with a three-dimensional symmetry around a core that imparts poly functionality. PAMAM (poly amido amine) dendrimers having ethylene diamine as core and methyl acrylate as repeating unit was divergently synthesized. Characterization of PAMAM dendrimers was evaluated by UV–Vis spectroscopy, zeta sizer, scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy. Zero generation dendrimers have amine terminal groups, showed intense amide group peak at 1596.76 cm−1. The λ
max value was 278 nm. SEM exhibited spherical shape for full generation while needle like structure for −0.5 generation. Evaluation of chromium removal from wastewater has been done by atomic absorption spectroscopy (AAS). The data revealed that optimal removal of Cr occurs at dendrimer concentration of 5 mL, Cr concentration of 300 ppm, contact time of 2 min and pH 7. The synthesized dendrimers have effectively removed Cr from tannery wastewater.
Collapse
Affiliation(s)
- Rizwana Naveed
- Department of Chemistry , University of Agriculture , Faisalabad , 38040, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry , University of Agriculture , Faisalabad , 38040, Pakistan
| | - Isra Sohail
- Department of Chemistry , University of Agriculture , Faisalabad , 38040, Pakistan
| | - Ambreen Ashar
- Department of Chemistry , University of Agriculture , Faisalabad , 38040, Pakistan
- Department of Chemistry , Government College Women University , Faisalabad , 38040, Pakistan
| | - Sobhy M. Ibrahim
- Department of Biochemistry, College of Science , King Saud University , P.O. Box: 2455 , Riyadh , 11451, Saudi Arabia
- Department of Analytical Chemistry and Control, Hot Laboratories and Waste Management Center , Atomic Energy Authority , Cairo , 13759, Egypt
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , 53700, Pakistan
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , 53700, Pakistan
| |
Collapse
|
28
|
Zaman QU, Anwar S, Mehmood F, Nawaz R, Masood N, Nazir A, Iqbal M, Nazir S, Sultan K. Experimental modeling, optimization and comparison of coagulants for removal of metallic pollutants from wastewater. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Wastewater treatment coagulation is one of the most important physicochemical operations used in industry. The adsorption capability of marigold leaf powder, tea waste and ferrous sulfate was investigated for domestic and tannery effluents. These adsorbents significantly affected the pH, electrical conductivity (EC) and turbidity of wastewater. Maximum decrease in all the attributes was observed for 10 g of adsorbents application. All the adsorbents significantly affected the physiochemical attributes of both wastewaters. Similarly, maximum adsorption potential was observed in case of tea waste powder. Maximum decrease in all physiochemical attributes such as pH (15%), EC (21%), turbidity (54%), total dissolved solids (TDS; 36%), total suspended solids (TSS; 43%), total hardness (TH; 52%), chloride contents (59%) and phosphate contents (60%) was observed with the application of 10 g of tea waste. Regarding the heavy metals, maximum decrease for cadmium (Cd; 47%), lead (Pb; 81%), arsenic (As; 44%), copper (Cu; 75%), iron (Fe; 49%), chromium (Cr; 68%) and zinc (Zn; 64%) was observed in same treatment. The decreasing order in terms of their adsorption potential for coagulants was tea waste > marigold leaf powder > ferrous sulfate. However, for the wastewater, the maximum effect of adsorbents was observed in case of domestic wastewater as compared to the tannery water. Based on these data, it is suggested that tea waste has maximum adsorption potential for the remediation of wastewater.
Collapse
Affiliation(s)
- Qamar uz Zaman
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| | - Sana Anwar
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| | - Faisal Mehmood
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Rab Nawaz
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| | - Nasir Masood
- Department of Environmental Sciences COMSATS University Islamabad , Vehari Campus , Punjab , Pakistan
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Saba Nazir
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| | - Khawar Sultan
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| |
Collapse
|
29
|
Structural, electric and dielectric properties of perovskite based nanoparticles for energy applications. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2019-1558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A nanocomposite electrode, obtained by combining two high performance perovskite materials, such as lanthanum strontium cobalt ferrite, La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) and gadolinium doped ceria, Ce0.85Gd0.15O1.5 (GDC), were investigated as a promising cathode for moderate temperature solid oxide fuel cells (SOFCs). The synthesized material has good conductivity and catalytic performance. The purpose of this synthesis was to prepare a stable and highly performing nanocomposite cathode material. In this research work, LSCF and GDC were separately synthesized by co-precipitation and solid-state reaction method to gain a homogeneous perovskite phase. Varying concentrations of LSCF–GDC composite with GDC (10 wt.%, 20 wt.% and 30 wt.%) were synthesized followed by calcination at 600 °C to remove water content and to achieve an adequate porous structure for oxygen absorption and desorption. These fabricated LSCF, GDC, and the nanocomposite specimens were characterized for microstructure, particle size etc. via. X-ray diffraction method (XRD), scanning electron microscope (SEM) and the laser particle size analyzer. This procedural approach helps to expand new methods for generating bi-functional duel nano-sized perovskites with great performance and stability which can be utilized for advancement of renewable energy sectors especially for rechargeable fuel batteries.
Collapse
|
30
|
Nazir A, Khalid F, Rehman SU, Sarwar M, Iqbal M, Yaseen M, Iftikhar Khan M, Abbas M. Structural, electric and dielectric properties of perovskite based nanoparticles for energy applications. Z PHYS CHEM 2020. [DOI: 10.1515/zpc-2019-1558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
A nanocomposite electrode, obtained by combining two high performance perovskite materials, such as lanthanum strontium cobalt ferrite, La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) and gadolinium doped ceria, Ce0.85Gd0.15O1.5 (GDC), were investigated as a promising cathode for moderate temperature solid oxide fuel cells (SOFCs). The synthesized material has good conductivity and catalytic performance. The purpose of this synthesis was to prepare a stable and highly performing nanocomposite cathode material. In this research work, LSCF and GDC were separately synthesized by co-precipitation and solid-state reaction method to gain a homogeneous perovskite phase. Varying concentrations of LSCF–GDC composite with GDC (10 wt.%, 20 wt.% and 30 wt.%) were synthesized followed by calcination at 600 °C to remove water content and to achieve an adequate porous structure for oxygen absorption and desorption. These fabricated LSCF, GDC, and the nanocomposite specimens were characterized for microstructure, particle size etc. via. X-ray diffraction method (XRD), scanning electron microscope (SEM) and the laser particle size analyzer. This procedural approach helps to expand new methods for generating bi-functional duel nano-sized perovskites with great performance and stability which can be utilized for advancement of renewable energy sectors especially for rechargeable fuel batteries.
Collapse
Affiliation(s)
- Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Fraz Khalid
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Shafiq ur Rehman
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Masood Sarwar
- Government Islamia Degree College Sambrial , Sialkot , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Muhammad Yaseen
- Department of Physics , University of Agriculture , Faisalabad , Pakistan
| | | | - Mazhar Abbas
- Department of Basic Sciences , College of Veterinary and Animal Sciences Jhang Campus, UVAS , Lahore , Pakistan
| |
Collapse
|
31
|
Sharif S, Zaman QU, Hassan F, Javaid S, Arif K, Mansha MZ, Ehsan N, Nazir S, Gul R, Iqbal M, Nazir A. Coagulation of Metallic Pollutants from Wastewater Using a Variety of Coagulants Based on Metal Binding Interaction Studies. ACTA ACUST UNITED AC 2020. [DOI: 10.1515/zpch-2019-1532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, different organic (moringa and neem leaf powder) and inorganic (alum) coagulants were used for the wastewater treatment. Results revealed that all the coagulants at various doses significantly affected the pH, electrical conductivity (EC) and turbidity of wastewater. The maximum decrease in all the attributes was observed when 10 g of coagulants were used. Similarly, maximum adsorption potential was observed in case of moringa leaf powder. Maximum decrease in all physiochemical attributes such as pH (13%), EC (65%), turbidity (75%), total dissolved solids (TDS; 51%), total suspended solids (TSS; 48%), total hardness (TH; 29%), chloride contents (66%) and phosphate contents (44%) was observed. Regarding the heavy metals, maximum decrease for Cadmium (Cd; 96%), Lead (Pb; 88%), Arsenic (As; 23%), Iron (Fe; 90%), Manganese (Mn; 96%) and Zinc (Zn; 48%) was observed in same treatment. The decreasing order in terms of their adsorption potential for coagulants was moringa leaf powder > Alum > neem leaf powder. However, the maximum effect of coagulants was observed in case of textile wastewater as compared to the hospital wastewater. Based on the analyses, it is concluded that the moringa leaf powder has maximum adsorption potential for the remediation of wastewater.
Collapse
Affiliation(s)
- Saba Sharif
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| | - Qamar uz Zaman
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| | - Faiza Hassan
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Sana Javaid
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| | - Khalid Arif
- Department of Mathematics and Statistics , The University of Lahore , Lahore , Pakistan
| | - Muhammad Zeeshan Mansha
- College of Agriculture, Bahauddin Zakariya University , Bahadur Sub Campus, Layyah , Pakistan
| | - Nusrat Ehsan
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| | - Saba Nazir
- Department of Environmental Sciences , The University of Lahore , Lahore , Pakistan
| | - Rehman Gul
- Soil and Water Testing Laboratory for Research , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| |
Collapse
|
32
|
Irshad A, Sarwar N, Sadia H, Malik K, Javed I, Irshad A, Afzal M, Abbas M, Rizvi H. Comprehensive facts on dynamic antimicrobial properties of polysaccharides and biomolecules-silver nanoparticle conjugate. Int J Biol Macromol 2019; 145:189-196. [PMID: 31838065 DOI: 10.1016/j.ijbiomac.2019.12.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023]
Abstract
Based on progress for the green synthesis of nanoparticle (NPs), the mushrooms have also been utilized extensively for the biogenic synthesis of NPs. In recent years, silver NPs have been fabricated using mushrooms. The antimicrobial drugs are efficient to control the infectious diseases, but due to widespread of drugs, microbes became resistant to drugs, which demands develop of new bioactive agents. The silver NPs have been recognized as efficient broad spectrum antimicrobial agents, which have been fabricated using polysaccharides from mushrooms as reducing and capping agent. This review focused on the comprehensive study that deals silver NPs polysaccharides from Pleurotus mushroom, their synthesis mechanism, action mechanism of silver NPs and their characterization using advanced techniques i.e., ultraviolet-visible (UV-Vis), dynamic light scattering, Fourier transformation infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and XRD. The Pleurotus mushroom showed promising efficiency for the biogenic synthesis of polysaccharides‑silver NPS and as-prepared NPs showed excellent antimicrobial activity.
Collapse
Affiliation(s)
- Asma Irshad
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Nadeem Sarwar
- Department of Computer Science, Bahria University (Lahore Campus), Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Kausar Malik
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Irum Javed
- Department of Biochemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Abdullah Irshad
- Department of General Surgery, Indus Hospital, Karachi, Pakistan
| | - Muhammad Afzal
- Department of Biochemistry, University of Central Punjab, Lahore, Pakistan
| | - Mazhar Abbas
- Department of Biochemistry, College of Veterinary and Animal Sciences (Jhung Campus), Pakistan
| | - Hina Rizvi
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| |
Collapse
|
33
|
Sol–Gel Synthesis of Mesoporous Silica–Iron Composite: Kinetics, Equilibrium and Thermodynamics Studies for the Adsorption of Turquoise-Blue X-GB Dye. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/zpch-2019-1443] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Mesoporous silica (MPS) and MPS-Fe composite was prepared via sol–gel technique and characterized by BET, FTIR, XRD, SEM and pZc. The MPS and MPS-Fe adsorption efficiencies were evaluated for a cationic dye Turquoise-blue X-GB. The MPS-Fe composite showed pore size and BET values of 9.52 nm and 309 m2/g, respectively. XRD and SEM analysis revealed the amorphous nature and uniform distribution of spherical partciles with average particle size of 50 nm of MPS-Fe composite. The points of zero (pZc) charge found to be 2.3 and 6.3 for MPS and MPS-Fe, respectively. The MPS and MPS-Fe showed promising efficiency for the adsorption of Turquoise-blue X-GB as a function of medium pH, contact time, dye initial concentration and temperature. Among, Freundlich, Langmuir, Harkins–Jura, Temkin, Doubinin–Radushkevich isotherms, the Turquoise-blue X-GB followed Langmuir isothermal model with adsorption capacities of 83.34 mg/g and 74.07 mg/g for MPS and MPS-Fe composite, respectively. Among kinetics models, pseudo second order kinetic model fitted to the dye adsorption with R2 values of 0.998 and 0.988 for MPS and MPS-Fe composite, respectively. The negative values of enthalpy (ΔH) and free energy (ΔG) revealed exothermic and spontaneous adsorption of dye at room temperature. Results revealed that MPS and MPS-Fe composite have promising potential for Turquoise-blue X-GB dye adsorption and could possibly be extended for the adsorption of dyes from textile effluents.
Collapse
|