1
|
Waqar MA, Khan IN, Zahra S, Shaheen F, Noureen S, Ahmad S, Siddique MI, Alvi MN. β-Cyclodextrin-functionalized nanocarriers for bromocriptine: development, evaluation and histopathological studies. J Microencapsul 2025:1-15. [PMID: 40207906 DOI: 10.1080/02652048.2025.2487034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Bromocriptine (BCM), a dopaminergic agonist used in Parkinson's disease treatment, has poor oral bioavailability due to extensive first-pass metabolism and limited gastrointestinal absorption. This study aimed to develop a β-cyclodextrin-functionalized bromocriptine nanoemulsion (oil-in-water) to enhance drug solubility, stability, and bioavailability while facilitating direct brain delivery via the intranasal route. The formulation was designed to overcome systemic metabolic barriers, improve drug permeation across the blood-brain barrier, and ensure sustained therapeutic effects with minimal systemic side effects. Nano-emulsions were prepared using high-shear homogenization. Characterization was performed using scanning electron microscopy (SEM) for morphological analysis. Globule size and zeta potential were measured using Malvern Zetasizer. Fourier Transform Infrared Spectroscopy (FTIR) was used for structural analysis, while X-ray diffraction (XRD) assessed crystallinity. Differential Scanning Calorimetry (DSC) was conducted for thermal analysis. Drug content and in-vitro drug release were evaluated using UV-visible spectroscopy. Stability studies were performed using centrifugation and freeze-thaw methods. Docking studies and Histopathological evaluation were also performed of the prepared formulations. Morphological studies revealed nano-sized globular particles with a mean diameter of 117.2 nm and a low polydispersity index (PDI 0.810), indicating uniformity. The nanoemulsion exhibited a zeta potential of -10.5 mV, ensuring colloidal stability. The encapsulation efficiency (EE%) of the optimized formulation (F4) was 95.36(% w/w,) with a drug load of approximately 9.5(% w/w). In-vitro drug release reached 85.65%, with permeation release of 78.44% and 70.13% ex-vivo. The formulation remained stable under freeze-thaw and centrifugation conditions. Cell toxicity assessments demonstrated excellent biocompatibility, with no significant cytotoxic effects observed in histopathological evaluations. This nanoemulsion presents a promising alternative to oral bromocriptine for Parkinson's treatment.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Iqra Noor Khan
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Shabab Zahra
- Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Farwa Shaheen
- Department of Pharmacy, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Saba Noureen
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Shakeel Ahmad
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Muhammad Irfan Siddique
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha, Saudia Arabia
| | - Muhammad Nadeem Alvi
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Taherzadeh E, Arianfar A, Mahdian E, Mohseni S. Impact of nanoemulsion of Ajwain-cardamom essential oils on Mortadella sausage quality during chilling (4°C) storage. Heliyon 2025; 11:e41643. [PMID: 39866456 PMCID: PMC11759640 DOI: 10.1016/j.heliyon.2025.e41643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Essential oils application as natural preservatives is challenging owning to low solubility and stability to harsh conditions, while incorporation of essential oils into nanoemulsion systems can effectively improve these issues. Therefore, the nanoemulsion of ajwain (C. copticum) and cardamom essential oils were fabricated through self-emulsification technique and evaluated their size, ζ-potential, antioxidative and antibacterial activities. The effect of double nanomulsion on the textural and sensorial properties of Mortadella sausage was also examined under chilling temperature (4 °C). Our goal was to improve the chilling storage of Mortadella sausage by using ajwain and cardamom nanoemulsion as natural preservative. By increasing the ajwain essential oil in the nanoemulsion, the protein and moisture of sausage increased, while the fat content decreased (17 %). Furthermore, nanoemulsion of ajwain and cardamom essential oils showed particle size less than 100 nm and PDI<0.5 revealing the stability of nanoemulsions. Moreover, double nanoemulsions exhibited higher antibacterial activity against S. aureus and IC50 DPPH value (107 ppm). The nanoemulsion had a greater effect on the textural properties of Mortadella, reduction in hardness (∼5300 g), and chewiness (∼2500 g mm). Ajwain/cardamom nanoemulsion also increased the sensory properties, particularly taste and acceptance of the Mortadella. Consequently, Ajwain/cardamom nanoemulsion not only improve the storage of mortadella sausage at chilling temperature due to their antioxidant and antimicrobial properties, but also has a positive effect on the red color and textural properties created a special herbal aroma, taste and odor in the Mortadella samples, which ultimately contributed to the customer-friendly product. The appropriate dose of these nanoemulsion can develop meat products at lowest amount of nitrite in Mortadella sausage formulations, although, further research should be conducted on the mechanism of action AEO/CEO nanoemulsion concerning appearance and nitrite reduction in the meat products.
Collapse
Affiliation(s)
- Elmira Taherzadeh
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Akram Arianfar
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Elham Mahdian
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Sharareh Mohseni
- Department of Chemistry, Quchan Branch, Islamic Azad University, Quchan, Iran
| |
Collapse
|
3
|
Tiran Gunasena M, Hussein MZ, Ali A, Wahab MAA, Bashir Kutawa A, Rafif A, Afif Mohd Zobir S, Ahmad K. Zingiber officinale Roscoe Essential Oils-Loaded Chitosan Nanoparticles with Enhanced Bactericidal Efficacy against Burkholderia glumae in Rice. Chem Biodivers 2023; 20:e202300686. [PMID: 37905394 DOI: 10.1002/cbdv.202300686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023]
Abstract
Ginger essential oils (GEO) shows exceptional antimicrobial properties against plant pathogens. Due to its high volatility and low stability, it requires encapsulation to retain its effective properties. The GEO-Chitosan (GEO-CS) nanobactericide was developed using the ionic gelation method. The nanobactericides show particle diameters of 465, 28, 35, 48 and 500 nm when sodium tripolyphosphate (TPP) concentrations used in the preparation were 0.0, 0.5, 1.0, 2.0 and 4.0 %, respectively. The X-ray diffraction and the UV-vis studies revealed that the GEO was encapsulated into the chitosan nanoparticles with an encapsulation efficiency of around 46 % and a loading capacity of 27-34 %. The antibacterial activity of GEO-chitosan nanobactericide against Burkholderia glumae (Bg) was found to be 7.5-11.8 mm, with minimum inhibitory concentration and minimum bactericidal concentration values of 15.6 μl/mL and 31.25 μl/mL, respectively. Hence, these findings indicate that the prepared GEO-CS nanobactericides were found to be effective against Bg. This preliminary study is toward the development of new agronanobactericides using a natural product to control Bg.
Collapse
Affiliation(s)
- Mahesh Tiran Gunasena
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
- Grain Legume and Oil Crop Research and Development Centre, Angunakolapelessa, 82220, Sri Lanka
| | - Mohd Zobir Hussein
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Semenyih, 43500, Malaysia
| | - Mohd Aswad Abdul Wahab
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Abdulaziz Bashir Kutawa
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
- Department of Plant Science and Biotechnology, Faculty of Life Sciences, Federal University Dutsin-Ma, P.M.B 500, Dutsin-Ma, 821101, Nigeria
| | - Amara Rafif
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Syazwan Afif Mohd Zobir
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
- Institute of Plantation Studies (IKP), Universiti Putra Malaysia, Serdang, 43400, Malaysia
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, 43400, Malaysia
| |
Collapse
|
4
|
He J, Hadidi M, Yang S, Khan MR, Zhang W, Cong X. Natural food preservation with ginger essential oil: Biological properties and delivery systems. Food Res Int 2023; 173:113221. [PMID: 37803539 DOI: 10.1016/j.foodres.2023.113221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Recently, the increasing demand from consumers for preservative-free or naturally preserved foods has forced the food industry to turn to natural herbal and plant-derived preservatives rather than synthetic preservatives to produce safe foods. Essential oils derived from ginger (Zingiber officinale Roscoe) are widely known for their putative health-promoting bioactivities, and this paper covers their extraction methods, chemical composition, and antibacterial and antioxidant activities. Especially, the paper reviews their potential applications in food preservation, including nanoemulsions, emulsions, solid particle encapsulation, and biodegradable food packaging films/coatings. The conclusion drawn is that ginger essential oil can be used not only for direct food preservation but also encapsulated using various delivery forms such as nanoemulsions, Pickering emulsions, and solid particle encapsulation to improve its release control ability. The film of encapsulated ginger essential oil has been proven to be superior to traditional methods in preserving foods such as bread, meat, fish, and fruit.
Collapse
Affiliation(s)
- Jinman He
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; School of Life Sciences, Hainan University, Haikou 570228, PR China
| | - Milad Hadidi
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Siyuan Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Xinli Cong
- School of Life Sciences, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
5
|
Waqar M, Zaman M, Hameed H, Jamshaid M, Irfan A, Shazly GA, Paiva-Santos AC, Bin Jardan YA. Formulation, Characterization, and Evaluation of β-Cyclodextrin Functionalized Hypericin Loaded Nanocarriers. ACS OMEGA 2023; 8:38191-38203. [PMID: 37867680 PMCID: PMC10586443 DOI: 10.1021/acsomega.3c04444] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
St. John's wort in western Europe has been extensively utilized for the treatment of mild to moderate depression. Hypericin, a red pigment, is found to be responsible for its antidepressant activity. The aim of the current study was to prepare a nanoemulsion (O/W) of hypericin designed for immediate delivery of the drug to the brain for the treatment of depression. The nanoemulsion was prepared by means of a homogenization technique, and that was followed by its physicochemical evaluation. Tween-80, Span-80, β-cyclodextrin, ethanol, and eucalyptus oil were utilized for the manufacturing of the nanoemulsion. Morphological studies have revealed globular structures of nanosize that were confirmed by the zeta analysis. The consistency of particles was revealed by the low polydispersity values. pH values of all formulations lay within the range of nasal pH. The viscosity of the prepared formulations was affected by the increase in concentrations of β-cyclodextrin. After passing from the centrifugation and freeze-thaw studies, the prepared formulations showed good stability. Formulation F2 having a composition of oil phase (0.125 mL), aqueous phase (1.25 mL), and β-cyclodextrin (8%) showed the best results out of all the formulations, and F2 had a pH of 5.7, 5.35 cP viscosity, 1.332 refractive index, 148.8 globule size, and -10.8 zeta potential. The mean percentage drug release and in vitro and ex vivo percentage drug permeations were observed to be 71.75, 76, and 75.07%, respectively. Meanwhile, formulation F2 showed the maximum drug release and permeation. In vivo behavior studies including the open field test, elevated plus maze test, and tail suspension test were conducted to see the antidepressant effect of hypericin along with comparison with a commercially available treatment. In conclusion, the prepared formulation shows good efficacy as an antidepressant and can be considered as a natural alternative over synthetic drugs.
Collapse
Affiliation(s)
- Muhammad
Ahsan Waqar
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Zaman
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Ali Irfan
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Gamal A. Shazly
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department
of Pharmaceutical Technology, Faculty of Pharmacy of the University
of Coimbra, University of Coimbra, Coimbra 3000-548, Portugal
- REQUIMTE/LAQV,
Group of Pharmaceutical Technology, Faculty of Pharmacy of the University
of Coimbra, University of Coimbra, Coimbra 3000-548, Portugal
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Abu Safe FA, Badr AN, Shehata MG, El-Sayyad GS. Antimicrobial and anti-aflatoxigenic activities of nanoemulsions based on Achillea millefolium and Crocus sativus flower extracts as green promising agents for food preservatives. BMC Microbiol 2023; 23:289. [PMID: 37805450 PMCID: PMC10559460 DOI: 10.1186/s12866-023-03033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Although the mechanism of action of nanoemulsion is still unclear, the modern use of nanoemulsions made from natural extracts as antimicrobial and anti-aflatoxigenic agents represents a potential food preservation and a safety target. METHODS Two natural nanoemulsion extracts of Crocus sativus (the saffron flower) and Achillea millefolium (the yarrow flower) were produced in the current study using a low-energy method that included carboxymethylcellulose and Arabic gum. The synthesized nanoemulsion was fully identified by different analytical methods. Detection of the volatile content was completed using GC-MS analysis. The antioxidant potential, and phenolic compounds content were analyzed in the extractions. The synthesized nanoemulsions were screened for their antimicrobial potential in addition to their anti-aflatoxigenic activity. RESULTS The droplet size of Saffron flowers was finer (121.64 ± 2.18 nm) than yarrow flowers (151.21 ± 1.12 nm). The Zeta potential measurements of the yarrow flower (-16.31 ± 2.54 mV) and the saffron flower (-18.55 ± 2.31 mV) both showed high stability, along with low PDI values (0.34-0.41). The nanoemulsion of yarrow flower revealed 51 compounds using gas chromatography-mass spectrometry (GCMS), with hexanal (16.25%), β-Pinene (7.41%), β-Myrcene (5.24%), D-Limonene (5.58%) and Caryophyllene (4.38%) being the most prevalent. Additionally, 31 compounds were detected in the saffron nanoemulsion, with D-limonene (4.89%), isophorone (12.29%), 4-oxy isophorone (8.19%), and safranal (44.84%) being the most abundant. Compared to the nanoemulsion of the yarrow flower, the saffron nanoemulsion had good antibacterial and antifungal activity. Saffron nanoemulsion inhibited total fungal growth by 69.64-71.90% in a simulated liquid medium and demonstrated the most significant decrease in aflatoxin production. Infected strawberry fruits coated with nanoemulsion extracts exhibited high antimicrobial activity in the form of saffron flower and yarrow flower extract nanoemulsions, which inhibited and/or controlled the growth of Aspergillus fungi. Due to this inhibition, the lag phase was noticeably prolonged, the cell load decreased, and the stability time increased. CONCLUSION This study will contribute to expanding the theoretical research and utilization of nanoemulsions as green protective agents in agricultural and food industries for a promising protection from the invasion of some pathogenic bacteria and fungi.
Collapse
Affiliation(s)
- Feriala A Abu Safe
- Botany Department, Faculty of Women for Art, Science, and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed N Badr
- Food Toxicology and Contaminants Department, National Research Centre, Cairo, 12622, Egypt
| | - Mohamed G Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, 21934, Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th October city, Giza, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
7
|
Garlic and ginger essential oil-based neomycin nano-emulsions as effective and accelerated treatment for skin wounds' healing and inflammation: In-vivo and in-vitro studies. Saudi Pharm J 2022; 30:1700-1709. [PMID: 36601499 PMCID: PMC9805981 DOI: 10.1016/j.jsps.2022.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023] Open
Abstract
Skin, largest organ of human, is directly exposed to environment and hence is prone to high rates of injuries and microbial infections. Over the passage of time these microbes have developed resistance to antibiotics making them ineffective especially in lower doses and hence, higher dosages or new drugs are required. The current study deals with designing of nano-emulsion (NE) formulations composed of garlic and ginger oils (0.1 %) with neomycin sulphate used in different ratios (0.001, 0.01 and 0.1 %) and combinations. The resulting NEs were characterized for droplet size (145-304 nm), zetapotential (-3.0-0.9 mV), refractive index (1.331-1.344), viscosity (1.10-1.23cP), transmittance (96-99 %), FT-IR and HPLC and found stable over a period of three months. All NEs were also found effective against both gram positive and negative bacterial strains i.e., B. spizizenii, S. aureus, E. coli and S. enterica as compared to pure neomycin sulphate (NS) used as control with highest activity recorded for NE-2 and NE-4 against all strains showing zone of inhibition in range of 22-30 mm and 21-19 mm, respectively. NEs were also tested using rabbit skin excision wound model which potentiates that all the NEs resulted in early recovery with 86-100 % wound healing achieved in 9 days as compared to NS ointment (71 %). The studies confirmed that essential oils when used in combination with traditional drug can lead to much higher efficacies as compared to pure drugs.
Collapse
Key Words
- ATR, Attenuated Total Reflection
- C, Centrifuge
- DS, Droplet Size
- FT, Freeze–thaw
- Garlic
- Ginger
- HC, Heat-cool
- NE, Nano-emulsion
- NS, Neomycin sulphate
- Nano-emulsions
- Neomycin sulphate
- PDI, Poly dispersity index
- RI, Referective index
- RSD, Relative Standard Deviation
- Skin wounds
- T, Transmittance
- WH, Wound Healing
- ZOI, Zone of inhibition
- ZP, Zeta Potential
Collapse
|
8
|
Farouk A, Abdel-Razek AG, Gromadzka K, Badr AN. Prevention of Aflatoxin Occurrence Using Nuts-Edible Coating of Ginger Oil Nanoemulsions and Investigate the Molecular Docking Strategy. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11172228. [PMID: 36079610 PMCID: PMC9460792 DOI: 10.3390/plants11172228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/13/2023]
Abstract
The modern utilization of essential oils such as ginger oil (GO) as an anti-aflatoxin represents a potential target for food preservation and safety; however, the mechanism of action is still unclear. Nanoemulsions, through an edible coating, can enhance the oil’s bioactivity, increase its hydrophilicity, and extend the final product’s shelf-life. In the present study, two edible films for the GO nanoemulsion were prepared by ultrasonication using carboxymethyl cellulose (FB1-GO) and sodium alginate (FB2-GO). The droplet size of FB2-GO was finer (126.54 nm) compared to FB1-GO (289.77 nm). Meanwhile, both had high stability proved by z-potential; +31.54 mV (FB1-GO) and +46.25 mV (FB2-GO) with low PDI values (<0.4). Using gas chromatography-mass spectrometry, the hydrodistilled GO showed 25 compounds, representing 99.17% of the total oil, with α-zingiberene (29.8%), geranial (10.87%), β-bisabolene (8.19%), and ar-curcumene (5.96%) as the predominant. A dramatic increase in α-zingiberene, α-bisabolene and ar-curcumene was due to the homogenization conditions in both FB1-GO and FB2-GO compared to the GO. The FB1-GO exhibited superior antibacterial activity against the examined strains of bacterial pathogens, while FB2-GO was more effective as an antifungal agent on the tested Aspergillus fungi strains. In a simulated liquid media, FB2-GO inhibited the total growth of fungi by 84.87−92.51% and showed the highest reduction in the aflatoxin amount produced. The in silico study presented that, among the GO volatile constituents, sesquiterpenes had the highest binding free energies against the enzymes responsible for aflatoxin production compared to monoterpenes. α-Bisabolene showed the highest affinity toward polyketide synthase (−7.5 Kcal/mol), while ar-curcumene was the most potent against cytochrome P450 monooxygenase (−8.3 Kcal/mol). The above findings clarify the reasons for aflatoxin reduction in simulated media during incubation with FB1-GO and FB2-GO.
Collapse
Affiliation(s)
- Amr Farouk
- Flavor and Aroma Chemistry Department, National Research Center, Cairo 12622, Egypt
| | | | - Karolina Gromadzka
- Chemistry Department, Poznan University of Life Science, ul. Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo 12622, Egypt
| |
Collapse
|
9
|
Gunasena MT, Rafi A, Mohd Zobir SA, Hussein MZ, Ali A, Kutawa AB, Abdul Wahab MA, Sulaiman MR, Adzmi F, Ahmad K. Phytochemicals Profiling, Antimicrobial Activity and Mechanism of Action of Essential Oil Extracted from Ginger ( Zingiber officinale Roscoe cv. Bentong) against Burkholderia glumae Causative Agent of Bacterial Panicle Blight Disease of Rice. PLANTS (BASEL, SWITZERLAND) 2022; 11:1466. [PMID: 35684239 PMCID: PMC9182640 DOI: 10.3390/plants11111466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Essential oils protect plants, and due to their natural origin, there is much interest in using them as antimicrobial agents. The purpose of this study was to determine the phytochemical constituents of ginger essential oil (GEO), antimicrobial activity, and mode of action against Burkholderia glumae (Bg). In addition, the volatile active compounds (AIs) were studied using GC-MS, FTIR, and Raman spectroscopy. A total of 45 phytochemical components were detected and the most prevalent bioactive compounds were Geranial, 1,8-Cineole, Neral, Camphene, α-Zingiberene, and α-Farnesene. Furthermore, it was found that the most dominant terpenes in GEO were monoterpenes. The diameter zone of inhibition values varied from 7.1 to 15 mm depending on the concentration tested. In addition, the MIC and MBC values were 112.5 µL/mL. Faster killing time and lower membrane potential were observed in 1xMIC treatment compared to 0.5xMIC treatment, whereas the control had the maximum values. From observations of various images, it was concluded that the mode of action of GEO affected the cytoplasmic membrane, causing it to lose its integrity and increase its permeability. Therefore, the antibacterial study and mechanism of action revealed that GEO is very effective in suppressing the growth of B. glumae.
Collapse
Affiliation(s)
- Mahesh Tiran Gunasena
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.T.G.); (A.R.); (A.B.K.); (M.A.A.W.)
- Grain Legume and Oil Crop Research and Development Centre, Angunakolapelessa 82220, Sri Lanka
| | - Amara Rafi
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.T.G.); (A.R.); (A.B.K.); (M.A.A.W.)
| | - Syazwan Afif Mohd Zobir
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.T.G.); (A.R.); (A.B.K.); (M.A.A.W.)
| | - Mohd Zobir Hussein
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Semenyih 43500, Malaysia;
| | - Abdulaziz Bashir Kutawa
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.T.G.); (A.R.); (A.B.K.); (M.A.A.W.)
- Department of Plant Science and Biotechnology, Faculty of Life Science, Federal University Dutsin-Ma, Dutsin-Ma 821101, Nigeria
| | - Mohd Aswad Abdul Wahab
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.T.G.); (A.R.); (A.B.K.); (M.A.A.W.)
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Fariz Adzmi
- Institute of Plantation Studies (IKP), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.T.G.); (A.R.); (A.B.K.); (M.A.A.W.)
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
10
|
Formulation and functionalization of linalool nanoemulsion to boost its antibacterial properties against major foodborne pathogens. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Ahmadi O, Jafarizadeh-Malmiri H. Intensification and optimization of the process for thyme oil in water nanoemulsions preparation using subcritical water and xanthan gum. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Intensified process based on subcritical water conditions (120 °C and 1.5 atm, for 2 h) was utilized to prepare thyme oil in water (O/W) nanoemulsions. In this technique, water and xanthan gum, as green solvent and natural microbial emulsifier, were utilized. Results of gas chromatography revealed that Thymol and Carvacrol were two main bioactive compounds of the extracted thyme oil. Effects of amounts of xanthan gum (0.05–0.25 g) and thyme essential oil (0.2–0.8 mL) on size of oil nanodroplets and polydispersity index (PDI) of the resulted nanoemulsions were evaluated using response surface methodology. Results demonstrated that the produced thyme O/W nanoemulsion by 0.242 mL thyme oil and 0.140 g xanthan gum had smallest average nanodroplet size (150 nm) and PDI (0.088). Furthermore, monodispersed and spherical in shape thyme oil nanodroplets were provided in the nanoemulsion using these optimal conditions with zeta potential value of −10.1 mV and antioxidant activity of 17.4%. Results also indicated that this prepared nanoemulsion had high fungicidal and bactericidal activities toward Penicillium digitatum and Escherichia coli, respectively.
Collapse
Affiliation(s)
- Omid Ahmadi
- Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Islamic Republic of Iran
| | - Hoda Jafarizadeh-Malmiri
- Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Islamic Republic of Iran
| |
Collapse
|