1
|
Abdelaziz ME, El-Miligy MMM, Fahmy SM, Abu-Serie MM, Hazzaa AA, Mahran MA. Imparting aromaticity to 2-pyridone derivatives by O-alkylation resulted in new competitive and non-competitive PIM-1 kinase inhibitors with caspase-activated apoptosis. J Enzyme Inhib Med Chem 2024; 39:2304044. [PMID: 38230430 PMCID: PMC10795791 DOI: 10.1080/14756366.2024.2304044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024] Open
Abstract
New aromatic O-alkyl pyridine derivatives were designed and synthesised as Proviral Integration Moloney (PIM)-1 kinase inhibitors. 4c and 4f showed potent in vitro anticancer activity against NFS-60, HepG-2, PC-3, and Caco-2 cell lines and low toxicity against normal human lung fibroblast Wi-38 cell line. Moreover, 4c and 4f induced apoptosis in the four tested cancer cell lines with high percentage. In addition, 4c and 4f significantly induced caspase 3/7 activation in HepG-2 cell line. Furthermore, 4c and 4f showed potent PIM-1 kinase inhibitory activity with IC50 = 0.110, 0.095 µM, respectively. Kinetic studies indicated that 4c and 4f were both competitive and non-competitive inhibitors for PIM-1 kinase enzyme. In addition, in silico prediction of physiochemical properties, pharmacokinetic profile, ligand efficiency, ligand lipophilic efficiency, and induced fit docking studies were consistent with the biological and kinetic studies, and predicted that 4c and 4f could act as PIM-1 kinase competitive non-adenosine triphosphate (ATP) mimetics with drug like properties.
Collapse
Affiliation(s)
- Marwa E. Abdelaziz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mostafa M. M. El-Miligy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Salwa M. Fahmy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Aly A. Hazzaa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mona A. Mahran
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Rout AK, Dehury B, Parida SN, Rout SS, Jena R, Kaushik N, Kaushik NK, Pradhan SK, Sahoo CR, Singh AK, Arya M, Behera BK. A review on structure-function mechanism and signaling pathway of serine/threonine protein PIM kinases as a therapeutic target. Int J Biol Macromol 2024; 270:132030. [PMID: 38704069 DOI: 10.1016/j.ijbiomac.2024.132030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The proviral integration for the Moloney murine leukemia virus (PIM) kinases, belonging to serine/threonine kinase family, have been found to be overexpressed in various types of cancers, such as prostate, breast, colon, endometrial, gastric, and pancreatic cancer. The three isoforms PIM kinases i.e., PIM1, PIM2, and PIM3 share a high degree of sequence and structural similarity and phosphorylate substrates controlling tumorigenic phenotypes like proliferation and cell survival. Targeting short-lived PIM kinases presents an intriguing strategy as in vivo knock-down studies result in non-lethal phenotypes, indicating that clinical inhibition of PIM might have fewer adverse effects. The ATP binding site (hinge region) possesses distinctive attributes, which led to the development of novel small molecule scaffolds that target either one or all three PIM isoforms. Machine learning and structure-based approaches have been at the forefront of developing novel and effective chemical therapeutics against PIM in preclinical and clinical settings, and none have yet received approval for cancer treatment. The stability of PIM isoforms is maintained by PIM kinase activity, which leads to resistance against PIM inhibitors and chemotherapy; thus, to overcome such effects, PIM proteolysis targeting chimeras (PROTACs) are now being developed that specifically degrade PIM proteins. In this review, we recapitulate an overview of the oncogenic functions of PIM kinases, their structure, function, and crucial signaling network in different types of cancer, and the potential of pharmacological small-molecule inhibitors. Further, our comprehensive review also provides valuable insights for developing novel antitumor drugs that specifically target PIM kinases in the future. In conclusion, we provide insights into the benefits of degrading PIM kinases as opposed to blocking their catalytic activity to address the oncogenic potential of PIM kinases.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal-576104, India
| | - Satya Narayan Parida
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Sushree Swati Rout
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Rajkumar Jena
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Neha Kaushik
- Department of Biotechnology, The University of Suwon, Hwaseong si, South Korea
| | | | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar-751003, Odisha, India
| | - Chita Ranjan Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health and Family Welfare, Government of India, Bhubaneswar-751023, India
| | - Ashok Kumar Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Meenakshi Arya
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| | - Bijay Kumar Behera
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| |
Collapse
|
3
|
El-Miligy MMM, Abdelaziz ME, Fahmy SM, Ibrahim TM, Abu-Serie MM, Mahran MA, Hazzaa AA. Discovery of new pyridine-quinoline hybrids as competitive and non-competitive PIM-1 kinase inhibitors with apoptosis induction and caspase 3/7 activation capabilities. J Enzyme Inhib Med Chem 2023; 38:2152810. [PMID: 36629075 PMCID: PMC9848351 DOI: 10.1080/14756366.2022.2152810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
New quinoline-pyridine hybrids were designed and synthesised as PIM-1/2 kinase inhibitors. Compounds 5b, 5c, 6e, 13a, 13c, and 14a showed in-vitro low cytotoxicity against normal human lung fibroblast Wi-38 cell line and potent in-vitro anticancer activity against myeloid leukaemia (NFS-60), liver (HepG-2), prostate (PC-3), and colon (Caco-2) cancer cell lines. In addition, 6e, 13a, and 13c significantly induced apoptosis with percentage more than 66%. Moreover, 6e, 13a, and 13c significantly induced caspase 3/7 activation in HepG-2 cell line. Furthermore, 5c, 6e, and 14a showed potent in-vitro PIM-1 kinase inhibitory activity. While, 5b showed potent in-vitro PIM-2 kinase inhibitory activity. Kinetic studies using Lineweaver-Burk double-reciprocal plot indicated that 5b, 5c, 6e, and 14a behaved as competitive inhibitors while 13a behaved as both competitive and non-competitive inhibitor of PIM-1 kinase enzyme. Molecular docking studies indicated that, in-silico affinity came in coherence with the observed in-vitro inhibitory activities against PIM-1/2 kinases.
Collapse
Affiliation(s)
- Mostafa M. M. El-Miligy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt,CONTACT Mostafa M. M. El-Miligy
| | - Marwa E. Abdelaziz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt,Marwa E. Abdelaziz Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, 1st El-khartoum Square, Alexandria, 21521, Egypt
| | - Salwa M. Fahmy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt)
| | - Mona A. Mahran
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Aly A. Hazzaa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Rathi A, Kumar D, Hasan GM, Haque MM, Hassan MI. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochim Biophys Acta Gen Subj 2021; 1865:129995. [PMID: 34455019 DOI: 10.1016/j.bbagen.2021.129995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND PIM kinases are well-studied drug targets for cancer, belonging to Serine/Threonine kinases family. They are the downstream target of various signaling pathways, and their up/down-regulation affects various physiological processes. PIM family comprises three isoforms, namely, PIM-1, PIM-2, and PIM-3, on alternative initiation of translation and they have different levels of expression in different types of cancers. Its structure shows a unique ATP-binding site in the hinge region which makes it unique among other kinases. SCOPE OF REVIEW PIM kinases are widely reported in hematological malignancies along with prostate and breast cancers. Currently, many drugs are used as inhibitors of PIM kinases. In this review, we highlighted the physiological significance of PIM kinases in the context of disease progression and therapeutic targeting. We comprehensively reviewed the PIM kinases in terms of their expression and regulation of different physiological roles. We further predicted functional partners of PIM kinases to elucidate their role in the cellular physiology of different cancer and mapped their interaction network. MAJOR CONCLUSIONS A deeper mechanistic insight into the PIM signaling involved in regulating different cellular processes, including transcription, apoptosis, cell cycle regulation, cell proliferation, cell migration and senescence, is provided. Furthermore, structural features of PIM have been dissected to understand the mechanism of inhibition and subsequent implication of designed inhibitors towards therapeutic management of prostate, breast and other cancers. GENERAL SIGNIFICANCE Being a potential drug target for cancer therapy, available drugs and PIM inhibitors at different stages of clinical trials are discussed in detail.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
5
|
Quevedo CE, Bataille CJR, Byrne S, Durbin M, Elkins J, Guillermo A, Jones AM, Knapp S, Nadali A, Walker RG, Wilkinson IVL, Wynne GM, Davies SG, Russell AJ. Aminothiazolones as potent, selective and cell active inhibitors of the PIM kinase family. Bioorg Med Chem 2020; 28:115724. [PMID: 33128909 DOI: 10.1016/j.bmc.2020.115724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
We have previously reported the discovery of a series of rhodanine-based inhibitors of the PIM family of serine/threonine kinases. Here we described the optimisation of those compounds to improve their physicochemical and ADME properties as well as reducing their off-targets activities against other kinases. Through molecular modeling and systematic structure activity relationship (SAR) studies, advanced molecules with high inhibitory potency, reduced off-target activity and minimal efflux were identified as new pan-PIM inhibitors. One example of an early lead, OX01401, was found to inhibit PIMs with nanomolar potency (15 nM for PIM1), inhibit proliferation of two PIM-expressing leukaemic cancer cell lines, MV4-11 and K562, and to reduce intracellular phosphorylation of a PIM substrate in a concentration dependent manner.
Collapse
Affiliation(s)
- Camilo E Quevedo
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Carole J R Bataille
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Simon Byrne
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Matthew Durbin
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Jon Elkins
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Abigail Guillermo
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Alan M Jones
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Stefan Knapp
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Anna Nadali
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Roderick G Walker
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Isabel V L Wilkinson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Graham M Wynne
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Stephen G Davies
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Angela J Russell
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
6
|
Nafie MS, Amer AM, Mohamed AK, Tantawy ES. Discovery of novel pyrazolo[3,4-b]pyridine scaffold-based derivatives as potential PIM-1 kinase inhibitors in breast cancer MCF-7 cells. Bioorg Med Chem 2020; 28:115828. [PMID: 33166925 DOI: 10.1016/j.bmc.2020.115828] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023]
Abstract
Pim-1 kinase targeted recently has proved an essential goal of breast cancer therapy. We report the design, synthesis with full characterization analysis of pyrazolo[3,4-b]pyridine scaffold-based derivatives targeting Pim-1 kinase as anti-breast cancer agents. All the newly synthesized compounds were screened for their in vitro cytotoxic activity against two breast cancer cell lines MCF-7 and MDA-MB-231, and non-cancerous MCF-10A cells. Four derivatives notably, 17 and 19 exhibited a remarkable cytotoxic activity with IC50 values 5.98 and 5.61 µM against MCF-7 (ERα-dependent) cells in a selective way, as they weren't active against MDA-MB-231 (non-ERα-dependent) and safe against MCF-10A. The most active compounds through in vitro screening were subjected to PIM-1 kinase to elucidate the Pim-1 kinase inhibitory activity as the mechanistic mode of action. Among the tested derivatives, Compounds 17 and 19 showed the highest inhibitory activity with IC50 values 43 and 26 nM, respectively, compared to the 5-FU with IC50 value 17 nM. Moreover, apoptotic investigation through flow cytometry and gene expression analysis of the apoptosis-related genes for the most active compound 19 against MCF-7. It was found that compound 19 induced apoptotic MCF-7 cell death by cell cycle arrest at G2/M phase and by elevation the expression of pro-apoptotic genes and inhibition of anti-apoptotic genes expression. Finally, the PIM-1 inhibition activities for compounds 17 and 19 were in accordance with the molecular docking study that revealed good interaction with the Pim-1 kinase active site.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt.
| | - Atef M Amer
- Department of Chemistry, Faculty of Science, Zagazig University, Egypt
| | - Anaiat K Mohamed
- Department of Chemistry, Faculty of Science, Zagazig University, Egypt
| | - Eman S Tantawy
- Department of Chemistry, Faculty of Science, Zagazig University, Egypt
| |
Collapse
|
7
|
Farrag AM, Ibrahim MH, Mehany ABM, Ismail MMF. New cyanopyridine-based scaffold as PIM-1 inhibitors and apoptotic inducers: Synthesis and SARs study. Bioorg Chem 2020; 105:104378. [PMID: 33099167 DOI: 10.1016/j.bioorg.2020.104378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 12/21/2022]
Abstract
Two novel series of 6-(4-benzamido-/4-phthalimido)-3-cyanopyridine derivatives were designed and synthesized as inhibitors of PIM-1 kinase. Based on cytotoxicity results via MTT assay against prostate carcinoma PC3, human hepatocellular carcinoma HepG2 and breast adenocarcinoma MCF-7 cell lines, the most potent cytotoxic cyanopyridine hits, 6, 7, 8, 12 and 13 were 1.5-3.3 times more inhibitor of cell proliferation than the reference standard, 5-FU. Selectivity profile of the latter compounds on normal human cells (WI-38), was executed, indicating that they are highly selective (IC50 > 145 μM) in their cytotoxic effect. The promising compounds were further evaluated as PIM-1 kinase inhibitors. These compounds elicited remarkable inhibition of PIM-1 kinase (76.43-53.33%). Extensive studies on apoptosis were conducted for these compounds; they enhanced caspase-3 and boosted the Bax/Bcl-2 ratio 27-folds in comparison to the control. Molecular docking study of the most potent compound, 13 in PIM-1 kinase active site was consistent with the in vitro activity. Finally, prediction of chemo-informatic properties released compound 13 as the most promising ligand.
Collapse
Affiliation(s)
- Amel M Farrag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Mona H Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Magda M F Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Hong VS, Jeong S, Yun Y, Choo H, Won J, Lee J. 1,3,
4‐Oxadiazole
‐2(
3
H
)‐thione Analogs as
PIM
Kinase Inhibitors. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Victor Sukbong Hong
- Department of Chemistry, College of Natural Sciences Keimyung University Daegu Republic of Korea
| | - Seungik Jeong
- Department of Chemistry, College of Natural Sciences Keimyung University Daegu Republic of Korea
| | - Yanghwan Yun
- Department of Chemistry, College of Natural Sciences Keimyung University Daegu Republic of Korea
| | - Hyeonseong Choo
- Department of Chemistry, College of Natural Sciences Keimyung University Daegu Republic of Korea
| | - Jongin Won
- Department of Chemistry, College of Natural Sciences Keimyung University Daegu Republic of Korea
| | - Jinho Lee
- Department of Chemistry, College of Natural Sciences Keimyung University Daegu Republic of Korea
| |
Collapse
|
9
|
Alnabulsi S, Al-Hurani EA. Pim kinase inhibitors in cancer: medicinal chemistry insights into their activity and selectivity. Drug Discov Today 2020; 25:S1359-6446(20)30374-3. [PMID: 32971234 DOI: 10.1016/j.drudis.2020.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/09/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023]
Abstract
The oncogenic Pim kinase proteins (Pim-1/2/3) regulate tumorigenesis through phosphorylating essential proteins that control cell cycle and proliferation. Pim kinase is a potential chemotherapeutic target in cancer and its inhibition is currently the focus of intensive drug design and development efforts. The distinctive presence of proline amino acids in the hinge region provides an opportunity to inhibit Pim kinase while conserving the physiological functions of other kinases and reducing the toxicity profiles of the inhibitors. Various Pim kinase inhibitors have been clinically evaluated for the treatment of hematological cancers, yet none has reached the clinic. In this review, we discuss the design and development of selective and potent Pim inhibitors with novel chemotypes focusing on structural features essential for high potency and selectivity.
Collapse
Affiliation(s)
- Soraya Alnabulsi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan.
| | - Enas A Al-Hurani
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| |
Collapse
|
10
|
Mekky AEM, Sanad SMH, Said AY, Elneairy MAA. Synthesis, cytotoxicity, in-vitro antibacterial screening and in-silico study of novel thieno[2,3-b]pyridines as potential pim-1 inhibitors. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1778033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Ahmed Y. Said
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
11
|
Panchal NK, Sabina EP. A serine/threonine protein PIM kinase as a biomarker of cancer and a target for anti-tumor therapy. Life Sci 2020; 255:117866. [PMID: 32479955 DOI: 10.1016/j.lfs.2020.117866] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/04/2023]
Abstract
The PIM Kinases belong to the family of a proto-oncogene that essentially phosphorylates the serine/threonine residues of the target proteins. They are primarily categorized into three types PIM-1, PIM-2, PIM-3 which plays an indispensable regulatory role in signal transduction cascades, by promoting cell survival, proliferation, and drug resistance. These kinases are overexpressed in several solid as well as hematopoietic tumors which supports in vitro and in vivo malignant cell growth along with survival by regulating cell cycle and inhibiting apoptosis. They lack regulatory domain which makes them constitutively active once transcribed. PIM kinases usually appear to be important downstream effectors of oncoproteins which overexpresses and helps in mediating drug resistance to available agents, such as rapamycin. Structural studies of PIM kinases revealed that they have unique hinge regions where two Proline resides and makes ATP binding unique, by offering a target for an increasing number of potent PIM kinase inhibitors. Preclinical studies of those inhibitory compounds in various cancers indicate that these novel agents show promising activity and some of them currently being under examination. In this review, we have outlined PIM kinases molecular mechanism and signaling pathways along with matriculation in various cancer and list of inhibitors often used.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - E P Sabina
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
12
|
Wang X, Sun Z. Understanding PIM-1 kinase inhibitor interactions with free energy simulation. Phys Chem Chem Phys 2019; 21:7544-7558. [PMID: 30895980 DOI: 10.1039/c9cp00070d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The proviral integration site of the Moloney leukemia virus (PIM) family includes three homologous members. PIM-1 kinase is an important target in effective therapeutic interventions of lymphomas, prostate cancer and leukemia. In the current work, we performed free energy calculations to calculate the binding affinities of several inhibitors targeting this protein. The alchemical method with integration and perturbation-based estimators and the end-point methods were compared. The computational results indicated that the alchemical method can accurately predict the binding affinities, while the end-point methods give relatively unreliable predictions. Decomposing the free energy difference into enthalpic and entropic components with MBAR reweighting enabled us to investigate the detailed thermodynamic parameters with which the entropy-enthalpy compensation in this protein-ligand binding case is identified. We then studied the conformational ensemble, and the important protein-ligand interactions were identified. The current work sheds light on the understanding of the PIM-1-kinase-inhibitor interactions at the atomic level and will be useful in the further development of potential drugs.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | | |
Collapse
|
13
|
Arrouchi H, Lakhlili W, Ibrahimi A. A review on PIM kinases in tumors. Bioinformation 2019; 15:40-45. [PMID: 31359998 PMCID: PMC6651028 DOI: 10.6026/97320630015040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/16/2019] [Indexed: 01/13/2023] Open
Abstract
The Proviral Integration site for Moloney murine leukemia virus (PIM) kinases is serine/threonine kinases that promote growth and survival in multiple cell types, implicated in the pathogenesis of various diseases. Over expression of Pim-1 experimentally leads to tumor formation in mice, whereas there is no observable phenotype concerning the complete knockout of the protein. When it is over expressed it may lead to cancer development by three major ways; by inhibiting apoptosis, by promoting cell proliferation and also through promoting genomic instability. Expression in normal tissues is nearly undetectable. Recent improvements in the development of novel inhibitors of PIMs have been reviewed. Significant progress in the design of PIMs inhibitors, in which it displays selectivity versus other kinases, has been achieved within the last years. However, the development of isoform-selective PIM inhibitors is still an open task. As Pim-1 possesses oncogenic functions and is over expressed in various kinds of cancer diseases, its inhibition provides a new option in cancer therapy. A PubMed literature search was performed to review the currently available data on Pim-1 expression, regulation, and targets; its implication in different types of cancer and its impact on prognosis is described. Consequently, designing new inhibitors of PIMs is now a very active area of research in academic and industrial laboratories.
Collapse
Affiliation(s)
- Housna Arrouchi
- Laboratory of Biotechnology (MedBiotech),Rabat Medical and Pharmacy School,Mohammed V University in Rabat, Rabat,Morocco
| | - Wiame Lakhlili
- Laboratory of Biotechnology (MedBiotech),Rabat Medical and Pharmacy School,Mohammed V University in Rabat, Rabat,Morocco
| | - Azeddine Ibrahimi
- Laboratory of Biotechnology (MedBiotech),Rabat Medical and Pharmacy School,Mohammed V University in Rabat, Rabat,Morocco
| |
Collapse
|
14
|
Barberis C, Pribish J, Tserlin E, Gross A, Czekaj M, Barragué M, Erdman P, Maniar S, Jiang J, Fire L, Patel V, Hebert A, Levit M, Wang A, Sun F, Huang SMA. Discovery of N-substituted 7-azaindoles as Pan-PIM kinases inhibitors - Lead optimization - Part III. Bioorg Med Chem Lett 2019; 29:491-495. [PMID: 30553737 DOI: 10.1016/j.bmcl.2018.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/17/2022]
Abstract
N-substituted azaindoles were discovered as promising pan-PIM inhibitors. Lead optimization is described en route toward the identification of a clinical candidate. Modulation of physico-chemical properties allowed to solve inherent hERG and permeability liabilities. Compound 17 showed tumor growth inhibition in a KG1 tumor-bearing mouse model.
Collapse
Affiliation(s)
- Claude Barberis
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States.
| | - James Pribish
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Elina Tserlin
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Alexandre Gross
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Mark Czekaj
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Matthieu Barragué
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Paul Erdman
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Sachin Maniar
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - John Jiang
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Luke Fire
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Vinod Patel
- IDD Medicinal Chemistry, Sanofi, 153 Second Avenue, Waltham MA 02451, United States
| | - Andrew Hebert
- Oncology Biochemistry, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Mikhail Levit
- Oncology Biochemistry, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Anlai Wang
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| | - Frank Sun
- Oncology Pharmacology, Sanofi, 640 Memorial Drive, Cambridge MA 02139, United States
| | - Shih-Min A Huang
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge MA 02139, United States
| |
Collapse
|
15
|
Santio NM, Koskinen PJ. PIM kinases: From survival factors to regulators of cell motility. Int J Biochem Cell Biol 2017; 93:74-85. [DOI: 10.1016/j.biocel.2017.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023]
|
16
|
Barberis C, Moorcroft N, Arendt C, Levit M, Moreno-Mazza S, Batchelor J, Mechin I, Majid T. Discovery of N-substituted 7-azaindoles as PIM1 kinase inhibitors - Part I. Bioorg Med Chem Lett 2017; 27:4730-4734. [PMID: 28947155 DOI: 10.1016/j.bmcl.2017.08.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Novel N-substituted azaindoles have been discovered as PIM1 inhibitors. X-ray structures have played a significant role in orienting the chemistry effort in the initial phase of hit confirmation. Disclosure of an unconventional binding mode for 1 and 2, as demonstrated by X-ray crystallography, is presented and was an important factor in selecting and advancing a lead series.
Collapse
Affiliation(s)
- Claude Barberis
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham MA 02451, USA.
| | - Neil Moorcroft
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham MA 02451, USA
| | - Chris Arendt
- Oncology Biochemistry/Biology, Sanofi Genzyme, 270 Albany Street, Cambridge, MA 02139, USA
| | - Mikhail Levit
- Oncology Biochemistry/Biology, Sanofi Genzyme, 270 Albany Street, Cambridge, MA 02139, USA
| | - Sandra Moreno-Mazza
- Oncology Biochemistry/Biology, Sanofi Genzyme, 270 Albany Street, Cambridge, MA 02139, USA
| | - Joseph Batchelor
- IDD In Vitro Biology, Sanofi, 153 Second Avenue, Waltham MA 02451, USA
| | - Ingrid Mechin
- IDD In Vitro Biology, Sanofi, 153 Second Avenue, Waltham MA 02451, USA
| | - Tahir Majid
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham MA 02451, USA; Program Management, Sanofi Genzyme, 49 New York Avenue, Framingham MA 01701, USA
| |
Collapse
|
17
|
Barberis C, Moorcroft N, Pribish J, Tserlin E, Gross A, Czekaj M, Barrague M, Erdman P, Majid T, Batchelor J, Levit M, Hebert A, Shen L, Moreno-Mazza S, Wang A. Discovery of N-substituted 7-azaindoles as Pan-PIM kinase inhibitors - Lead series identification - Part II. Bioorg Med Chem Lett 2017; 27:4735-4740. [PMID: 28927793 DOI: 10.1016/j.bmcl.2017.08.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/31/2017] [Indexed: 02/08/2023]
Abstract
N-Substituted azaindoles have been discovered as pan-PIM kinase inhibitors. Initial SAR, early ADME and PK/PD data of a series of compounds is described and led to the identification of promising pan-PIM inhibitors which validated our interest in the 7-azaindole scaffold and led us to pursue the identification of a clinical candidate.
Collapse
Affiliation(s)
- Claude Barberis
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA.
| | - Neil Moorcroft
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - James Pribish
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - Elina Tserlin
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - Alexandre Gross
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - Mark Czekaj
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - Matthieu Barrague
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - Paul Erdman
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - Tahir Majid
- IDD Medicinal Chemistry, Sanofi Genzyme, 153 Second Avenue, Waltham, MA 02451, USA
| | - Joseph Batchelor
- IDD In Vitro Biology, Sanofi, 153 Second Avenue, Waltham, MA 02451, USA
| | - Mikhail Levit
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge, MA 02139, USA
| | - Andrew Hebert
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge, MA 02139, USA
| | - Liduo Shen
- DSAR, Sanofi Genzyme, 211 Second Avenue, Waltham, MA 02451, USA
| | | | - Anlai Wang
- Oncology Biology, Sanofi, 270 Albany Street, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Nair JR, Caserta J, Belko K, Howell T, Fetterley G, Baldino C, Lee KP. Novel inhibition of PIM2 kinase has significant anti-tumor efficacy in multiple myeloma. Leukemia 2017; 31:1715-1726. [PMID: 28008178 PMCID: PMC5537056 DOI: 10.1038/leu.2016.379] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022]
Abstract
The PIM kinase family (PIM1, 2 and 3) have a central role in integrating growth and survival signals, and are expressed in a wide range of solid and hematological malignancies. We now confirm that PIM2 is overexpressed in multiple myeloma (MM) patients, and within MM group it is overexpressed in the high-risk MF subset (activation of proto-oncogenes MAF/MAFB). This is consistent with our finding of PIM2's role in key signaling pathways (IL-6, CD28 activation) that confer chemotherapy resistance in MM cells. These studies have identified a novel PIM2-selective non-ATP competitive inhibitor (JP11646) that has a 4 to 760-fold greater suppression of MM proliferation and viability than ATP-competitive PIM inhibitors. This increased efficacy is due not only to the inhibition of PIM2 kinase activity, but also to a novel mechanism involving specific downregulation of PIM2 mRNA and protein expression not seen with the ATP competitive inhibitors. Treatment with JP11646 in xenogeneic myeloma murine models demonstrated significant reduction in tumor burden and increased median survival. Altogether our findings suggest the existence of previously unrecognized feedback loop(s) where PIM2 kinase activity regulates PIM2 gene expression in malignant cells, and that JP11646 represents a novel class of PIM2 inhibitors that interdicts this feedback.
Collapse
Affiliation(s)
- Jayakumar R. Nair
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Justin Caserta
- Jasco Pharmaceuticals, 10-N Roessler Road, Woburn, MA 01801
- Boston Biomedical, Inc., Cambridge, MA 02139
| | - Krista Belko
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Tyger Howell
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Gerald Fetterley
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Carmen Baldino
- Jasco Pharmaceuticals, 10-N Roessler Road, Woburn, MA 01801
| | - Kelvin P. Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
19
|
Jiménez-García MP, Lucena-Cacace A, Robles-Frías MJ, Ferrer I, Narlik-Grassow M, Blanco-Aparicio C, Carnero A. Inflammation and stem markers association to PIM1/PIM2 kinase-induced tumors in breast and uterus. Oncotarget 2017; 8:58872-58886. [PMID: 28938604 PMCID: PMC5601700 DOI: 10.18632/oncotarget.19438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
The PIM family of Ser/Thr kinase proteins has been implicated in tumorigenesis at different levels. PIM proteins are overexpressed in several tumor types and have been associated with chemoresistance. However, their role in hormone-dependent female tissues has not been explored, especially in the uterus, breast and ovary. We generated conditional transgenic mice with confined expression of human PIM1 or PIM2 genes in these tissues. We characterized the tumoral response to these genetic alterations corroborating their role as oncogenes since they induce hyperproliferation in all tissues and tumors in mammary gland and uterus. Furthermore, we observed a high degree of inflammatory infiltration in these tissues of transgenic mice accompanied by NFAT and mTOR activation and IL6 expression. Moreover, PIM1/2 were overexpressed in human breast, uterine and ovarian tumors, correlating with inflammatory features and stem cell markers. Our data suggest that PIM1/2 kinase overexpression provoke tissue alterations and a large IL6-dependent inflammatory response that may act synergistically during the process of tumorigenesis. The possible end-point is an increased percentage of cancer stem cells, which may be partly responsible for the therapy resistance found in tumors overexpressing PIM kinases.
Collapse
Affiliation(s)
- Manuel-Pedro Jiménez-García
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Antonio Lucena-Cacace
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - María-José Robles-Frías
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Irene Ferrer
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Maja Narlik-Grassow
- Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain
| |
Collapse
|
20
|
Nakano H, Hasegawa T, Kojima H, Okabe T, Nagano T. Design and Synthesis of Potent and Selective PIM Kinase Inhibitors by Targeting Unique Structure of ATP-Binding Pocket. ACS Med Chem Lett 2017; 8:504-509. [PMID: 28523101 DOI: 10.1021/acsmedchemlett.6b00518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/02/2017] [Indexed: 01/23/2023] Open
Abstract
In the development of kinase inhibitors, one of the major concerns is selectivity. An effective strategy to achieve high selectivity is to utilize structural differences among kinases to inform inhibitor design. Here, we set out to improve the PIM (proviral integration site for Moloney murine leukemia virus) kinase-inhibitory selectivity of our previously reported 7-azaindole derivative 2, which has promising ADMET properties, by targeting a unique bulge in the ATP-binding pocket. 6-Substituted 7-azaindoles, especially the 6-chlorinated derivatives, proved to be potent and selective PIM kinase inhibitors and appear to be promising lead compounds for future drug discovery.
Collapse
Affiliation(s)
- Hirofumi Nakano
- Drug Discovery
Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tsukasa Hasegawa
- Drug Discovery
Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hirotatsu Kojima
- Drug Discovery
Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Okabe
- Drug Discovery
Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuo Nagano
- Drug Discovery
Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
21
|
Naguib BH, El-Nassan HB, Abdelghany TM. Synthesis of new pyridothienopyrimidinone derivatives as Pim-1 inhibitors. J Enzyme Inhib Med Chem 2017; 32:457-467. [PMID: 28097906 PMCID: PMC6010143 DOI: 10.1080/14756366.2016.1261130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Four series of pyridothienopyrimidin-4-one derivatives were designed and prepared to improve the pim-1 inhibitory activity of the previously reported thieno[2,3-b]pyridines. Significant improvement in the pim-1 inhibition and cytotoxic activity was achieved using structure rigidification strategy via ring closure. Six compounds (6c, 7a, 7c, 7d, 8b and 9) showed highly potent pim-1 inhibitory activity with IC50 of 4.62, 1.18, 1.38, 1.97, 8.83 and 4.18 μM, respectively. Four other compounds (6b, 6d, 7b and 8a) showed moderate pim-1 inhibition. The most active compounds were tested for their cytotoxic activity on three cell lines [MCF7, HCT116 and PC3]. Compounds 7a [the 2-(2-chlorophenyl)-2,3-dihydro derivative] and 7d [the 2-(2-(trifluoromethyl)-phenyl)-2,3-dihydro derivative] displayed the most potent cytotoxic effect on the three cell lines tested consistent with their highest estimated pim-1 IC50 values.
Collapse
Affiliation(s)
- Bassem H Naguib
- a Pharmaceutical Chemistry Department, Faculty of Pharmacy , The British University in Egypt , Cairo , Egypt.,b Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Hala B El-Nassan
- b Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Tamer M Abdelghany
- c Department of Pharmacology and Toxicology, Faculty of Pharmacy , Al-Azhar University , Cairo , Egypt
| |
Collapse
|
22
|
Abstract
More than 95% of genes in the human genome are alternatively spliced to form multiple transcripts, often encoding proteins with differing or opposing function. The control of alternative splicing is now being elucidated, and with this comes the opportunity to develop modulators of alternative splicing that can control cellular function. A number of approaches have been taken to develop compounds that can experimentally, and sometimes clinically, affect splicing control, resulting in potential novel therapeutics. Here we develop the concepts that targeting alternative splicing can result in relatively specific pathway inhibitors/activators that result in dampening down of physiologic or pathologic processes, from changes in muscle physiology to altering angiogenesis or pain. The targets and pharmacology of some of the current inhibitors/activators of alternative splicing are demonstrated and future directions discussed.
Collapse
Affiliation(s)
- David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Jonathan C Morris
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Sebastian Oltean
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Lucy F Donaldson
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| |
Collapse
|
23
|
Jiménez-García MP, Lucena-Cacace A, Robles-Frías MJ, Narlik-Grassow M, Blanco-Aparicio C, Carnero A. The role of PIM1/PIM2 kinases in tumors of the male reproductive system. Sci Rep 2016; 6:38079. [PMID: 27901106 PMCID: PMC5128923 DOI: 10.1038/srep38079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
The PIM family of serine/threonine kinases has three highly conserved isoforms (PIM1, PIM2 and PIM3). PIM proteins are regulated through transcription and stability by JAK/STAT pathways and are overexpressed in hematological malignancies and solid tumors. The PIM kinases possess weak oncogenic abilities, but enhance other genes or chemical carcinogens to induce tumors. We generated conditional transgenic mice that overexpress PIM1 or PIM2 in male reproductive organs and analyzed their contribution to tumorigenesis. We found an increase in alterations of sexual organs and hyperplasia in the transgenic mice correlating with inflammation. We also found that PIM1/2 are overexpressed in a subset of human male germ cells and prostate tumors correlating with inflammatory features and stem cell markers. Our data suggest that PIM1/2 kinase overexpression is a common feature of male reproductive organs tumors, which provoke tissue alterations and a large inflammatory response that may act synergistically during the process of tumorigenesis. There is also a correlation with markers of cancer stem cells, which may contribute to the therapy resistance found in tumors overexpressing PIM kinases.
Collapse
Affiliation(s)
- Manuel Pedro Jiménez-García
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain
| | - Antonio Lucena-Cacace
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain
| | - María José Robles-Frías
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain
| | - Maja Narlik-Grassow
- Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), C/Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), C/Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain
| |
Collapse
|
24
|
Wurz RP, Sastri C, D'Amico DC, Herberich B, Jackson CLM, Pettus LH, Tasker AS, Wu B, Guerrero N, Lipford JR, Winston JT, Yang Y, Wang P, Nguyen Y, Andrews KL, Huang X, Lee MR, Mohr C, Zhang JD, Reid DL, Xu Y, Zhou Y, Wang HL. Discovery of imidazopyridazines as potent Pim-1/2 kinase inhibitors. Bioorg Med Chem Lett 2016; 26:5580-5590. [PMID: 27769621 DOI: 10.1016/j.bmcl.2016.09.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
High levels of Pim expression have been implicated in several hematopoietic and solid tumor cancers, suggesting that inhibition of Pim signaling could provide patients with therapeutic benefit. Herein, we describe our progress towards this goal using a screening hit (rac-1) as a starting point. Modification of the indazole ring resulted in the discovery of a series of imidazopyridazine-based Pim inhibitors exemplified by compound 22m, which was found to be a subnanomolar inhibitor of the Pim-1 and Pim-2 isoforms (IC50 values of 0.024nM and 0.095nM, respectively) and to potently inhibit the phosphorylation of BAD in a cell line that expresses high levels of all Pim isoforms, KMS-12-BM (IC50=28nM). Profiling of Pim-1 and Pim-2 expression levels in a panel of multiple myeloma cell lines and correlation of these data with the potency of compound 22m in a proliferation assay suggests that Pim-2 inhibition would be advantageous for this indication.
Collapse
Affiliation(s)
- Ryan P Wurz
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA.
| | - Christine Sastri
- Department of Oncology Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA.
| | - Derin C D'Amico
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Brad Herberich
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Claire L M Jackson
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Liping H Pettus
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Andrew S Tasker
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Bin Wu
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Nadia Guerrero
- Department of Oncology Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - J Russell Lipford
- Department of Oncology Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Jeffrey T Winston
- Department of Oncology Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Yajing Yang
- Department of Oncology Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Paul Wang
- Department of Discovery Technologies, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Yen Nguyen
- Department of Discovery Attribute Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Kristin L Andrews
- Department of Molecular Engineering, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Xin Huang
- Department of Molecular Engineering, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Matthew R Lee
- Department of Molecular Engineering, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Christopher Mohr
- Department of Molecular Engineering, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - J D Zhang
- Department of Molecular Engineering, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Darren L Reid
- Department of Pre-pivotal Drug Product, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Yang Xu
- Department of Clinical Pharmacology, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Yihong Zhou
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Hui-Ling Wang
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| |
Collapse
|
25
|
Liu Z, He W, Gao J, Luo J, Huang X, Gao C. Computational prediction and experimental validation of a novel synthesized pan-PIM inhibitor PI003 and its apoptosis-inducing mechanisms in cervical cancer. Oncotarget 2016; 6:8019-35. [PMID: 25749522 PMCID: PMC4480732 DOI: 10.18632/oncotarget.3139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/10/2015] [Indexed: 11/25/2022] Open
Abstract
PIM protein family, short-lived serine/threonine kinases (PIM1, PIM2 and PIM3), are weak oncogenes but contribute to tumorigenesis as cancer targets. Thus, design of a novel pan-PIM inhibitor is still a challenge for current cancer drug discovery. Herein, we used a Naïve Bayesian model to construct the PIM network and identified Bad and Hsp90 to interact with PIMs. Then, we screened a series of candidate small-molecule compounds targeting PIMs, and subsequently synthesized a novel small-molecule compound PI003 with remarkable anti-proliferative activities in cervical cancer cells. Moreover, we found that PI003 induced apoptosis via the death-receptor and mitochondrial pathways by targeting PIMs and affecting Bad and Hsp90. Combined with microRNA microarray analyses, we demonstrated that some microRNAs such as miR-1296 and miR-1299 could affect PIM1-STAT3 pathway in PI003-induced apoptosis. Finally, we reported that PI003 had remarkable anti-tumor activity and apoptosis-inducing effect in in vivo mouse model. In conclusion, these results demonstrate that PI003, as a novel synthesized pan-PIM inhibitor, induces the death-receptor and mitochondrial apoptosis involved in microRNA regulation, and also possessed remarkable anti-tumor activity and apoptosis-inducing effect in vivo. Thus, these findings would shed light on discovering more potential new small-molecule pan-PIM inhibitors in future cervical cancer therapy.
Collapse
Affiliation(s)
- Zhongyu Liu
- Anal-Colorectal Surgery Institute, No.150 Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Weihua He
- Anal-Colorectal Surgery Institute, No.150 Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Jianglin Gao
- Anal-Colorectal Surgery Institute, No.150 Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Junhua Luo
- Department of Obstetrics & Gynecology, No.150 Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Xian Huang
- Anal-Colorectal Surgery Institute, No.150 Central Hospital of PLA, Luoyang, Henan 471031, China
| | - Chunfang Gao
- Anal-Colorectal Surgery Institute, No.150 Central Hospital of PLA, Luoyang, Henan 471031, China
| |
Collapse
|
26
|
Naguib BH, El-Nassan HB. Synthesis of new thieno[2,3-b]pyridine derivatives as pim-1 inhibitors. J Enzyme Inhib Med Chem 2016; 31:1718-25. [PMID: 27541740 DOI: 10.3109/14756366.2016.1158711] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Three series of 5-bromo-thieno[2,3-b]pyridines bearing amide or benzoyl groups at position 2 were prepared as pim-1 inhibitors. All the prepared compounds were tested for their pim-1 enzyme inhibitory activity. Two compounds (3c and 5b) showed moderate pim-1 inhibitory activity with IC50 of 35.7 and 12.71 μM, respectively. Three other compounds (3d, 3g and 6d) showed poor pim-1 inhibition. The most active compounds were tested for their cytotoxic activity on five cell lines [MCF7, HEPG2, HCT116, A549 and PC3]. Compound 3g was the most potent cytotoxic agent on almost all the cell lines tested.
Collapse
Affiliation(s)
- Bassem H Naguib
- a Pharmaceutical Chemistry Department , Faculty of Pharmacy, The British University in Egypt , Cairo , Egypt and.,b Pharmaceutical Organic Chemistry Department , Faculty of Pharmacy, Cairo University , Cairo , Egypt
| | - Hala B El-Nassan
- b Pharmaceutical Organic Chemistry Department , Faculty of Pharmacy, Cairo University , Cairo , Egypt
| |
Collapse
|
27
|
Synthesis of novel S-acyl and S-alkylpyrimidinone derivatives as potential cytotoxic agents. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2487-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Discovery of 3,5-substituted 6-azaindazoles as potent pan-Pim inhibitors. Bioorg Med Chem Lett 2015; 25:5258-64. [DOI: 10.1016/j.bmcl.2015.09.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022]
|
29
|
Burger MT, Nishiguchi G, Han W, Lan J, Simmons R, Atallah G, Ding Y, Tamez V, Zhang Y, Mathur M, Muller K, Bellamacina C, Lindvall MK, Zang R, Huh K, Feucht P, Zavorotinskaya T, Dai Y, Basham S, Chan J, Ginn E, Aycinena A, Holash J, Castillo J, Langowski JL, Wang Y, Chen MY, Lambert A, Fritsch C, Kauffmann A, Pfister E, Vanasse KG, Garcia PD. Identification of N-(4-((1R,3S,5S)-3-Amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a Potent and Selective Proviral Insertion Site of Moloney Murine Leukemia (PIM) 1, 2, and 3 Kinase Inhibitor in Clinical Trials for Hematological Malignancies. J Med Chem 2015; 58:8373-86. [PMID: 26505898 DOI: 10.1021/acs.jmedchem.5b01275] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pan proviral insertion site of Moloney murine leukemia (PIM) 1, 2, and 3 kinase inhibitors have recently begun to be tested in humans to assess whether pan PIM kinase inhibition may provide benefit to cancer patients. Herein, the synthesis, in vitro activity, in vivo activity in an acute myeloid leukemia xenograft model, and preclinical profile of the potent and selective pan PIM kinase inhibitor compound 8 (PIM447) are described. Starting from the reported aminopiperidyl pan PIM kinase inhibitor compound 3, a strategy to improve the microsomal stability was pursued resulting in the identification of potent aminocyclohexyl pan PIM inhibitors with high metabolic stability. From this aminocyclohexyl series, compound 8 entered the clinic in 2012 in multiple myeloma patients and is currently in several phase 1 trials of cancer patients with hematological malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Christine Fritsch
- Oncology Research, Novartis Institutes for Biomedical Research , CH-4056, Basel, Switzerland
| | - Audry Kauffmann
- Oncology Research, Novartis Institutes for Biomedical Research , CH-4056, Basel, Switzerland
| | - Estelle Pfister
- Oncology Research, Novartis Institutes for Biomedical Research , CH-4056, Basel, Switzerland
| | - K Gary Vanasse
- Translational Clinical Oncology, Novartis Institutes for Biomedical Research , 220 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | | |
Collapse
|
30
|
Pim Kinases Promote Migration and Metastatic Growth of Prostate Cancer Xenografts. PLoS One 2015; 10:e0130340. [PMID: 26075720 PMCID: PMC4467846 DOI: 10.1371/journal.pone.0130340] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/19/2015] [Indexed: 11/19/2022] Open
Abstract
Background and methods Pim family proteins are oncogenic kinases implicated in several types of cancer and involved in regulation of cell proliferation, survival as well as motility. Here we have investigated the ability of Pim kinases to promote metastatic growth of prostate cancer cells in two xenograft models for human prostate cancer. We have also evaluated the efficacy of Pim-selective inhibitors to antagonize these effects. Results We show here that tumorigenic growth of both subcutaneously and orthotopically inoculated prostate cancer xenografts is enhanced by stable overexpression of either Pim-1 or Pim-3. Moreover, Pim-overexpressing orthotopic prostate tumors are highly invasive and able to migrate not only to the nearby prostate-draining lymph nodes, but also into the lungs to form metastases. When the xenografted mice are daily treated with the Pim-selective inhibitor DHPCC-9, both the volumes as well as the metastatic capacity of the tumors are drastically decreased. Interestingly, the Pim-promoted metastatic growth of the orthotopic xenografts is associated with enhanced angiogenesis and lymphangiogenesis. Furthermore, forced Pim expression also increases phosphorylation of the CXCR4 chemokine receptor, which may enable the tumor cells to migrate towards tissues such as the lungs that express the CXCL12 chemokine ligand. Conclusions Our results indicate that Pim overexpression enhances the invasive properties of prostate cancer cells in vivo. These effects can be reduced by the Pim-selective inhibitor DHPCC-9, which can reach tumor tissues without serious side effects. Thus, Pim-targeting therapies with DHPCC-9-like compounds may help to prevent progression of local prostate carcinomas to fatally metastatic malignancies.
Collapse
|
31
|
Wurz RP, Pettus LH, Jackson C, Wu B, Wang HL, Herberich B, Cee V, Lanman BA, Reed AB, Chavez F, Nixey T, Laszlo J, Wang P, Nguyen Y, Sastri C, Guerrero N, Winston J, Lipford JR, Lee MR, Andrews KL, Mohr C, Xu Y, Zhou Y, Reid DL, Tasker AS. The discovery and optimization of aminooxadiazoles as potent Pim kinase inhibitors. Bioorg Med Chem Lett 2015; 25:847-55. [DOI: 10.1016/j.bmcl.2014.12.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 11/26/2022]
|
32
|
Abstract
Pim oncogenes are highly expressed in many types of hematological and solid cancers. Pim kinases regulate the network of signaling pathways that are critical for tumorigenesis and development, making Pim kinases the attractive drug targets. Currently, two approaches have been employed in designing Pim kinase inhibitors: ATP-mimetics and non-ATP mimetics; but all target the ATP-binding pocket and are ATP-competitive. In this review, we summarize the current progress in understanding the Pim-related structure and biology, and provide insights into the binding modes of some prototypical Pim-1 inhibitors. The challenges as well as opportunities are highlighted for development of Pim kinase inhibitors as potential anticancer agents.
Collapse
|
33
|
PIM inhibitors target CD25-positive AML cells through concomitant suppression of STAT5 activation and degradation of MYC oncogene. Blood 2014; 124:1777-89. [DOI: 10.1182/blood-2014-01-551234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Key Points
CD25 is a predictive biomarker for sensitivity to PIM inhibitors in AML cells. PIM inhibitors may prolong overall/relapse-free survival through attenuating STAT5 activation and destabilizing MYC in CD25+ AML cells.
Collapse
|
34
|
van der Meer R, Song HY, Park SH, Abdulkadir SA, Roh M. RNAi screen identifies a synthetic lethal interaction between PIM1 overexpression and PLK1 inhibition. Clin Cancer Res 2014; 20:3211-21. [PMID: 24771642 PMCID: PMC4086184 DOI: 10.1158/1078-0432.ccr-13-3116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To identify genes whose depletion is detrimental to Pim1-overexpressing prostate cancer cells and to validate this finding in vitro and in vivo. EXPERIMENTAL DESIGN RNAi screening was used to identify genes whose depletion is detrimental to Pim1-overexpressing cells. Our finding was validated using shRNA or PLK1-specific inhibitor BI 2536. Xenograft studies were performed using both PLK1-knockdown cells and BI 2536 to investigate the effects of PLK1 inhibition on tumorigenesis in Pim1-overexpressing cells. Finally, PLK1 and PIM1 expression patterns in human prostate tumors were examined by immunohistochemistry using tissue microarrays. RESULTS We identified the mitotic regulator polo-like kinase (PLK1) as a gene whose depletion is particularly detrimental to the viability of Pim1-overexpressing prostate cancer. Inhibition of PLK1 by shRNA or BI 2536 in Pim1-overexpressing prostate cancer xenograft models resulted in a dramatic inhibition of tumor progression. Notably, Pim1-overexpressing cells were more prone to mitotic arrest followed by apoptosis due to PLK1 inhibition than control cells. Furthermore, inhibition of PLK1 led to the reduction of MYC protein levels both in vitro and in vivo. Our data also suggest that PIM1 and PLK1 physically interact and PIM1 might phosphorylate PLK1. Finally, PLK1 and PIM1 are frequently co-expressed in human prostate tumors, and co-expression of PLK1 and PIM1 was significantly correlated to higher Gleason grades. CONCLUSIONS Our findings demonstrate that PIM1-overexpressing cancer cells are particularly sensitive to PLK1 inhibition, suggesting that PIM1 might be used as a marker for identifying patients who will benefit from PLK1 inhibitor treatment.
Collapse
Affiliation(s)
- Riet van der Meer
- Authors' Affiliations: Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Radiation Oncology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Ha Yong Song
- Authors' Affiliations: Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Radiation Oncology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Seong-Hoon Park
- Authors' Affiliations: Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Radiation Oncology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Sarki A Abdulkadir
- Authors' Affiliations: Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Radiation Oncology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Meejeon Roh
- Authors' Affiliations: Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Radiation Oncology, Northwestern Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
35
|
Discovery and identification of PIM-1 kinase inhibitors through a hybrid screening approach. Mol Divers 2014; 18:335-44. [DOI: 10.1007/s11030-014-9504-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
|
36
|
Garcia PD, Langowski JL, Wang Y, Chen M, Castillo J, Fanton C, Ison M, Zavorotinskaya T, Dai Y, Lu J, Niu XH, Basham S, Chan J, Yu J, Doyle M, Feucht P, Warne R, Narberes J, Tsang T, Fritsch C, Kauffmann A, Pfister E, Drueckes P, Trappe J, Wilson C, Han W, Lan J, Nishiguchi G, Lindvall M, Bellamacina C, Aycinena JA, Zang R, Holash J, Burger MT. Pan-PIM kinase inhibition provides a novel therapy for treating hematologic cancers. Clin Cancer Res 2014; 20:1834-45. [PMID: 24474669 DOI: 10.1158/1078-0432.ccr-13-2062] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE PIM kinases have been shown to act as oncogenes in mice, with each family member being able to drive progression of hematologic cancers. Consistent with this, we found that PIMs are highly expressed in human hematologic cancers and show that each isoform has a distinct expression pattern among disease subtypes. This suggests that inhibitors of all three PIMs would be effective in treating multiple hematologic malignancies. EXPERIMENTAL DESIGN Pan-PIM inhibitors have proven difficult to develop because PIM2 has a low Km for ATP and, thus, requires a very potent inhibitor to effectively block the kinase activity at the ATP levels in cells. We developed a potent and specific pan-PIM inhibitor, LGB321, which is active on PIM2 in the cellular context. RESULTS LGB321 is active on PIM2-dependent multiple myeloma cell lines, where it inhibits proliferation, mTOR-C1 signaling and phosphorylation of BAD. Broad cancer cell line profiling of LGB321 demonstrates limited activity in cell lines derived from solid tumors. In contrast, significant activity in cell lines derived from diverse hematological lineages was observed, including acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), multiple myeloma and non-Hodgkin lymphoma (NHL). Furthermore, we demonstrate LGB321 activity in the KG-1 AML xenograft model, in which modulation of pharmacodynamics markers is predictive of efficacy. Finally, we demonstrate that LGB321 synergizes with cytarabine in this model. CONCLUSIONS We have developed a potent and selective pan-PIM inhibitor with single-agent antiproliferative activity and show that it synergizes with cytarabine in an AML xenograft model. Our results strongly support the development of Pan-PIM inhibitors to treat hematologic malignancies.
Collapse
Affiliation(s)
- Pablo D Garcia
- Authors' Affiliations: Oncology Disease Area Research; Global Discovery Chemistry/Oncology and Exploratory Chemistry; MAP Group; Chemical and Pharmaceutical Profiling Group, Novartis Institutes for Biomedical Research, Emeryville, California; Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts; Oncology Disease Area Research; and Center for Proteomic Chemistry, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Burger MT, Han W, Lan J, Nishiguchi G, Bellamacina C, Lindval M, Atallah G, Ding Y, Mathur M, McBride C, Beans EL, Muller K, Tamez V, Zhang Y, Huh K, Feucht P, Zavorotinskaya T, Dai Y, Holash J, Castillo J, Langowski J, Wang Y, Chen MY, Garcia PD. Structure Guided Optimization, in Vitro Activity, and in Vivo Activity of Pan-PIM Kinase Inhibitors. ACS Med Chem Lett 2013; 4:1193-7. [PMID: 24900629 DOI: 10.1021/ml400307j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/12/2013] [Indexed: 01/15/2023] Open
Abstract
Proviral insertion of Moloney virus (PIM) 1, 2, and 3 kinases are serine/threonine kinases that normally function in survival and proliferation of hematopoietic cells. As high expression of PIM1, 2, and 3 is frequently observed in many human malignancies, including multiple myeloma, non-Hodgkins lymphoma, and myeloid leukemias, there is interest in determining whether selective PIM inhibition can improve outcomes of these human cancers. Herein, we describe our efforts toward this goal. The structure guided optimization of a singleton high throughput screening hit in which the potency against all three PIM isoforms was increased >10,000-fold to yield compounds with pan PIM K is < 10 pM, nanomolar cellular potency, and in vivo activity in an acute myeloid leukemia Pim-dependent tumor model is described.
Collapse
Affiliation(s)
- Matthew T. Burger
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Wooseok Han
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Jiong Lan
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Gisele Nishiguchi
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Cornelia Bellamacina
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Mika Lindval
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Gordana Atallah
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Yu Ding
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Michelle Mathur
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Chris McBride
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Elizabeth L. Beans
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Kristine Muller
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Victoriano Tamez
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Yanchen Zhang
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Kay Huh
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Paul Feucht
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - Tatiana Zavorotinskaya
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - Yumin Dai
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - Jocelyn Holash
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - Joseph Castillo
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - John Langowski
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - Yingyun Wang
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - Min Y. Chen
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - Pablo D. Garcia
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| |
Collapse
|
38
|
Arunesh GM, Shanthi E, Krishna MH, Sooriya Kumar J, Viswanadhan VN. Small molecule inhibitors of PIM1 kinase: July 2009 to February 2013 patent update. Expert Opin Ther Pat 2013; 24:5-17. [PMID: 24131033 DOI: 10.1517/13543776.2014.848196] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The proviral insertion in murine (PIM) lymphoma proteins for which three isoforms, PIM1, PIM2 and PIM3 have been identified, belonging to the family of serine/threonine kinases has emerged recently as an important therapeutic target for the development of selective inhibitors as the new drugs for treating hematological malignancies and solid tumors. The small molecules developed by academia and the pharmaceutical industry have steadily increased in the last few years. Several drug discovery groups focus on treating disorders, such as cancer mediated by PIM kinase, have provided preclinical evidence suggesting that PIM inhibitor provides anti-apoptotic activity, inhibit cell survival and cell proliferation. AREAS COVERED This article discloses recent reviews on research and advances published in the patent literature and scientific publications from July 2009 to February 2013, highlighting discoveries on PIM1 kinase. EXPERT OPINION Several PIM1 kinase small molecule inhibitors are now at the pre-clinical research stage, development and testing. Though nearly 40 patents emerged in the last 3 years, greater efforts towards additional designs and medicinal chemistry continues for developing clinically efficacious PIM1 inhibitors, due to the significance of the target for cancer and the potential for novel and diverse inhibitors as drug candidates.
Collapse
Affiliation(s)
- Gubbi M Arunesh
- Department of Computational Chemistry and Informatics, Jubilant Biosys Ltd, Industrial Suburb , 96, Industrial Suburb, 2nd Stage, Yeshwanthpur, Bangalore 560 022, Karnataka , India +91 80 6662 8908 ; +91 80 66628333 ;
| | | | | | | | | |
Collapse
|
39
|
Casuscelli F, Ardini E, Avanzi N, Casale E, Cervi G, D'Anello M, Donati D, Faiardi D, Ferguson RD, Fogliatto G, Galvani A, Marsiglio A, Mirizzi DG, Montemartini M, Orrenius C, Papeo G, Piutti C, Salom B, Felder ER. Discovery and optimization of pyrrolo[1,2-a]pyrazinones leads to novel and selective inhibitors of PIM kinases. Bioorg Med Chem 2013; 21:7364-80. [PMID: 24139169 DOI: 10.1016/j.bmc.2013.09.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/13/2013] [Accepted: 09/20/2013] [Indexed: 11/25/2022]
Abstract
A novel series of PIM inhibitors was derived from a combined effort in natural product-inspired library generation and screening. The novel pyrrolo[1,2-a]pyrazinones initial hits are inhibitors of PIM isoforms with IC50 values in the low micromolar range. The application of a rational optimization strategy, guided by the determination of the crystal structure of the complex in the kinase domain of PIM1 with compound 1, led to the discovery of compound 15a, which is a potent PIM kinases inhibitor exhibiting excellent selectivity against a large panel of kinases, representative of each family. The synthesis, structure-activity relationship studies, and pharmacokinetic data of compounds from this inhibitor class are presented herein. Furthermore, the cellular activities including inhibition of cell growth and modulation of downstream targets are also described.
Collapse
Affiliation(s)
- Francesco Casuscelli
- Oncology, Nerviano Medical Sciences, viale Pasteur 10, 20014 Nerviano (MI), Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dwyer MP, Keertikar K, Paruch K, Alvarez C, Labroli M, Poker C, Fischmann TO, Mayer-Ezell R, Bond R, Wang Y, Azevedo R, Guzi TJ. Discovery of pyrazolo[1,5-a]pyrimidine-based Pim inhibitors: a template-based approach. Bioorg Med Chem Lett 2013; 23:6178-82. [PMID: 24091081 DOI: 10.1016/j.bmcl.2013.08.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 12/01/2022]
Abstract
The synthesis and hit-to-lead SAR development from a pyrazolo[1,5-a]pyrimidine-derived hit 5 to the identification of a series of potent, pan-Pim inhibitors such as 11j are described.
Collapse
Affiliation(s)
- Michael P Dwyer
- Department of Chemical Research, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mori M, Tintori C, Christopher RSA, Radi M, Schenone S, Musumeci F, Brullo C, Sanità P, Delle Monache S, Angelucci A, Kissova M, Crespan E, Maga G, Botta M. A combination strategy to inhibit Pim-1: synergism between noncompetitive and ATP-competitive inhibitors. ChemMedChem 2013; 8:484-96. [PMID: 23436791 DOI: 10.1002/cmdc.201200480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Indexed: 12/30/2022]
Abstract
Pim-1 is a serine/threonine kinase critically involved in the initiation and progression of various types of cancer, especially leukemia, lymphomas and solid tumors such as prostate, pancreas and colon, and is considered a potential drug target against these malignancies. In an effort to discover new potent Pim-1 inhibitors, a previously identified ATP-competitive indolyl-pyrrolone scaffold was expanded to derive structure-activity relationship data. A virtual screening campaign was also performed, which led to the discovery of additional ATP-competitive inhibitors as well as a series of 2-aminothiazole derivatives, which are noncompetitive with respect to both ATP and peptide substrate. This mechanism of action, which resembles allosteric inhibition, has not previously been characterized for Pim-1. Notably, further evaluation of the 2-aminothiazoles indicated a synergistic inhibitory effect in enzymatic assays when tested in combination with ATP-competitive inhibitors. A synergistic effect in the inhibition of cell proliferation by ATP-competitive and ATP-noncompetitive compounds was also observed in prostate cancer cell lines (PC3), where all Pim-1 inhibitors tested in showed synergism with the known anticancer agent, paclitaxel. These results further establish Pim-1 as a target in cancer therapy, and highlight the potential of these agents for use as adjuvant agents in the treatment of cancer diseases in which Pim-1 is associated with chemotherapeutic resistance.
Collapse
Affiliation(s)
- Mattia Mori
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee SJ, Han BG, Cho JW, Choi JS, Lee J, Song HJ, Koh JS, Lee BI. Crystal structure of pim1 kinase in complex with a pyrido[4,3-d]pyrimidine derivative suggests a unique binding mode. PLoS One 2013; 8:e70358. [PMID: 23936194 PMCID: PMC3729456 DOI: 10.1371/journal.pone.0070358] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/18/2013] [Indexed: 02/07/2023] Open
Abstract
Human Pim1 kinase is a serine/threonine protein kinase that plays important biological roles in cell survival, apoptosis, proliferation, and differentiation. Moreover, Pim1 is up-regulated in various hematopoietic malignancies and solid tumors. Thus, Pim1 is an attractive target for cancer therapeutics, and there has been growing interest in developing small molecule inhibitors for Pim1. Here, we describe the crystal structure of Pim1 in complex with a newly developed pyrido[4,3-d]pyrimidine-derivative inhibitor (SKI-O-068). Our inhibitor exhibits a half maximum inhibitory concentration (IC50) of 123 (±14) nM and has an unusual binding mode in complex with Pim1 kinase. The interactions between SKI-O-068 and the Pim1 active site pocket residue are different from those of other scaffold inhibitor-bound structures. The binding mode analysis suggests that the SKI-O-068 inhibitor can be improved by introducing functional groups that facilitate direct interaction with Lys67, which aid in the design of an optimized inhibitor.
Collapse
Affiliation(s)
- Sang Jae Lee
- Biomolecular Function Research Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Byeong-Gu Han
- Biomolecular Function Research Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | - Jea-Won Cho
- Biomolecular Function Research Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | | | - Jaekyoo Lee
- Genosco, Cambridge, Massachusetts, United States of America
| | - Ho-Juhn Song
- Genosco, Cambridge, Massachusetts, United States of America
| | - Jong Sung Koh
- Oscotec Inc., Seongnam, Gyeonggi, Republic of Korea
- Genosco, Cambridge, Massachusetts, United States of America
- * E-mail: (JSK); (BIL)
| | - Byung Il Lee
- Biomolecular Function Research Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
- * E-mail: (JSK); (BIL)
| |
Collapse
|
43
|
Wang X, Magnuson S, Pastor R, Fan E, Hu H, Tsui V, Deng W, Murray J, Steffek M, Wallweber H, Moffat J, Drummond J, Chan G, Harstad E, Ebens AJ. Discovery of novel pyrazolo[1,5-a]pyrimidines as potent pan-Pim inhibitors by structure- and property-based drug design. Bioorg Med Chem Lett 2013; 23:3149-53. [DOI: 10.1016/j.bmcl.2013.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 10/27/2022]
|
44
|
Suchaud V, Gavara L, Saugues E, Nauton L, Théry V, Anizon F, Moreau P. Identification of 1,6-dihydropyrazolo[4,3-c]carbazoles and 3,6-dihydropyrazolo[3,4-c]carbazoles as new Pim kinase inhibitors. Bioorg Med Chem 2013; 21:4102-11. [PMID: 23735828 DOI: 10.1016/j.bmc.2013.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
Abstract
New 1,6-dihydropyrazolo[4,3-c]carbazoles and 3,6-dihydropyrazolo[3,4-c]carbazoles were prepared and evaluated for their Pim kinase inhibitory potencies as well as their antiproliferative activities toward two prostatic cancer cell lines. Pyrazolocarbazole 15a was found to be a potent Pim kinase modulator with inhibitory potency toward the three isoforms. Compound 6c strongly inhibited Pim-3 with weaker effect toward Pim-1 and Pim-2, and thus could be used as an interesting molecular tool to study Pim-3 biological functions.
Collapse
Affiliation(s)
- Virginie Suchaud
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Ekambaram R, Enkvist E, Vaasa A, Kasari M, Raidaru G, Knapp S, Uri A. Selective bisubstrate inhibitors with sub-nanomolar affinity for protein kinase Pim-1. ChemMedChem 2013; 8:909-13. [PMID: 23616352 DOI: 10.1002/cmdc.201300042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/05/2013] [Indexed: 11/06/2022]
Abstract
Potent and selective: The unique nature of the ATP binding pocket structure of Pim family protein kinases (PKs) was used for the development of bisubstrate inhibitors and a fluorescent probe with sub-nanomolar affinity. Conjugates of arginine-rich peptides with two ATP mimetic scaffolds were synthesized and tested as inhibitors of Pim-1. Against a panel of 124 protein kinases, a novel ARC-PIM conjugate selectively inhibited PKs of the Pim family.
Collapse
|
46
|
Narlik-Grassow M, Blanco-Aparicio C, Carnero A. The PIM family of serine/threonine kinases in cancer. Med Res Rev 2013; 34:136-59. [PMID: 23576269 DOI: 10.1002/med.21284] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proviral insertion site in Moloney murine leukemia virus, or PIM proteins, are a family of serine/threonine kinases composed of three different isoforms (PIM1, PIM2, and PIM3) that are highly evolutionarily conserved. These proteins are regulated primarily by transcription and stability through pathways that are controlled by Janus kinase/Signal transducer and activator of transcription, JAK/STAT, transcription factors. The PIM family proteins have been found to be overexpressed in hematological malignancies and solid tumors, and their roles in these tumors were confirmed in mouse tumor models. Furthermore, the PIM family proteins have been implicated in the regulation of apoptosis, metabolism, cell cycle, and homing and migration, which has led to the postulation of these proteins as interesting targets for anticancer drug discovery. In the present work, we review the importance of PIM kinases in tumor growth and as drug targets.
Collapse
Affiliation(s)
- Maja Narlik-Grassow
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | | | | |
Collapse
|
47
|
Identification of pyrrolo[2,3-g]indazoles as new Pim kinase inhibitors. Bioorg Med Chem Lett 2013; 23:2298-301. [PMID: 23499503 DOI: 10.1016/j.bmcl.2013.02.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 12/14/2022]
Abstract
The synthesis and Pim kinase inhibition potency of a new series of pyrrolo[2,3-g]indazole derivatives is described. The results obtained in this preliminary structure-activity relationship study pointed out that sub-micromolar Pim-1 and Pim-3 inhibitory potencies could be obtained in this series, more particularly for compounds 10 and 20, showing that pyrrolo[2,3-g]indazole scaffold could be used for the development of new potent Pim kinase inhibitors. Molecular modeling experiments were also performed to study the binding mode of these compounds in Pim-3 ATP-binding pocket.
Collapse
|
48
|
Kiriazis A, Vahakoski RL, Santio NM, Arnaudova R, Eerola SK, Rainio EM, Aumüller IB, Yli-Kauhaluoma J, Koskinen PJ. Tricyclic Benzo[cd]azulenes selectively inhibit activities of Pim kinases and restrict growth of Epstein-Barr virus-transformed cells. PLoS One 2013; 8:e55409. [PMID: 23405147 PMCID: PMC3566155 DOI: 10.1371/journal.pone.0055409] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 12/21/2012] [Indexed: 11/25/2022] Open
Abstract
Oncogenic Pim family kinases are often overexpressed in human hematopoietic malignancies as well as in solid tumours. These kinases contribute to tumorigenesis by promoting cell survival and by enhancing resistance against chemotherapy and radiation therapy. Furthermore, we have recently shown that they increase the metastatic potential of adherent cancer cells. Here we describe identification of tricyclic benzo[cd]azulenes and their derivatives as effective and selective inhibitors of Pim kinases. These compounds inhibit Pim autophosphorylation and abrogate the anti-apoptotic effects of Pim kinases. They also reduce cancer cell motility and suppress proliferation of lymphoblastoid cell lines infected and immortalized by the Epstein-Barr virus. Thus, these novel Pim-selective inhibitors provide promising compounds for both research and therapeutic purposes.
Collapse
Affiliation(s)
- Alexandros Kiriazis
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Finland
- Pharmacy Section, FinPharma Doctoral Program, Finland
| | - Riitta L. Vahakoski
- Department of Biology, University of Turku, Finland
- Drug Discovery Section, FinPharma Doctoral Program, Finland
| | - Niina M. Santio
- Department of Biology, University of Turku, Finland
- Drug Discovery Section, FinPharma Doctoral Program, Finland
| | - Ralica Arnaudova
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Finland
- Department of Biology, University of Turku, Finland
| | | | | | - Ingo B. Aumüller
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Finland
- * E-mail: (JYK); (PJK)
| | - Päivi J. Koskinen
- Department of Biology, University of Turku, Finland
- * E-mail: (JYK); (PJK)
| |
Collapse
|
49
|
Kim W, Youn H, Kwon T, Kang J, Kim E, Son B, Yang HJ, Jung Y, Youn B. PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells. Pharmacol Res 2013; 70:90-101. [PMID: 23352980 DOI: 10.1016/j.phrs.2013.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/07/2013] [Accepted: 01/14/2013] [Indexed: 01/28/2023]
Abstract
Radiotherapy plays a critical role in the treatment of non-small cell lung cancer (NSCLC). However, radioresistance is a major barrier against increasing the efficiency of radiotherapy for NSCLC. To understand the mechanisms underlying NSCLC radioresistance, we previously focused on the potential involvement of PIM1, PRAS40, FOXO3a, 14-3-3, and protein phosphatases. Among these proteins, PIM1 functioned as an oncogene and was found to act as a crucial mediator in radioresistant NSCLC cells. Therefore, we investigated the use of PIM1-specific inhibitors as novel therapeutic drugs to regulate radiosensitivity in NSCLC. After structure-based drug selection, SGI-1776, ETP-45299, and tryptanthrin were selected as candidates of PIM1 inhibitors that act as radiosensitizers. With irradiation, these drugs inhibited only PIM1 kinase activity without affecting PIM1 mRNA/protein levels or cellular localization. When PIM1 kinase activity was suppressed by these inhibitors, PRAS40 was not phosphorylated. Consequently, unphosphorylated PRAS40 did not form trimeric complexes with 14-3-3 and FOXO3a, leading to increased nuclear localization of FOXO3a. Nuclear FOXO3a promoted the expression of pro-apoptotic proteins such as Bim and FasL, resulting in a radiosensitizing effect on radioresistant NSCLC cells. Moreover, an in vivo xenograft mouse model confirmed this radiosensitizing effect induced by PIM1 inhibitors. In these model systems, tumor volume was significantly reduced by a combinational treatment with irradiation and PIM1 inhibitors compared to irradiation alone. Taken together, our findings provided evidence that PIM1-specific inhibitors, SGI-1776, ETP-45299, and tryptanthrin, can act as novel radiosensitizers to enhance the efficacy of radiotherapy by inhibiting irradiation-induced signaling pathway associated with radioresistance.
Collapse
Affiliation(s)
- Wanyeon Kim
- Department of Biological Sciences, Pusan National University, Busandaehak-ro 63, Geumjeong-gu, Busan, 609-735, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Blanco-Aparicio C, Carnero A. Pim kinases in cancer: diagnostic, prognostic and treatment opportunities. Biochem Pharmacol 2012; 85:629-643. [PMID: 23041228 DOI: 10.1016/j.bcp.2012.09.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
PIM proteins belong to a family of ser/thr kinases composed of 3 members, PIM1, PIM2 and PIM3, with greatly overlapping functions. PIM kinases are mainly responsible for cell cycle regulation, antiapoptotic activity and the homing and migration of receptor tyrosine kinases mediated via the JAK/STAT pathway. PIM kinases have been found to be upregulated in many hematological malignancies and solid tumors. Although these kinases have been described as weak oncogenes, they are heavily targeted for anticancer drug discovery. The present review summarizes the discoveries made to date regarding PIM kinases as driving oncogenes in the process of tumorigenesis and their validation as drug targets.
Collapse
Affiliation(s)
- Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBiS), HUVR/CSIC/Universidad de Sevilla, Sevilla, Spain; Consejo Superior de Investigaciones Cientificas, Spain.
| |
Collapse
|