1
|
Chatterjee B, Mondal D, Bera S. Macrocyclization Strategies Towards the Synthesis of Amphidinolide Natural Products. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Bhaskar Chatterjee
- Department of Chemistry Nabadwip Vidyasagar College 741302 Nabadwip West Bengal India
| | - Dhananjoy Mondal
- School of Chemical Sciences Central University of Gujarat 382030 Gandhinagar Gujarat (India
| | - Smritilekha Bera
- School of Chemical Sciences Central University of Gujarat 382030 Gandhinagar Gujarat (India
| |
Collapse
|
2
|
Pantcheva I, Stamboliyska R, Petkov N, Tadjer A, Simova S, Stoyanova R, Kukeva R, Dorkov P. Dinuclear vs. Mononuclear Copper(II) Coordination Species of Tylosin and Tilmicosin in Non-Aqueous Solutions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123899. [PMID: 35745018 PMCID: PMC9229138 DOI: 10.3390/molecules27123899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022]
Abstract
The veterinary 16-membered macrolide antibiotics tylosin (HTyl, 1a) and tilmicosin (HTilm, 1b) react with copper(II) ions in acetone at metal-to-ligand molar ratio of 1:2 to form blue (2) or green (3) metal(II) coordination species, containing nitrate or chloride anions, respectively. The complexation processes and the properties of 2–3 were studied by an assortment of physicochemical techniques (UV-Vis, EPR, NMR, FTIR, elemental analysis). The experimental data revealed that the main portion of copper(II) ions are bound as neutral EPR-silent dinuclear complexes of composition [Cu2(µ-NO3)2L2] (2a–b) and [Cu2(µ-Cl)2Cl2(HL)2] (3a–b), containing impurities of EPR-active mono-species [Cu(NO3)L] (2a’–b’) and [CuCl2(HL)] (3a’–b’). The possible structural variants of the dinuclear- and mono-complexes were modeled by the DFT method, and the computed spectroscopic parameters of the optimized constructs were compared to those measured experimentally. Using such a combined approach, the main coordination unit of the macrolides, involved in the complex formation, was defined to be their mycaminosyl substituent, which acts as a terminal ligand in a bidentate mode through the tertiary nitrogen atom and the oxygen from a deprotonated (2) or non-dissociated (3) hydroxyl group, respectively.
Collapse
Affiliation(s)
- Ivayla Pantcheva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (R.S.); (A.T.)
- Correspondence: (I.P.); (N.P.); Tel.: +359-2-8161446 (I.P.); +35-2-8161446 (N.P.)
| | - Radoslava Stamboliyska
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (R.S.); (A.T.)
| | - Nikolay Petkov
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (R.S.); (A.T.)
- Correspondence: (I.P.); (N.P.); Tel.: +359-2-8161446 (I.P.); +35-2-8161446 (N.P.)
| | - Alia Tadjer
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (R.S.); (A.T.)
| | - Svetlana Simova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (R.S.); (R.K.)
| | - Rositza Kukeva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (R.S.); (R.K.)
| | - Petar Dorkov
- Research and Development Department, Biovet Ltd., 4550 Peshtera, Bulgaria;
| |
Collapse
|
3
|
Wang JD, Qi H, Zhang J, Li JS, Zhang SY, Hao ZK, Zhang LQ, Xiang WS. Two new 13-hydroxylated milbemycin metabolites from the genetically engineered strain Streptomyces avermitilis AVE-H39. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:837-843. [PMID: 32851866 DOI: 10.1080/10286020.2020.1803294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Two new milbemycin metabolites, 13α-hydroxymilbemycin β13 (1) and 26-methyl-13α-hydroxymilbemycin β13 (2), were isolated from the fermentation broth of a genetically engineered strain Streptomyces avermitilis AVE-H39. Their structures were determined by the comprehensive spectroscopic data, including 1 D, 2 D NMR, MS spectral analysis and the comparison with data from the literature. Compounds 1 and 2 not only exhibited potent acaricidal activities against Tetranychus cinnabarinus, but also had nematocidal activity against Bursaphelenchus xylophilus.
Collapse
Affiliation(s)
- Ji-Dong Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Huan Qi
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Ji Zhang
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jian-Song Li
- Institute of Applied Biotechnology, School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Zhi-Kui Hao
- Institute of Applied Biotechnology, School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, China
| | - Li-Qin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Wen-Sheng Xiang
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Zin PPK, Williams G, Fourches D. SIME: synthetic insight-based macrolide enumerator to generate the V1B library of 1 billion macrolides. J Cheminform 2020; 12:23. [PMID: 33431002 PMCID: PMC7146965 DOI: 10.1186/s13321-020-00427-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/27/2020] [Indexed: 11/24/2022] Open
Abstract
We report on a new cheminformatics enumeration technology—SIME, synthetic insight-based macrolide enumerator—a new and improved software technology. SIME can enumerate fully assembled macrolides with synthetic feasibility by utilizing the constitutional and structural knowledge extracted from biosynthetic aspects of macrolides. Taken into account by the software are key information such as positions in macrolide structures at which chemical components can be inserted, and the types of structural motifs and sugars of interest that can be synthesized and incorporated at those positions. Additionally, we report on the chemical distribution analysis of the newly SIME-generated V1B (virtual 1 billion) library of macrolides. Those compounds were built based on the core of the Erythromycin structure, 13 structural motifs and a library of sugars derived from eighteen bioactive macrolides. This new enumeration technology can be coupled with cheminformatics approaches such as QSAR modeling and molecular docking to aid in drug discovery for rational designing of next generation macrolide therapeutics with desirable pharmacokinetic properties.![]()
Collapse
Affiliation(s)
- Phyo Phyo Kyaw Zin
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Gavin Williams
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Denis Fourches
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA. .,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA. .,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
5
|
Fu W, Wang L, Yang Z, Shen JS, Tang F, Zhang J, Cui X. Facile access to versatile aza-macrolides through iridium-catalysed cascade allyl-amination/macrolactonization. Chem Commun (Camb) 2020; 56:960-963. [DOI: 10.1039/c9cc07372h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Direct access to benzo-fused aza-macrolides was successfully realised via the first iridium-catalysed intermolecular decarboxylative couplings of vinylethylene carbonates with isatoic anhydrides under relatively mild conditions.
Collapse
Affiliation(s)
- Wei Fu
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Lianhui Wang
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Zi Yang
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Jiang-Shan Shen
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Fei Tang
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Jiayi Zhang
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine
- Ministry of Education
- Key Laboratory of Fujian Molecular Medicine
- Key Laboratory of Xiamen Marine and Gene Drugs
- School of Biomedical Sciences
| |
Collapse
|
6
|
Arsic B, Barber J, Čikoš A, Mladenovic M, Stankovic N, Novak P. 16-membered macrolide antibiotics: a review. Int J Antimicrob Agents 2018; 51:283-298. [DOI: 10.1016/j.ijantimicag.2017.05.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/26/2022]
|
7
|
Lowell AN, DeMars MD, Slocum ST, Yu F, Anand K, Chemler JA, Korakavi N, Priessnitz JK, Park SR, Koch AA, Schultz PJ, Sherman DH. Chemoenzymatic Total Synthesis and Structural Diversification of Tylactone-Based Macrolide Antibiotics through Late-Stage Polyketide Assembly, Tailoring, and C-H Functionalization. J Am Chem Soc 2017; 139:7913-7920. [PMID: 28525276 PMCID: PMC5532807 DOI: 10.1021/jacs.7b02875] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyketide synthases (PKSs) represent a powerful catalytic platform capable of effecting multiple carbon-carbon bond forming reactions and oxidation state adjustments. We explored the functionality of two terminal PKS modules that produce the 16-membered tylosin macrocycle, using them as biocatalysts in the chemoenzymatic synthesis of tylactone and its subsequent elaboration to complete the first total synthesis of the juvenimicin, M-4365, and rosamicin classes of macrolide antibiotics via late-stage diversification. Synthetic chemistry was employed to generate the tylactone hexaketide chain elongation intermediate that was accepted by the juvenimicin (Juv) ketosynthase of the penultimate JuvEIV PKS module. The hexaketide is processed through two complete modules (JuvEIV and JuvEV) in vitro, which catalyze elongation and functionalization of two ketide units followed by cyclization of the resulting octaketide into tylactone. After macrolactonization, a combination of in vivo glycosylation, selective in vitro cytochrome P450-mediated oxidation, and chemical oxidation was used to complete the scalable construction of a series of macrolide natural products in as few as 15 linear steps (21 total) with an overall yield of 4.6%.
Collapse
Affiliation(s)
- Andrew N. Lowell
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matthew D. DeMars
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Samuel T. Slocum
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fengan Yu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Krithika Anand
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph A. Chemler
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nisha Korakavi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer K. Priessnitz
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sung Ryeol Park
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aaron A. Koch
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pamela J. Schultz
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Zhao ZH, Jin LL, Xu YP, Liu C, Wang AP, Lei PS. Synthesis and antibacterial activities of some novel 17, 18-unsaturated carbonyl compounds derivated from josamycin. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:358-387. [PMID: 28276768 DOI: 10.1080/10286020.2016.1194834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 06/06/2023]
Abstract
Some novel josamycin derivatives bearing an arylalkyl-type side chain were designed and synthesized. By HWE or Wittig reaction, 16-aldehyde group of josamycin analogs were converted into unsaturated carbonyl compounds. They were evaluated for their in vitro antibacterial activities against a panel of respiratory pathogens. 8b and 8e exhibited comparable activities against a panel of respiratory pathogens, especially to resistant ones in the series of desmycarosyl josamycin analogs. Among of all the target molecules, 21 showed the best antibacterial activities.
Collapse
Affiliation(s)
- Zhe-Hui Zhao
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Department of Medicinal Chemistry, Institute of Materia Medica , Peking Union Medical College & Chinese Academy of Medical Sciences , Beijing 100050 , China
| | - Long-Long Jin
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Department of Medicinal Chemistry, Institute of Materia Medica , Peking Union Medical College & Chinese Academy of Medical Sciences , Beijing 100050 , China
| | - Yan-Peng Xu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Department of Medicinal Chemistry, Institute of Materia Medica , Peking Union Medical College & Chinese Academy of Medical Sciences , Beijing 100050 , China
| | - Chao Liu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Department of Medicinal Chemistry, Institute of Materia Medica , Peking Union Medical College & Chinese Academy of Medical Sciences , Beijing 100050 , China
| | - A-Peng Wang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Department of Medicinal Chemistry, Institute of Materia Medica , Peking Union Medical College & Chinese Academy of Medical Sciences , Beijing 100050 , China
| | - Ping-Sheng Lei
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Department of Medicinal Chemistry, Institute of Materia Medica , Peking Union Medical College & Chinese Academy of Medical Sciences , Beijing 100050 , China
| |
Collapse
|
9
|
Synthesis and antibacterial activity of a series of novel 9-O-acetyl- 4′-substituted 16-membered macrolides derived from josamycin. Bioorg Med Chem Lett 2014; 24:480-4. [DOI: 10.1016/j.bmcl.2013.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/25/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022]
|
10
|
Xu Y, Chen X, Zhu D, Liu Y, Zhao Z, Jin L, Liu C, Lei P. Synthesis and antibacterial activity of novel modified 5-O-mycaminose 14-membered ketolides. Eur J Med Chem 2013; 69:174-81. [DOI: 10.1016/j.ejmech.2013.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/08/2013] [Accepted: 08/12/2013] [Indexed: 11/25/2022]
|
11
|
Schitter G, Wrodnigg TM. Update on carbohydrate-containing antibacterial agents. Expert Opin Drug Discov 2013; 4:315-56. [PMID: 23489128 DOI: 10.1517/17460440902778725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Since the first known use of antibiotics > 2,500 years ago, a research field with immense importance for the welfare of mankind has been developed. After a decrease in interest in this topic by the end of the 20th century the occurrence of (poly-)resistant strains of bacteria induced a revival of antibiotics research. Health systems have been seeking viable and reliable solutions to this dangerous and expansive threat. OBJECTIVE This review will focus on carbohydrate-containing antibiotics and will give an outline of recently published novel isolated, semisynthetic as well as synthetic structures, their mechanism of action, if known, and the strategies for the design of compounds with potential by improved antibacterial properties. METHODS The literature between 2000 and 2008 was screened with main focus on recent examples of novel structures and strategies for the lead finding of exclusively antibacterial agents. RESULTS/CONCLUSION With the explanation of the role of the carbohydrate moieties in the respective antibacterial agents together with better synthetic strategies in carbohydrate chemistry as well as improvements in assay development for high throughput screening methods, carbohydrate-containing antibiotics can be used for the finding of potential drug leads that contribute to the fight against infections and diseases caused by (resistant) bacterial pathogens.
Collapse
Affiliation(s)
- Georg Schitter
- Technical University Graz, Institute of Organic Chemistry, Univ.-Doz. TMW, Dip.-Ing. GS, Glycogroup, A-8010 Graz, Austria +43 316 873 8744 ; +43 316 873 8740 ;
| | | |
Collapse
|
12
|
Parenty A, Moreau X, Niel G, Campagne JM. Update 1 of: Macrolactonizations in the Total Synthesis of Natural Products. Chem Rev 2013; 113:PR1-40. [DOI: 10.1021/cr300129n] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- A. Parenty
- Institut de Chimie des Substances
Naturelles, Avenue de la Terrasse, F-91198 Gif sur Yvette, France
| | - X. Moreau
- Institut de Chimie des Substances
Naturelles, Avenue de la Terrasse, F-91198 Gif sur Yvette, France
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Gilles Niel
- Institut Charles Gerhardt, UMR5253, Ecole Nationale Supérieure de Chimie, 8 rue de l’Ecole Normale, F-34296 Montpellier, France
| | - J.-M. Campagne
- Institut de Chimie des Substances
Naturelles, Avenue de la Terrasse, F-91198 Gif sur Yvette, France
- Institut Charles Gerhardt, UMR5253, Ecole Nationale Supérieure de Chimie, 8 rue de l’Ecole Normale, F-34296 Montpellier, France
| |
Collapse
|
13
|
Cui W, An L, Ma C, Ma S, Cong C, Li X, Ma S. Novel azithromycin derivatives with the C-4″ bisamide side chains: synthesis and biological evaluation against gram-positive bacteria. J Antibiot (Tokyo) 2012:ja20123. [DOI: 10.1038/ja.2012.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Pavlović D, Fajdetić A, Mutak S. Novel hybrids of 15-membered 8a- and 9a-azahomoerythromycin A ketolides and quinolones as potent antibacterials. Bioorg Med Chem 2010; 18:8566-82. [PMID: 21055953 DOI: 10.1016/j.bmc.2010.10.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
Abstract
A series of novel 6-O-substituted and 6,12-di-O-substituted 8a-aza-8a-homoerythromycin A and 9a-aza-9a-homoerythromycin A ketolides were synthesized and evaluated for in vitro antibacterial activity against a panel of representative erythromycin-susceptible and erythromycin-resistant test strains. Another series of ketolides based on 14-membered erythromycin oxime scaffold was also synthesized and their antibacterial activity compared to those of 15-membered azahomoerythromycin analogues. In general, structure-activity studies have shown that 14-membered ketolides displayed favorable antibacterial activity in comparison to their corresponding 15-membered analogues within 9a-azahomoerythromycin series. However, within 8a-azahomoerythromycin series, some compounds incorporating a ketolide combined with either quinoline or quinolone pharmacophore substructures showed significantly potent activity against a variety of erythromycin-susceptible and macrolide-lincosamide-streptogramin B (MLS(B))-resistant Gram-positive pathogens as well as fastidious Gram-negative pathogens. The best compounds in this series overcome all types of resistance in relevant clinical Gram-positive pathogens and display hitherto unprecedented in vitro activity against the constitutively MLS(B)-resistant strain of Staphylococcus aureus. In addition, they also represent an improvement over telithromycin (2) and cethromycin (3) against fastidious Gram-negative pathogens Haemophilus influenzae and Moraxella catarrhalis.
Collapse
Affiliation(s)
- Dražen Pavlović
- PLIVA Research Institute, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia.
| | | | | |
Collapse
|
15
|
Pavlović D, Mutak S. Synthesis and structure-activity relationships of novel 8a-aza-8a-homoerythromycin A ketolides. J Med Chem 2010; 53:5868-80. [PMID: 20684614 DOI: 10.1021/jm100711p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of novel 6-O-substituted 8a-aza-8a-homoerythromycin A ketolides was synthesized and evaluated for in vitro antibacterial activity. Key strategic elements of the synthesis include the base-induced E-Z isomerization of 3-O-descladinosyl-6-O-allylerythromycin A 9(E)-oxime followed by ring-expanding reaction of the resulting 9(Z)-oxime via Beckmann rearrangement. The ketolides showed potent activity against a variety of erythromycin-susceptible and macrolide-lincosamide-streptogramin B (MLS(B)) resistant Gram-positive and fastidious Gram-negative pathogens. The best compounds in this series overcome all types of resistance in relevant clinical Gram-positive pathogens and display in vitro activity comparable to telithromycin and cethromycin.
Collapse
Affiliation(s)
- Drazen Pavlović
- Pliva Research Institute, Prilaz baruna Filipovica 29, 10000 Zagreb, Croatia.
| | | |
Collapse
|
16
|
Abstract
For more than 50 years, natural products have served us well in combating infectious bacteria and fungi. Microbial and plant secondary metabolites helped to double our life span during the 20th century, reduced pain and suffering, and revolutionized medicine. Most antibiotics are either (i) natural products of microorganisms, (ii) semi-synthetically produced from natural products, or (iii) chemically synthesized based on the structure of the natural products. Production of antibiotics began with penicillin in the late 1940s and proceeded with great success until the 1970-1980s when it became harder and harder to discover new and useful products. Furthermore, resistance development in pathogens became a major problem, which is still with us today. In addition, new pathogens are continually emerging and there are still bacteria that are not eliminated by any antibiotic, e.g., Pseudomonas aeruginosa. In addition to these problems, many of the major pharmaceutical companies have abandoned the antibiotic field, leaving much of the discovery efforts to small companies, new companies, and the biotechnology industries. Despite these problems, development of new antibiotics has continued, albeit at a much lower pace than in the last century. We have seen the (i) appearance of newly discovered antibiotics (e.g., candins), (ii) development of old but unutilized antibiotics (e.g., daptomycin), (iii) production of new semi-synthetic versions of old antibiotics (e.g., glycylcyclines, streptogrammins), as well as the (iv) very useful application of old but underutilized antibiotics (e.g., teicoplanin).
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti (RISE), Drew University, Madison, NJ 07940, USA.
| |
Collapse
|
17
|
Glycosidase Inhibition by Macrolide Antibiotics Elucidated by STD-NMR Spectroscopy. ACTA ACUST UNITED AC 2008; 15:739-49. [DOI: 10.1016/j.chembiol.2008.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/08/2008] [Accepted: 05/13/2008] [Indexed: 12/30/2022]
|
18
|
Prasad Narasimhulu C, Iqbal J, Mukkanti K, Das P. Studies towards the total synthesis of narbonolide: stereoselective preparation of the C1–C10 fragment. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.02.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Wu L, Zhang W, Tian L, Bao K, Li P, Lin J. Immunomodulatory effects of erythromycin and its derivatives on human T-lymphocyte in vitro. Immunopharmacol Immunotoxicol 2008; 29:587-96. [PMID: 18075867 DOI: 10.1080/08923970701692841] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To elucidate the immunomodulatory mechanisms of macrolides, we investigated here the effects of erythromycin (EM) and its derivatives, 1 and 2, which show no antibacterial activity, on the proliferation and the activation of the transcription factor nuclear factor-kappaB (NF-kappaB) in Jurkat T cells. MTT assay revealed that EM, 1 and 2 could inhibit T lymphocyte proliferation markedly. Flow cytometry and TUNEL analysis showed EM (30 microg/mL-100 microg/mL) and 1 (3 microg/mL-30 microg/mL) could induce T lymphocyte apoptosis, 2 (3 microg/mL-30 microg/mL) induced a cell cycle arrest in G(2)/M. RT-PCR and Western blotting analysis conformed that EM and its two derivatives could inhibit the expressions of NF-kappaB mRNA and protein. Taken together, these data suggest EM and its derivatives, 1 and 2, have immunomodulatory effect, presumably via an interaction with the NF-kappaB expression, inhibiting the proliferation of T lymphocyte, implicating an approach for the development of new drugs for treating inflammatory diseases.
Collapse
Affiliation(s)
- Lan Wu
- Department of Geratology, The First Affiliated Hospital, Chinese Medical University, Shenyang, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
20
|
Sugawara A, Sunazuka T, Hirose T, Nagai K, Yamaguchi Y, Hanaki H, Sharpless KB, Omura S. Design and synthesis via click chemistry of 8,9-anhydroerythromycin A 6,9-hemiketal analogues with anti-MRSA and -VRE activity. Bioorg Med Chem Lett 2007; 17:6340-4. [PMID: 17869508 DOI: 10.1016/j.bmcl.2007.08.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 08/27/2007] [Accepted: 08/29/2007] [Indexed: 11/20/2022]
Abstract
An erythromycin analogue, 11,12-di-O-iso-butyryl-8,9-anhydroerythromycin A 6,9-hemiketal (1b), was found to be a potential anti-MRSA and anti-VRE agent. The use of copper catalyzed azide-acetylene cycloaddition, and click chemistry, readily provided 10 types of triazole analogues of 1b in good to nearly quantitative yield. Among the library, 5b exhibited activity against MRSA and VRE bacterial strains, representing more than twice the potency of 1b.
Collapse
Affiliation(s)
- Akihiro Sugawara
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Borisova SA, Zhang C, Takahashi H, Zhang H, Wong AW, Thorson JS, Liu HW. Substrate specificity of the macrolide-glycosylating enzyme pair DesVII/DesVIII: opportunities, limitations, and mechanistic hypotheses. Angew Chem Int Ed Engl 2007; 45:2748-53. [PMID: 16538696 DOI: 10.1002/anie.200503195] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Svetlana A Borisova
- Division of Medicinal Chemistry, College of Pharmacy and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Tennakoon MA, Henninger TC, Abbanat D, Foleno BD, Hilliard JJ, Bush K, Macielag MJ. Synthesis and antibacterial activity of C6-carbazate ketolides. Bioorg Med Chem Lett 2006; 16:6231-5. [PMID: 16997549 DOI: 10.1016/j.bmcl.2006.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/05/2006] [Accepted: 09/07/2006] [Indexed: 11/15/2022]
Abstract
A novel series of ketolides containing heteroaryl groups that are linked to the erythronolide ring via a C6-carbazate functionality has been successfully synthesized. Careful modulation of the heteroaryl groups, the length and degree of saturation of the C6-carbazate linker, and the substituents present on each of the carbazate nitrogens led to compounds with potent activity against key bacterial respiratory pathogens. The best analogs of this series had in vitro and in vivo (sc dosing) profiles that were comparable to telithromycin.
Collapse
Affiliation(s)
- Manomi A Tennakoon
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C, 1000 Route 202, PO Box 300, Raritan, NJ 08869, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Parenty A, Moreau X, Campagne JM. Macrolactonizations in the total synthesis of natural products. Chem Rev 2006; 106:911-39. [PMID: 16522013 DOI: 10.1021/cr0301402] [Citation(s) in RCA: 394] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A Parenty
- Institut de Chimie des Substances Naturelles, Avenue de la Terrasse, F-91198 Gif sur Yvette, France
| | | | | |
Collapse
|
24
|
Borisova SA, Zhang C, Takahashi H, Zhang H, Wong AW, Thorson JS, Liu HW. Substrate Specificity of the Macrolide-Glycosylating Enzyme Pair DesVII/DesVIII: Opportunities, Limitations, and Mechanistic Hypotheses. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Hirose T, Sunazuka T, Noguchi Y, Yamaguchi Y, Hanaki H, Barry Sharpless K, Omura S. Rapid ‘SAR’ via Click Chemistry: An Alkyne-Bearing Spiramycin is fused with Diverse Azides to Yield New Triazole-Antibacterial Candidates. HETEROCYCLES 2006. [DOI: 10.3987/com-06-s(o)7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Xu X, Henninger T, Abbanat D, Bush K, Foleno B, Hilliard J, Macielag M. Synthesis and antibacterial activity of C2-fluoro, C6-carbamate ketolides, and their C9-oximes. Bioorg Med Chem Lett 2005; 15:883-7. [PMID: 15686880 DOI: 10.1016/j.bmcl.2004.12.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 12/20/2004] [Accepted: 12/21/2004] [Indexed: 11/25/2022]
Abstract
Novel C6-carbamate ketolides with C2-fluorination and C9-oximation have been synthesized. The best compounds in this series displayed MIC values of 0.03-0.12 microg/mL against streptococci containing erm and mef resistance determinants and 2-4 microg/mL against Haemophilus influenzae. Several compounds also showed measurable activity against erm(B)-containing enterococci with MIC values of 2-8 microg/mL. In vivo activity was adversely affected by fluorination, possibly as a result of increased serum protein binding.
Collapse
Affiliation(s)
- Xiaodong Xu
- Antimicrobial Agents Research Team, Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 1000 Route 202, PO Box 300, Raritan, NJ 08869, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Henninger TC, Xu X, Abbanat D, Baum EZ, Foleno BD, Hilliard JJ, Bush K, Hlasta DJ, Macielag MJ. Synthesis and antibacterial activity of C-6 carbamate ketolides, a novel series of orally active ketolide antibiotics. Bioorg Med Chem Lett 2004; 14:4495-9. [PMID: 15357979 DOI: 10.1016/j.bmcl.2004.06.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 06/15/2004] [Accepted: 06/15/2004] [Indexed: 11/27/2022]
Abstract
A new series of antibacterial ketolides is reported, which features the use of a C-6 carbamate for tethering the arylalkyl sidechain to the macrolide core. The best members of this series display in vitro and in vivo activity comparable to telithromycin. Partial epimerization at C-2, unobserved in previously reported ketolides, was noted for this series.
Collapse
Affiliation(s)
- Todd C Henninger
- Johnson & Johnson Pharmaceutical Research & Development, LLC, 1000 Route 202, PO Box 300, Raritan, NJ 08869, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Phan LT, Jian T, Chen Z, Qiu YL, Wang Z, Beach T, Polemeropoulos A, Or YS. Synthesis and Antibacterial Activity of a Novel Class of 4‘-Substituted 16-Membered Ring Macrolides Derived from Tylosin. J Med Chem 2004; 47:2965-8. [PMID: 15163176 DOI: 10.1021/jm034233n] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel 4'-substituted 16-membered ring macrolides were synthesized by the cleavage of the mycarose sugar of tylosin and subsequent modification of 4'-hydroxyl group. This new class of macrolide antibiotics exhibited potent activity against some key erythromycin-resistant pathogens.
Collapse
Affiliation(s)
- Ly T Phan
- Enanta Pharmaceuticals, Inc., 500 Arsenal Street, Watertown, MA 02472, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Natural products have been used as medicinal agents for many years. In addition, these compounds have served as the starting points for semisynthetic analogs with improved properties. This review highlights work on several classes of natural products and their derivatives, including both well established and emerging structural classes that are in, or nearing, clinical use for a variety of important indications.
Collapse
Affiliation(s)
- David C Myles
- Kosan Biosciences, Inc., 3832 Baycenter Place, Hayward, CA 94545, USA.
| |
Collapse
|