1
|
Brašić JR, Goodman JA, Nandi A, Russell DS, Jennings D, Barret O, Martin SD, Slifer K, Sedlak T, Mathur AK, Seibyl JP, Berry-Kravis EM, Wong DF, Budimirovic DB. Fragile X Mental Retardation Protein and Cerebral Expression of Metabotropic Glutamate Receptor Subtype 5 in Men with Fragile X Syndrome: A Pilot Study. Brain Sci 2022; 12:314. [PMID: 35326270 PMCID: PMC8946825 DOI: 10.3390/brainsci12030314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple lines of evidence suggest that a deficiency of Fragile X Mental Retardation Protein (FMRP) mediates dysfunction of the metabotropic glutamate receptor subtype 5 (mGluR5) in the pathogenesis of fragile X syndrome (FXS), the most commonly known single-gene cause of inherited intellectual disability (ID) and autism spectrum disorder (ASD). Nevertheless, animal and human studies regarding the link between FMRP and mGluR5 expression provide inconsistent or conflicting findings about the nature of those relationships. Since multiple clinical trials of glutamatergic agents in humans with FXS did not demonstrate the amelioration of the behavioral phenotype observed in animal models of FXS, we sought measure if mGluR5 expression is increased in men with FXS to form the basis for improved clinical trials. Unexpectedly marked reductions in mGluR5 expression were observed in cortical and subcortical regions in men with FXS. Reduced mGluR5 expression throughout the living brains of men with FXS provides a clue to examine FMRP and mGluR5 expression in FXS. In order to develop the findings of our previous study and to strengthen the objective tools for future clinical trials of glutamatergic agents in FXS, we sought to assess the possible value of measuring both FMRP levels and mGluR5 expression in men with FXS. We aimed to show the value of measurement of FMRP levels and mGluR5 expression for the diagnosis and treatment of individuals with FXS and related conditions. We administered 3-[18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB), a specific mGluR5 radioligand for quantitative measurements of the density and the distribution of mGluR5s, to six men with the full mutation (FM) of FXS and to one man with allele size mosaicism for FXS (FXS-M). Utilizing the seven cortical and subcortical regions affected in neurodegenerative disorders as indicator variables, adjusted linear regression of mGluR5 expression and FMRP showed that mGluR5 expression was significantly reduced in the occipital cortex and the thalamus relative to baseline (anterior cingulate cortex) if FMRP levels are held constant (F(7,47) = 6.84, p < 0.001).These findings indicate the usefulness of cerebral mGluR5 expression measured by PET with [18F]FPEB and FMRP values in men with FXS and related conditions for assessments in community facilities within a hundred-mile radius of a production center with a cyclotron. These initial results of this pilot study advance our previous study regarding the measurement of mGluR5 expression by combining both FMRP levels and mGluR5 expression as tools for meaningful clinical trials of glutamatergic agents for men with FXS. We confirm the feasibility of this protocol as a valuable tool to measure FMRP levels and mGluR5 expression in clinical trials of individuals with FXS and related conditions and to provide the foundations to apply precision medicine to tailor treatment plans to the specific needs of individuals with FXS and related conditions.
Collapse
Affiliation(s)
- James Robert Brašić
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
| | - Jack Alexander Goodman
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT 06473, USA;
| | - Ayon Nandi
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
| | - David S. Russell
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
| | - Danna Jennings
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
- Denali Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Olivier Barret
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Institut de Biologie François Jacob, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Université Paris-Saclay, CEDEX, 92265 Fontenay-aux-Roses, France
| | - Samuel D. Martin
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
- Department of Neuroscience, Zanvyl Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Keith Slifer
- Department of Psychiatry and Behavioral Sciences-Child Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Thomas Sedlak
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
- Department of Psychiatry and Behavioral Sciences-General Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anil Kumar Mathur
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
| | - John P. Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
| | - Elizabeth M. Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Dean F. Wong
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
- Laboratory of Central Nervous System (CNS) Neuropsychopharmacology and Multimodal, Imaging (CNAMI), Mallinckrodt Institute of Radiology, Washington University, Saint Louis, MO 63110, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry and Behavioral Sciences-Child Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Psychiatry, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Subtype-selective mechanisms of negative allosteric modulators binding to group I metabotropic glutamate receptors. Acta Pharmacol Sin 2021; 42:1354-1367. [PMID: 33122823 PMCID: PMC8285414 DOI: 10.1038/s41401-020-00541-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Group I metabotropic glutamate receptors (mGlu1 and mGlu5) are promising targets for multiple psychiatric and neurodegenerative disorders. Understanding the subtype selectivity of mGlu1 and mGlu5 allosteric sites is essential for the rational design of novel modulators with single- or dual-target mechanism of action. In this study, starting from the deposited mGlu1 and mGlu5 crystal structures, we utilized computational modeling approaches integrating docking, molecular dynamics simulation, and efficient post-trajectory analysis to reveal the subtype-selective mechanism of mGlu1 and mGlu5 to 10 diverse drug scaffolds representing known negative allosteric modulators (NAMs) in the literature. The results of modeling identified six pairs of non-conserved residues and four pairs of conserved ones as critical features to distinguish the selective NAMs binding to the corresponding receptors. In addition, nine pairs of residues are beneficial to the development of novel dual-target NAMs of group I metabotropic glutamate receptors. Furthermore, the binding modes of a reported dual-target NAM (VU0467558) in mGlu1 and mGlu5 were predicted to verify the identified residues that play key roles in the receptor selectivity and the dual-target binding. The results of this study can guide rational structure-based design of novel NAMs, and the approach can be generally applicable to characterize the features of selectivity for other G-protein-coupled receptors.
Collapse
|
3
|
Bennett KA, Sergeev E, MacSweeney CP, Bakker G, Cooper AE. Understanding Exposure-Receptor Occupancy Relationships for Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators across a Range of Preclinical and Clinical Studies. J Pharmacol Exp Ther 2021; 377:157-168. [PMID: 33541889 DOI: 10.1124/jpet.120.000371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/26/2021] [Indexed: 01/17/2023] Open
Abstract
The metabotropic glutamate receptor 5 (mGlu5) is a recognized central nervous system therapeutic target for which several negative allosteric modulator (NAM) drug candidates have or are continuing to be investigated for various disease indications in clinical development. Direct measurement of target receptor occupancy (RO) is extremely useful to help design and interpret efficacy and safety in nonclinical and clinical studies. In the mGlu5 field, this has been successfully achieved by monitoring displacement of radiolabeled ligands, specifically binding to the mGlu5 receptor, in the presence of an mGlu5 NAM using in vivo and ex vivo binding in rodents and positron emission tomography imaging in cynomolgus monkeys and humans. The aim of this study was to measure the RO of the mGlu5 NAM HTL0014242 in rodents and cynomolgus monkeys and to compare its plasma and brain exposure-RO relationships with those of clinically tested mGlu5 NAMs dipraglurant, mavoglurant, and basimglurant. Potential sources of variability that may contribute to these relationships were explored. Distinct plasma exposure-response relationships were found for each mGlu5 NAM, with >100-fold difference in plasma exposure for a given level of RO. However, a unified exposure-response relationship was observed when both unbound brain concentration and mGlu5 affinity were considered. This relationship showed <10-fold overall difference, was fitted with a Hill slope that was not significantly different from 1, and appeared consistent with a simple Emax model. This is the first time this type of comparison has been conducted, demonstrating a unified brain exposure-RO relationship across several species and mGlu5 NAMs with diverse properties. SIGNIFICANCE STATEMENT: Despite the long history of mGlu5 as a therapeutic target and progression of multiple compounds to the clinic, no formal comparison of exposure-receptor occupancy relationships has been conducted. The data from this study indicate for the first time that a consistent, unified relationship can be observed between exposure and mGlu5 receptor occupancy when unbound brain concentration and receptor affinity are taken into account across a range of species for a diverse set of mGlu5 negative allosteric modulators, including a new drug candidate, HTL0014242.
Collapse
Affiliation(s)
| | | | | | - Geor Bakker
- Sosei Heptares, Cambridge, CB21 6DG, United Kingdom
| | | |
Collapse
|
4
|
The pro-psychotic metabotropic glutamate receptor compounds fenobam and AZD9272 share binding sites with monoamine oxidase-B inhibitors in humans. Neuropharmacology 2019; 162:107809. [PMID: 31589885 DOI: 10.1016/j.neuropharm.2019.107809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/18/2019] [Accepted: 10/02/2019] [Indexed: 11/22/2022]
Abstract
The metabotropic glutamate receptor 5 (mGluR5) ligands fenobam and AZD9272 have been reported to induce psychosis-like adverse events and to bind at unknown, non-GluR5-related, sites. Based on similarities of the regional binding patterns for [11C]AZD9272 and the monoamine oxidase-B (MAO-B) radioligand [11C]L-deprenyl-D2 in PET studies of the human brain we tested the hypothesis that the unique binding of fenobam and AZD9272 may represent specific binding to the MAO-B. PET data previously acquired for subjects examined using [11C]AZD9272 or [11C]L-deprenyl-D2 were re-evaluated to assess the correlations between radioligand binding parameters in human brain. In addition, the pharmacology of AZD9272 binding sites was characterized using competition binding studies carried out in vivo in non-human primates (NHPs) and in vitro using autoradiography in selected human brain regions. The regional binding of [11C]AZD9272 in human brain was closely correlated with that of [11C]L-deprenyl-D2. In PET studies of NHP brain administration of the MAO-B ligand L-deprenyl inhibited binding of radiolabeled AZD9272 and administration of fenobam inhibited binding of [11C]L-deprenyl-D2. Binding of radiolabeled AZD9272 in vitro was potently inhibited by fenobam or MAO-B compounds, and [11C]L-deprenyl-D2 binding was inhibited by fenobam or AZD9272. The findings are consistent with the hypothesis that both fenobam and AZD9272 bind to the MAO-B, which may be of relevance for understanding the mechanism of the psychosis-like adverse events reported for these compounds. Such understanding may serve as a lead to generate new models for the pathophysiology of psychosis.
Collapse
|
5
|
Felts AS, Bollinger KA, Brassard CJ, Rodriguez AL, Morrison RD, Scott Daniels J, Blobaum AL, Niswender CM, Jones CK, Conn PJ, Emmitte KA, Lindsley CW. Discovery of 4-alkoxy-6-methylpicolinamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorg Med Chem Lett 2019; 29:47-50. [PMID: 30446311 PMCID: PMC6295259 DOI: 10.1016/j.bmcl.2018.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/06/2023]
Abstract
This letter describes the further chemical optimization of VU0424238 (auglurant), an mGlu5 NAM clinical candidate that failed in non-human primate (NHP) 28 day toxicology due to accumulation of a species-specific aldehyde oxidase (AO) metabolite of the pyrimidine head group. Here, we excised the pyrimidine moiety, identified the minimum pharmacophore, and then developed a new series of saturated ether head groups that ablated any AO contribution to metabolism. Putative back-up compounds in this novel series provided increased sp3 character, uniform CYP450-mediated metabolism across species, good functional potency and high CNS penetration. Key to the optimization was a combination of matrix and iterative libraries that allowed rapid surveillance of multiple domains of the allosteric ligand.
Collapse
Affiliation(s)
- Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Katrina A Bollinger
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christopher J Brassard
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
6
|
Biased agonism and allosteric modulation of metabotropic glutamate receptor 5. Clin Sci (Lond) 2018; 132:2323-2338. [PMID: 30389826 DOI: 10.1042/cs20180374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
Metabotropic glutamate receptors belong to class C G-protein-coupled receptors and consist of eight subtypes that are ubiquitously expressed throughout the central nervous system. In recent years, the metabotropic glutamate receptor subtype 5 (mGlu5) has emerged as a promising target for a broad range of psychiatric and neurological disorders. Drug discovery programs targetting mGlu5 are primarily focused on development of allosteric modulators that interact with sites distinct from the endogenous agonist glutamate. Significant efforts have seen mGlu5 allosteric modulators progress into clinical trials; however, recent failures due to lack of efficacy or adverse effects indicate a need for a better understanding of the functional consequences of mGlu5 allosteric modulation. Biased agonism is an interrelated phenomenon to allosterism, describing how different ligands acting through the same receptor can differentially influence signaling to distinct transducers and pathways. Emerging evidence demonstrates that allosteric modulators can induce biased pharmacology at the level of intrinsic agonism as well as through differential modulation of orthosteric agonist-signaling pathways. Here, we present key considerations in the discovery and development of mGlu5 allosteric modulators and the opportunities and pitfalls offered by biased agonism and modulation.
Collapse
|
7
|
Fu T, Zheng G, Tu G, Yang F, Chen Y, Yao X, Li X, Xue W, Zhu F. Exploring the Binding Mechanism of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators in Clinical Trials by Molecular Dynamics Simulations. ACS Chem Neurosci 2018. [PMID: 29522307 DOI: 10.1021/acschemneuro.8b00059] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metabotropic glutamate receptor 5 (mGlu5) plays a key role in synaptic information storage and memory, which is a well-known target for a variety of psychiatric and neurodegenerative disorders. In recent years, the increasing efforts have been focused on the design of allosteric modulators, and the negative allosteric modulators (NAMs) are the front-runners. Recently, the architecture of the transmembrane (TM) domain of mGlu5 receptor has been determined by crystallographic experiment. However, it has been not well understood how the pharmacophores of NAMs accommodated into the allosteric binding site. In this study, molecular dynamics (MD) simulations were performed on mGlu5 receptor bound with NAMs in preclinical or clinical development to shed light on this issue. In order to identify the key residues, the binding free energies as well as per-residue contributions for NAMs binding to mGlu5 receptor were calculated. Subsequently, the in silico site-directed mutagenesis of the key residues was performed to verify the accuracy of simulation models. As a result, the shared common features of the studied 5 clinically important NAMs (mavoglurant, dipraglurant, basimglurant, STX107, and fenobam) interacting with 11 residues in allosteric site were obtained. This comprehensive study presented a better understanding of mGlu5 receptor NAMs binding mechanism, which would be further used as a useful framework to assess and discover novel lead scaffolds for NAMs.
Collapse
Affiliation(s)
- Tingting Fu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guoxun Zheng
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gao Tu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fengyuan Yang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaofeng Li
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Xue
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Barnes SA, Sheffler DJ, Semenova S, Cosford NDP, Bespalov A. Metabotropic Glutamate Receptor 5 as a Target for the Treatment of Depression and Smoking: Robust Preclinical Data but Inconclusive Clinical Efficacy. Biol Psychiatry 2018; 83:955-962. [PMID: 29628194 PMCID: PMC5953810 DOI: 10.1016/j.biopsych.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
The ability of novel pharmacological compounds to improve outcomes in preclinical models is often not translated into clinical efficacy. Psychiatric disorders do not have biological boundaries, and identifying mechanisms to improve the translational bottleneck between preclinical and clinical research domains is an important and challenging task. Glutamate transmission is disrupted in several neuropsychiatric disorders. Metabotropic glutamate (mGlu) receptors represent a diverse class of receptors that contribute to excitatory neurotransmission. Given the wide, yet region-specific manner of expression, developing pharmacological compounds to modulate mGlu receptor activity provides an opportunity to subtly and selectively modulate excitatory neurotransmission. This review focuses on the potential involvement of mGlu5 receptor disruption in major depressive disorder and substance and/or alcohol use disorders. We provide an overview of the justification of targeting mGlu5 receptors in the treatment of these disorders, summarize the preclinical evidence for negatively modulating mGlu5 receptors as a therapeutic target for major depressive disorders and nicotine dependence, and highlight the outcomes of recent clinical trials. While the evidence of mGlu5 receptor negative allosteric modulation has been promising in preclinical investigations, these beneficial effects have not translated into clinical efficacy. In this review, we identify key challenges that may contribute to poor clinical translation and provide suggested approaches moving forward to potentially improve the translation from preclinical to clinical domains. Such approaches may increase the success of clinical trials and may reduce the translational bottleneck that exists in drug discovery for psychiatric disorders.
Collapse
Affiliation(s)
- Samuel A. Barnes
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0603, La Jolla, CA 92093, USA
| | - Douglas J. Sheffler
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Svetlana Semenova
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0603, La Jolla, CA 92093, USA,PAREXEL International, 1560 E Chevy Chase Dr, suite 140, Glendale, CA 91206, USA
| | - Nicholas D. P. Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anton Bespalov
- EXCIVA, Heidelberg, Germany; Valdman Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia.
| |
Collapse
|
9
|
Varnäs K, Juréus A, Finnema SJ, Johnström P, Raboisson P, Amini N, Takano A, Stepanov V, Halldin C, Farde L. The metabotropic glutamate receptor 5 radioligand [ 11C]AZD9272 identifies unique binding sites in primate brain. Neuropharmacology 2018; 135:455-463. [PMID: 29608920 DOI: 10.1016/j.neuropharm.2018.03.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/25/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
The metabotropic glutamate receptor 5 (mGluR5) is a target for drug development and for imaging studies of the glutamate system in neurological and psychiatric disorders. [11C]AZD9272 is a selective mGluR5 PET radioligand that is structurally different from hitherto applied mGluR5 radioligands. In the present investigation we compared the binding patterns of radiolabeled AZD9272 and other mGluR5 radioligands in the non-human primate (NHP) brain. PET studies were undertaken using [11C]AZD9272 and the commonly applied mGluR5 radioligand [11C]ABP688. Autoradiography studies were performed in vitro using [3H]AZD9272 and the standard mGluR5 radioligands [3H]M-MTEP and [3H]ABP688 in NHP tissue. Competition binding studies were undertaken in vivo and in vitro using different mGluR5 selective compounds as inhibitors. In comparison to other mGluR5 radioligands radiolabeled AZD9272 displayed a distinct regional distribution pattern with high binding in ventral striatum, midbrain, thalamus and cerebellum. While the binding of [11C]AZD9272 was almost completely inhibited by the structurally unique mGluR5 compound fenobam (2.0 mg/kg; 98% occupancy), it was only partially inhibited (46% and 20%, respectively) by the mGluR5 selective compounds ABP688 and MTEP, at a dose (2.0 mg/kg) expected to saturate the mGluR5. Autoradiography studies using [3H]AZD9272 confirmed a distinct pharmacologic profile characterized by preferential sensitivity to fenobam. The distinctive binding in ventral striato-pallido-thalamic circuits and shared pharmacologic profile with the pro-psychotic compound fenobam warrants further examination of [11C]AZD9272 for potential application in psychiatric neuroimaging studies.
Collapse
Affiliation(s)
- Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.
| | | | - Sjoerd J Finnema
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Peter Johnström
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden; PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Sweden
| | | | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Vladimir Stepanov
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden; PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Sweden
| |
Collapse
|
10
|
Lu S, Zhang J. Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug–Target Interactions. J Med Chem 2018; 62:24-45. [DOI: 10.1021/acs.jmedchem.7b01844] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
11
|
Abd-Elrahman KS, Hamilton A, Hutchinson SR, Liu F, Russell RC, Ferguson SSG. mGluR5 antagonism increases autophagy and prevents disease progression in thezQ175mouse model of Huntington’s disease. Sci Signal 2017; 10:10/510/eaan6387. [DOI: 10.1126/scisignal.aan6387] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Hirose W, Kato Y, Natsutani I, Takata M, Kitaichi M, Imai S, Hayashi S, Arai Y, Hoshino K, Yoshida K. Synthesis and optimization of 4,5,6,7-tetrahydrooxazolo[4,5-c]pyridines as potent and orally-active metabotropic glutamate receptor 5 negative allosteric modulators. Bioorg Med Chem Lett 2017; 27:4331-4335. [PMID: 28838696 DOI: 10.1016/j.bmcl.2017.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 11/28/2022]
Abstract
We describe here the design, synthesis and characterization of a series of 4,5,6,7-tetrahydrooxazolo[4,5-c]pyridines as metabotropic glutamate receptor (mGluR) 5 negative allosteric modulators (NAMs). Optimization of the substituents led to the identification of several compounds with good pharmacokinetic profiles, including long half life and high oral bioavailability, in both rats and monkeys. The receptor occupancy test in the rat cortex revealed favorable brain penetration of these compounds. The reprsentative compound 13 produced oral antidepressant-like effect in the rat forced swimming test (MED: 0.3mg/kg, q.d.).
Collapse
Affiliation(s)
- Wataru Hirose
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan.
| | - Yoshihiro Kato
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Itaru Natsutani
- Drug Research Division, Sumitomo Dainippon Pharma, 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Makoto Takata
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Maiko Kitaichi
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Satoki Imai
- Drug Research Division, Sumitomo Dainippon Pharma, 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Shun Hayashi
- Drug Research Division, Sumitomo Dainippon Pharma, 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Yukiyo Arai
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Kohei Hoshino
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Kohzo Yoshida
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan.
| |
Collapse
|
13
|
Chiamulera C, Padovani L, Corsi M. Drug discovery for the treatment of substance use disorders: novel targets, repurposing, and the need for new paradigms. Curr Opin Pharmacol 2017; 35:120-124. [PMID: 28874314 DOI: 10.1016/j.coph.2017.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/24/2017] [Accepted: 08/21/2017] [Indexed: 01/13/2023]
Abstract
Drug addiction treatment medications available nowadays are limited in both efficacy and number. The increased understanding of drug addiction circuitries leads the scientific community to look for better molecules and targets for detoxification and relapse prevention. This review focus on known targets (e.g., metabotropic glutamate receptor 5 and GABAB receptor) and on novel potential treatment acting on oxytocin system, which interacts with diverse neurotransmitters, has proved successful in both preclinical and clinical studies on ethanol, cocaine and methamphetamine. A crucial issue is the identification of new investigational paradigms, which may help to predict treatment efficacy and improve effectiveness.
Collapse
Affiliation(s)
- Cristiano Chiamulera
- Neuropsychopharmacology Lab, Sezione Farmacologia, Università di Verona, Policlinico GB Rossi, P.le Scuro 10, 37134 Verona, Italy.
| | - Laura Padovani
- Neuropsychopharmacology Lab, Sezione Farmacologia, Università di Verona, Policlinico GB Rossi, P.le Scuro 10, 37134 Verona, Italy
| | - Mauro Corsi
- Center of Drug Discovery & Development, Aptuit s.r.l., via Fleming 4, 37135 Verona, Italy
| |
Collapse
|
14
|
Shah F, Stepan AF, O'Mahony A, Velichko S, Folias AE, Houle C, Shaffer CL, Marcek J, Whritenour J, Stanton R, Berg EL. Mechanisms of Skin Toxicity Associated with Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. Cell Chem Biol 2017; 24:858-869.e5. [PMID: 28669525 DOI: 10.1016/j.chembiol.2017.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/20/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
Cutaneous reactions represent one of the most common adverse drug effects observed in clinical trials leading to substantial compound attrition. Three negative allosteric modulators (NAMs) of metabotropic glutamate receptors (mGluRs), which represent an important target for neurological diseases, developed by Pfizer, were recently failed in preclinical development due to delayed type IV skin hypersensitivity observed in non-human primates (NHPs). Here we employed large-scale phenotypic profiling in standardized panels of human primary cell/co-culture systems to characterize the skin toxicity mechanism(s) of mGluR5 NAMs from two different series. Investigation of a database of chemicals tested in these systems and transcriptional profiling suggested that the mechanism of toxicity may involve modulation of nuclear receptor targets RAR/RXR, and/or VDR with AhR antagonism. The studies reported here demonstrate how phenotypic profiling of preclinical drug candidates using human primary cells can provide insights into the mechanisms of toxicity and inform early drug discovery and development campaigns.
Collapse
Affiliation(s)
- Falgun Shah
- Worldwide Medicinal Chemistry, Pfizer Inc., Cambridge, MA 02139, USA.
| | - Antonia F Stepan
- Worldwide Medicinal Chemistry, Pfizer Inc., Cambridge, MA 02139, USA
| | - Alison O'Mahony
- Bioseek Inc., Division of DiscoverX, 310 Utah Avenue, South San Francisco, CA 94080, USA
| | - Sharlene Velichko
- Bioseek Inc., Division of DiscoverX, 310 Utah Avenue, South San Francisco, CA 94080, USA
| | - Alexandra E Folias
- Bioseek Inc., Division of DiscoverX, 310 Utah Avenue, South San Francisco, CA 94080, USA
| | - Christopher Houle
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | | | - John Marcek
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Jessica Whritenour
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Robert Stanton
- Worldwide Medicinal Chemistry, Pfizer Inc., Cambridge, MA 02139, USA
| | - Ellen L Berg
- Bioseek Inc., Division of DiscoverX, 310 Utah Avenue, South San Francisco, CA 94080, USA.
| |
Collapse
|
15
|
Galambos J, Bielik A, Wágner G, Domány G, Kóti J, Béni Z, Szigetvári Á, Sánta Z, Orgován Z, Bobok A, Kiss B, Mikó-Bakk ML, Vastag M, Sághy K, Krasavin M, Gál K, Greiner I, Szombathelyi Z, Keserű GM. Discovery of 4-amino-3-arylsulfoquinolines, a novel non-acetylenic chemotype of metabotropic glutamate 5 (mGlu 5 ) receptor negative allosteric modulators. Eur J Med Chem 2017; 133:240-254. [DOI: 10.1016/j.ejmech.2017.03.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/09/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
|
16
|
Sivanesan S, Tan A, Jeyaraj R, Lam J, Gole M, Hardan A, Ashkan K, Rajadas J. Pharmaceuticals and Stem Cells in Autism Spectrum Disorders: Wishful Thinking? World Neurosurg 2017; 98:659-672. [DOI: 10.1016/j.wneu.2016.09.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022]
|
17
|
Leach K, Gregory KJ. Molecular insights into allosteric modulation of Class C G protein-coupled receptors. Pharmacol Res 2017; 116:105-118. [DOI: 10.1016/j.phrs.2016.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
|
18
|
Gómez-Santacana X, Pittolo S, Rovira X, Lopez M, Zussy C, Dalton JAR, Faucherre A, Jopling C, Pin JP, Ciruela F, Goudet C, Giraldo J, Gorostiza P, Llebaria A. Illuminating Phenylazopyridines To Photoswitch Metabotropic Glutamate Receptors: From the Flask to the Animals. ACS CENTRAL SCIENCE 2017; 3:81-91. [PMID: 28149957 PMCID: PMC5269660 DOI: 10.1021/acscentsci.6b00353] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Phenylazopyridines are photoisomerizable compounds with high potential to control biological functions with light. We have obtained a series of phenylazopyridines with light dependent activity as negative allosteric modulators (NAM) of metabotropic glutamate receptor subtype 5 (mGlu5). Here we describe the factors needed to achieve an operational molecular photoisomerization and its effective translation into in vitro and in vivo receptor photoswitching, which includes zebrafish larva motility and the regulation of the antinociceptive effects in mice. The combination of light and some specific phenylazopyridine ligands displays atypical pharmacological profiles, including light-dependent receptor overactivation, which can be observed both in vitro and in vivo. Remarkably, the localized administration of light and a photoswitchable compound in the peripheral tissues of rodents or in the brain amygdalae results in an illumination-dependent analgesic effect. The results reveal a robust translation of the phenylazopyridine photoisomerization to a precise photoregulation of biological activity.
Collapse
Affiliation(s)
- Xavier Gómez-Santacana
- MCS,
Laboratory of Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC−CSIC), Barcelona, Spain
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Institut
de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Silvia Pittolo
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Xavier Rovira
- Institute
of Functional Genomics, Université de Montpellier, Unité
Mixte de Recherche 5302 CNRS, Montpellier, France
- Unité
de recherche U1191, INSERM, Montpellier, France
| | - Marc Lopez
- Unitat
de Farmacologia, Departament Patologia i Terapèutica Experimental,
Facultat de Medicina, IDIBELL, Universitat
de Barcelona, Barcelona, Spain
- Institut
de Neurociències, Universitat de
Barcelona, Barcelona, Spain
| | - Charleine Zussy
- Institute
of Functional Genomics, Université de Montpellier, Unité
Mixte de Recherche 5302 CNRS, Montpellier, France
- Unité
de recherche U1191, INSERM, Montpellier, France
| | - James A. R. Dalton
- Institut
de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Adèle Faucherre
- Institute
of Functional Genomics, Université de Montpellier, Unité
Mixte de Recherche 5302 CNRS, Montpellier, France
- Unité
de recherche U1191, INSERM, Montpellier, France
| | - Chris Jopling
- Institute
of Functional Genomics, Université de Montpellier, Unité
Mixte de Recherche 5302 CNRS, Montpellier, France
- Unité
de recherche U1191, INSERM, Montpellier, France
| | - Jean-Philippe Pin
- Institute
of Functional Genomics, Université de Montpellier, Unité
Mixte de Recherche 5302 CNRS, Montpellier, France
- Unité
de recherche U1191, INSERM, Montpellier, France
| | - Francisco Ciruela
- Unitat
de Farmacologia, Departament Patologia i Terapèutica Experimental,
Facultat de Medicina, IDIBELL, Universitat
de Barcelona, Barcelona, Spain
- Institut
de Neurociències, Universitat de
Barcelona, Barcelona, Spain
| | - Cyril Goudet
- Institute
of Functional Genomics, Université de Montpellier, Unité
Mixte de Recherche 5302 CNRS, Montpellier, France
- Unité
de recherche U1191, INSERM, Montpellier, France
| | - Jesús Giraldo
- Institut
de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Network Biomedical Research Center on Mental Health
(CIBERSAM), Madrid, Spain
| | - Pau Gorostiza
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Network
Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine
(CIBER-BBN), Madrid, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Amadeu Llebaria
- MCS,
Laboratory of Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC−CSIC), Barcelona, Spain
| |
Collapse
|
19
|
Emmitte KA. mGlu5negative allosteric modulators: a patent review (2013 - 2016). Expert Opin Ther Pat 2017; 27:691-706. [DOI: 10.1080/13543776.2017.1280466] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
20
|
Yamazaki K, Fukushima K, Sugawara M, Tabata Y, Imaizumi Y, Ishihara Y, Ito M, Tsukahara K, Kohyama J, Okano H. Functional Comparison of Neuronal Cells Differentiated from Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells under Different Oxygen and Medium Conditions. ACTA ACUST UNITED AC 2016; 21:1054-1064. [PMID: 28139961 DOI: 10.1177/1087057116661291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Because neurons are difficult to obtain from humans, generating functional neurons from human induced pluripotent stem cells (hiPSCs) is important for establishing physiological or disease-relevant screening systems for drug discovery. To examine the culture conditions leading to efficient differentiation of functional neural cells, we investigated the effects of oxygen stress (2% or 20% O2) and differentiation medium (DMEM/F12:Neurobasal-based [DN] or commercial [PhoenixSongs Biologicals; PS]) on the expression of genes related to neural differentiation, glutamate receptor function, and the formation of networks of neurons differentiated from hiPSCs (201B7) via long-term self-renewing neuroepithelial-like stem (lt-NES) cells. Expression of genes related to neural differentiation occurred more quickly in PS and/or 2% O2 than in DN and/or 20% O2, resulting in high responsiveness of neural cells to glutamate, N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and ( S)-3,5-dihydroxyphenylglycine (an agonist for mGluR1/5), as revealed by calcium imaging assays. NMDA receptors, AMPA receptors, mGluR1, and mGluR5 were functionally validated by using the specific antagonists MK-801, NBQX, JNJ16259685, and 2-methyl-6-(phenylethynyl)-pyridine, respectively. Multielectrode array analysis showed that spontaneous firing occurred earlier in cells cultured in 2% O2 than in 20% O2. Optimization of O2 tension and culture medium for neural differentiation of hiPSCs can efficiently generate physiologically relevant cells for screening systems.
Collapse
Affiliation(s)
- Kazuto Yamazaki
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan
| | - Kazuyuki Fukushima
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan
| | - Michiko Sugawara
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan.,2 Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Yoshikuni Tabata
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan.,2 Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Yoichi Imaizumi
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan
| | - Yasuharu Ishihara
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan
| | - Masashi Ito
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan
| | - Kappei Tsukahara
- 1 Next Generation Systems CFU, Eisai Product Creation Systems, Tokodai, Tsukuba, Japan
| | - Jun Kohyama
- 2 Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- 2 Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
21
|
Synthesis, structure-activity relationships and biological evaluation of 4,5,6,7-tetrahydropyrazolopyrazines as metabotropic glutamate receptor 5 negative allosteric modulators. Bioorg Med Chem Lett 2016; 26:3866-9. [PMID: 27432763 DOI: 10.1016/j.bmcl.2016.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/20/2022]
Abstract
The design, synthesis and SAR studies of novel 4,5,6,7-tetrahydropyrazolopyrazines as metabotropic glutamate receptor 5 (mGluR5) negative allosteric modulators (NAMs) are presented in this letter. Starting from a HTS hit compound (1, IC50=477nM), optimization of various groups led to the synthesis of a potent mGluR5 NAM (32, IC50=75nM) with excellent rat PK profile and good brain penetration. This compound produced oral antidepressant-like effect in a mouse tale suspension model (MED: 30mg/kg).
Collapse
|
22
|
D'Amore V, Raaijmakers RHL, Santolini I, van Rijn CM, Ngomba RT, Nicoletti F, van Luijtelaar G. The anti-absence effect of mGlu5 receptor amplification with VU0360172 is maintained during and after antiepileptogenesis. Pharmacol Biochem Behav 2016; 146-147:50-59. [PMID: 27178815 DOI: 10.1016/j.pbb.2016.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/15/2016] [Accepted: 05/09/2016] [Indexed: 01/19/2023]
Abstract
PURPOSE Ethosuximide (ETX) is the drug of choice for the treatment of patients with absence seizures - taking into account both its efficacy, tolerability and antiepileptogenic properties. However, 47% of subjects failed in ETX-therapy, and most antiepileptic drugs have cognitive side effects. VU0360172, a positive allosteric modulator (PAM) of mGluR5, has been proposed as a new anti-absence drug. Here it is investigated whether anti-epileptogenesis induced by ETX alters the sensitivity of VU0360172, and whether cognition is affected during and after chronic ETX treatment. METHOD EEG's were recorded before and after a challenge with VU0360172 in chronic ETX and in control WAG/Rij rats during and after treatment. Rats were also exposed to a cue discrimination learning task in a Y-maze both during and after treatment. At the end of the experiment, mGlu5 receptors were quantified by Western Blot analysis. RESULTS Antiepileptogenesis was successfully induced by ETX and VU0360172 showed a time and dose dependent anti-absence action in the control group. VU0360172 kept its anti-absence action in chronic ETX treated rats both during and after treatment, without time and dose dependency. This anti-absence effect of VU0360172 in both groups matched the lack of differences in mGluR5 expression. Chronic ETX enhanced the number of completed trials, the number of correct choices in the Y-maze and the number of consumed sucrose pallets. SIGNIFICANCE VU0360172 maintains its anti-absence effects after chronic treatment; as such, VU0360172 can also be used as a adjunctive therapy in patients with absence epilepsy. The enhanced motivation and cognitive performance by ETX might be mediated by the antidepressant action of ETX as expressed by an increase in the rewarding properties of sucrose pallets.
Collapse
Affiliation(s)
| | - Renée H L Raaijmakers
- Biological Psychology, Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
| | | | - Clementina M van Rijn
- Biological Psychology, Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
| | | | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Gilles van Luijtelaar
- Biological Psychology, Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Lindsley CW, Emmitte KA, Hopkins CR, Bridges TM, Gregory KJ, Niswender CM, Conn PJ. Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chem Rev 2016; 116:6707-41. [PMID: 26882314 PMCID: PMC4988345 DOI: 10.1021/acs.chemrev.5b00656] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric modulation of GPCRs has initiated a new era of basic and translational discovery, filled with therapeutic promise yet fraught with caveats. Allosteric ligands stabilize unique conformations of the GPCR that afford fundamentally new receptors, capable of novel pharmacology, unprecedented subtype selectivity, and unique signal bias. This review provides a comprehensive overview of the basics of GPCR allosteric pharmacology, medicinal chemistry, drug metabolism, and validated approaches to address each of the major challenges and caveats. Then, the review narrows focus to highlight recent advances in the discovery of allosteric ligands for metabotropic glutamate receptor subtypes 1-5 and 7 (mGlu1-5,7) highlighting key concepts ("molecular switches", signal bias, heterodimers) and practical solutions to enable the development of tool compounds and clinical candidates. The review closes with a section on late-breaking new advances with allosteric ligands for other GPCRs and emerging data for endogenous allosteric modulators.
Collapse
Affiliation(s)
- Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Corey R. Hopkins
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville VIC 3052, Australia
| | - Colleen M. Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
24
|
Yang F, Snyder LB, Balakrishnan A, Brown JM, Sivarao DV, Easton A, Fernandes A, Gulianello M, Hanumegowda UM, Huang H, Huang Y, Jones KM, Li YW, Matchett M, Mattson G, Miller R, Santone KS, Senapati A, Shields EE, Simutis FJ, Westphal R, Whiterock VJ, Bronson JJ, Macor JE, Degnan AP. Discovery and Preclinical Evaluation of BMS-955829, a Potent Positive Allosteric Modulator of mGluR5. ACS Med Chem Lett 2016; 7:289-93. [PMID: 26985317 DOI: 10.1021/acsmedchemlett.5b00450] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/03/2016] [Indexed: 11/28/2022] Open
Abstract
Positive allosteric modulators (PAMs) of the metabotropic glutamate receptor subtype 5 (mGluR5) are of interest due to their potential therapeutic utility in schizophrenia and other cognitive disorders. Herein we describe the discovery and optimization of a novel oxazolidinone-based chemotype to identify BMS-955829 (4), a compound with high functional PAM potency, excellent mGluR5 binding affinity, low glutamate fold shift, and high selectivity for the mGluR5 subtype. The low fold shift and absence of agonist activity proved critical in the identification of a molecule with an acceptable preclinical safety profile. Despite its low fold shift, 4 retained efficacy in set shifting and novel object recognition models in rodents.
Collapse
Affiliation(s)
- Fukang Yang
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Lawrence B. Snyder
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Anand Balakrishnan
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jeffrey M. Brown
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Digavalli V. Sivarao
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Amy Easton
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Alda Fernandes
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michael Gulianello
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Umesh M. Hanumegowda
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Hong Huang
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yanling Huang
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kelli M. Jones
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yu-Wen Li
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michele Matchett
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Gail Mattson
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Regina Miller
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kenneth S. Santone
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Arun Senapati
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Eric E. Shields
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Frank J. Simutis
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ryan Westphal
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Valerie J. Whiterock
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Joanne J. Bronson
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John E. Macor
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Andrew P. Degnan
- Bristol-Myers Squibb Research & Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
25
|
N-Alkylpyrido[1',2':1,5]pyrazolo-[4,3-d]pyrimidin-4-amines: A new series of negative allosteric modulators of mGlu1/5 with CNS exposure in rodents. Bioorg Med Chem Lett 2016; 26:1894-900. [PMID: 26988308 DOI: 10.1016/j.bmcl.2016.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/20/2022]
Abstract
Selective negative allosteric modulators (NAMs) of each of the group I metabotropic glutamate receptors (mGlu1 and mGlu5) have been well characterized in the literature and offer potential as therapeutics in several disorders of the central nervous system (CNS). Still, compounds that are potent mGlu1/5 NAMs with selectivity versus the other six members of the mGlu family as well as the balance of properties required for use in vivo are lacking. A medicinal chemistry effort centered on the identification of a lead series with the potential of delivering such compounds is described in this Letter. Specifically, a new class of pyrido[1',2':1,5]pyrazolo[4,3-d]pyrimidin-4-amines was designed as a novel isosteric replacement for 4-aminoquinazolines, and compounds from within this chemotype exhibited dual NAM activity at both group I mGlus. One compound, VU0467558 (29), demonstrated near equipotent activity at both receptors, selectivity versus other mGlus, a favorable ancillary pharmacology profile, and CNS exposure in rodents.
Collapse
|
26
|
Galambos J, Domány G, Nógrádi K, Wágner G, Keserű GM, Bobok A, Kolok S, Mikó-Bakk ML, Vastag M, Sághy K, Kóti J, Szakács Z, Béni Z, Gál K, Szombathelyi Z, Greiner I. 4-Aryl-3-arylsulfonyl-quinolines as negative allosteric modulators of metabotropic GluR5 receptors: From HTS hit to development candidate. Bioorg Med Chem Lett 2016; 26:1249-52. [DOI: 10.1016/j.bmcl.2016.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 11/16/2022]
|
27
|
Metabotropic glutamate receptor 5 – a promising target in drug development and neuroimaging. Eur J Nucl Med Mol Imaging 2016; 43:1151-70. [DOI: 10.1007/s00259-015-3301-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
|
28
|
Dalton JAR, Lans I, Rovira X, Malhaire F, Gómez-Santacana X, Pittolo S, Gorostiza P, Llebaria A, Goudet C, Pin JP, Giraldo J. Shining Light on an mGlu5 Photoswitchable NAM: A Theoretical Perspective. Curr Neuropharmacol 2016; 14:441-54. [PMID: 26391742 PMCID: PMC4983757 DOI: 10.2174/1570159x13666150407231417] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/06/2015] [Accepted: 04/04/2015] [Indexed: 02/07/2023] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are important drug targets because of their involvement in several neurological diseases. Among mGluRs, mGlu5 is a particularly high-profile target because its positive or negative allosteric modulation can potentially treat schizophrenia or anxiety and chronic pain, respectively. Here, we computationally and experimentally probe the functional binding of a novel photoswitchable mGlu5 NAM, termed alloswitch-1, which loses its NAM functionality under violet light. We show alloswitch-1 binds deep in the allosteric pocket in a similar fashion to mavoglurant, the co-crystallized NAM in the mGlu5 transmembrane domain crystal structure. Alloswitch-1, like NAM 2-Methyl-6-(phenylethynyl)pyridine (MPEP), is significantly affected by P655M mutation deep in the allosteric pocket, eradicating its functionality. In MD simulations, we show alloswitch-1 and MPEP stabilize the co-crystallized water molecule located at the bottom of the allosteric site that is seemingly characteristic of the inactive receptor state. Furthermore, both NAMs form H-bonds with S809 on helix 7, which may constitute an important stabilizing interaction for NAM-induced mGlu5 inactivation. Alloswitch-1, through isomerization of its amide group from trans to cis is able to form an additional interaction with N747 on helix 5. This may be an important interaction for amide-containing mGlu5 NAMs, helping to stabilize their binding in a potentially unusual cis-amide state. Simulated conformational switching of alloswitch-1 in silico suggests photoisomerization of its azo group from trans to cis may be possible within the allosteric pocket. However, photoexcited alloswitch-1 binds in an unstable fashion, breaking H-bonds with the protein and destabilizing the co-crystallized water molecule. This suggests photoswitching may have destabilizing effects on mGlu5 binding and functionality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
29
|
Synthesis and biological evaluation of picolinamides and thiazole-2-carboxamides as mGluR5 (metabotropic glutamate receptor 5) antagonists. Bioorg Med Chem Lett 2016; 26:140-4. [DOI: 10.1016/j.bmcl.2015.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/01/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022]
|
30
|
Jiang L, Li Y, Qiao L, Chen X, He Y, Zhang Y, Li G. Discovery of potential negative allosteric modulators of mGluR5 from natural products using pharmacophore modeling, molecular docking, and molecular dynamics simulation studies. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mGluR5, which belongs to the G-protein-coupled receptor superfamily, is believed to be associated with many human diseases, such as a wide range of neurological disorders, gastroesophageal reflux disease, and cancer. Comparing with compounds that target on the orthosteric binding site, significant roles have been established for mGluR5 negative allosteric modulators (NAMs) due to their higher subtype selectivity and more suitable pharmacokinetic profiles. Nevertheless, to date, none of them have come to market for various reasons. In this study, a 3D quantitative pharmacophore model was generated by using the HypoGen module in Discovery Studio 4.0. With several validation methods ultilized, the optimal pharmacophore model Hypo2 was selected to discover potential mGluR5 NAMs from natural products. Two hundred and seventeen potential NAMs were obtained after being filtered by Lipinski’s rule (≥4). Then, molecular docking was used to refine the pharmacophore-based screening results and analyze the binding mode of NAMs and mGluR5. Three compounds, aglaiduline, 5-O-ethyl-hirsutanonol, and yakuchinone A, with good ADMET properties, acceptable Fit value and estimated value, and high docking score, were reserved for a molecular dynamics simulation study. All of them have stability of ligand binding. From our computational results, there might exhibit drug-like negative allosteric moderating effects on mGluR5 in these natural products. This work provides a reliable method for discovering mGluR5 NAMs from natural products.
Collapse
Affiliation(s)
- Ludi Jiang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yong Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Liansheng Qiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xi Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yusu He
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yanling Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Gongyu Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| |
Collapse
|
31
|
Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors – A Structural Perspective of Ligands and Mutants. Sci Rep 2015; 5:13869. [PMID: 26359761 PMCID: PMC4566082 DOI: 10.1038/srep13869] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/27/2015] [Indexed: 01/06/2023] Open
Abstract
The metabotropic glutamate receptors have a wide range of modulatory functions in the central nervous system. They are among the most highly pursued drug targets, with relevance for several neurological diseases, and a number of allosteric modulators have entered clinical trials. However, so far this has not led to a marketed drug, largely because of the difficulties in achieving subtype-selective compounds with desired properties. Very recently the first crystal structures were published for the transmembrane domain of two metabotropic glutamate receptors in complex with negative allosteric modulators. In this analysis, we make the first comprehensive structural comparison of all metabotropic glutamate receptors, placing selective negative allosteric modulators and critical mutants into the detailed context of the receptor binding sites. A better understanding of how the different mGlu allosteric modulator binding modes relates to selective pharmacological actions will be very valuable for rational design of safer drugs.
Collapse
|
32
|
Christopher JA, Aves SJ, Bennett KA, Doré AS, Errey JC, Jazayeri A, Marshall FH, Okrasa K, Serrano-Vega MJ, Tehan BG, Wiggin GR, Congreve M. Fragment and Structure-Based Drug Discovery for a Class C GPCR: Discovery of the mGlu5 Negative Allosteric Modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 2015. [PMID: 26225459 DOI: 10.1021/acs.jmedchem.5b00892] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fragment screening of a thermostabilized mGlu5 receptor using a high-concentration radioligand binding assay enabled the identification of moderate affinity, high ligand efficiency (LE) pyrimidine hit 5. Subsequent optimization using structure-based drug discovery methods led to the selection of 25, HTL14242, as an advanced lead compound for further development. Structures of the stabilized mGlu5 receptor complexed with 25 and another molecule in the series, 14, were determined at resolutions of 2.6 and 3.1 Å, respectively.
Collapse
Affiliation(s)
- John A Christopher
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Sarah J Aves
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Kirstie A Bennett
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Andrew S Doré
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - James C Errey
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Ali Jazayeri
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Fiona H Marshall
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Krzysztof Okrasa
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Maria J Serrano-Vega
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Benjamin G Tehan
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Giselle R Wiggin
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Miles Congreve
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| |
Collapse
|
33
|
Drug-induced Skin Lesions in Cynomolgus Macaques Treated with Metabotropic Glutamate Receptor 5 (mGluR5) Negative Allosteric Modulators. Toxicol Pathol 2015; 43:995-1003. [DOI: 10.1177/0192623315588114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Three orally administered metabotropic glutamate receptor 5 (mGluR5) negative allosteric modulators caused skin lesions consistent with delayed type-IV hypersensitivity in cynomolgus macaques in 2- and 12-week toxicity studies. Several monkeys developed macroscopic skin lesions in multiple locations after 8 to 9 days of dosing; the most prominent effects involved the genital region of males and generalized erythema occurred in both sexes. Microscopic lesions occurred in both clinically affected and unaffected areas and were characterized by lymphocytic interface inflammation, subepidermal bullae, and individual keratinocyte vacuolation/necrosis. In the 12-week study, clinical effects in 2 animals resolved with continued dosing, whereas in others the inflammatory process progressed with 1 female exhibiting systemic lymphocytic inflammation in multiple tissues. The inflammatory infiltrate consisted of CD3 and CD4 positive T lymphocytes with minimal CD68 positive macrophages and only rare CD8 positive T lymphocytes. A subset of animals given a dosing holiday was subsequently rechallenged with similar lesions developing but with a more rapid clinical onset. These skin lesions were consistent with type-IV delayed hypersensitivity with some features comparable to bullous drug eruptions in humans. A relationship between these findings and the intended mode of action for these compounds could not be ruled out, given the occurrence across different chemotypes.
Collapse
|
34
|
Feng Z, Ma S, Hu G, Xie XQ. Allosteric Binding Site and Activation Mechanism of Class C G-Protein Coupled Receptors: Metabotropic Glutamate Receptor Family. AAPS J 2015; 17:737-53. [PMID: 25762450 PMCID: PMC4406965 DOI: 10.1208/s12248-015-9742-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/16/2015] [Indexed: 11/30/2022] Open
Abstract
Metabotropic glutamate receptors (mGluR) are mainly expressed in the central nervous system (CNS) and contain eight receptor subtypes, named mGluR1 to mGluR8. The crystal structures of mGluR1 and mGluR5 that are bound with the negative allosteric modulator (NAM) were reported recently. These structures provide a basic model for all class C of G-protein coupled receptors (GPCRs) and may aid in the design of new allosteric modulators for the treatment of CNS disorders. However, these structures are only combined with NAMs in the previous reports. The conformations that are bound with positive allosteric modulator (PAM) or agonist of mGluR1/5 remain unknown. Moreover, the structural information of the other six mGluRs and the comparisons of the mGluRs family have not been explored in terms of their binding pockets, the binding modes of different compounds, and important binding residues. With these crystal structures as the starting point, we built 3D structural models for six mGluRs by using homology modeling and molecular dynamics (MD) simulations. We systematically compared their allosteric binding sites/pockets, the important residues, and the selective residues by using a series of comparable dockings with both the NAM and the PAM. Our results show that several residues played important roles for the receptors' selectivity. The observations of detailed interactions between compounds and their correspondent receptors are congruent with the specificity and potency of derivatives or compounds bioassayed in vitro. We then carried out 100 ns MD simulations of mGluR5 (residue 26-832, formed by Venus Flytrap domain, a so-called cysteine-rich domain, and 7 trans-membrane domains) bound with antagonist/NAM and with agonist/PAM. Our results show that both the NAM and the PAM seemed stable in class C GPCRs during the MD. However, the movements of "ionic lock," of trans-membrane domains, and of some activation-related residues in 7 trans-membrane domains of mGluR5 were congruent with the findings in class A GPCRs. Finally, we selected nine representative bound structures to perform 30 ns MD simulations for validating the stabilities of interactions, respectively. All these bound structures kept stable during the MD simulations, indicating that the binding poses in this present work are reasonable. We provided new insight into better understanding of the structural and functional roles of the mGluRs family and facilitated the future structure-based design of novel ligands of mGluRs family with therapeutic potential.
Collapse
Affiliation(s)
- Zhiwei Feng
- />Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
| | - Shifan Ma
- />Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
| | - Guanxing Hu
- />Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
| | - Xiang-Qun Xie
- />Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
| |
Collapse
|
35
|
Nógrádi K, Wágner G, Domány G, Bobok A, Magdó I, Kolok S, Mikó-Bakk ML, Vastag M, Sághy K, Gyertyán I, Kóti J, Gál K, Farkas S, Keserű GM, Greiner I, Szombathelyi Z. Thieno[2,3- b ]pyridines as negative allosteric modulators of metabotropic GluR5 receptors: Lead optimization. Bioorg Med Chem Lett 2015; 25:1724-1729. [DOI: 10.1016/j.bmcl.2015.02.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
|
36
|
Jaeschke G, Kolczewski S, Spooren W, Vieira E, Bitter-Stoll N, Boissin P, Borroni E, Büttelmann B, Ceccarelli S, Clemann N, David B, Funk C, Guba W, Harrison A, Hartung T, Honer M, Huwyler J, Kuratli M, Niederhauser U, Pähler A, Peters JU, Petersen A, Prinssen E, Ricci A, Rueher D, Rueher M, Schneider M, Spurr P, Stoll T, Tännler D, Wichmann J, Porter RH, Wettstein JG, Lindemann L. Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators: Discovery of 2-Chloro-4-[1-(4-fluorophenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]pyridine (Basimglurant, RO4917523), a Promising Novel Medicine for Psychiatric Diseases. J Med Chem 2015; 58:1358-71. [DOI: 10.1021/jm501642c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jörg Huwyler
- Pharmaceutical
Technology, Pharmacenter, University of Basel, , Klingelbergstrasse
50, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rook JM, Tantawy MN, Ansari MS, Felts AS, Stauffer SR, Emmitte KA, Kessler RM, Niswender CM, Daniels JS, Jones CK, Lindsley CW, Conn PJ. Relationship between in vivo receptor occupancy and efficacy of metabotropic glutamate receptor subtype 5 allosteric modulators with different in vitro binding profiles. Neuropsychopharmacology 2015; 40:755-65. [PMID: 25241804 PMCID: PMC4289965 DOI: 10.1038/npp.2014.245] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/06/2014] [Accepted: 09/09/2014] [Indexed: 11/09/2022]
Abstract
Allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGlu5) have exciting potential as therapeutic agents for multiple brain disorders. Translational studies with mGlu5 modulators have relied on mGlu5 allosteric site positron emission tomography (PET) radioligands to assess receptor occupancy in the brain. However, recent structural and modeling studies suggest that closely related mGlu5 allosteric modulators can bind to overlapping but not identical sites, which could complicate interpretation of in vivo occupancy data, even when PET ligands and drug leads are developed from the same chemical scaffold. We now report that systemic administration of the novel mGlu5 positive allosteric modulator VU0092273 displaced the structurally related mGlu5 PET ligand, [(18)F]FPEB, with measures of in vivo occupancy that closely aligned with its in vivo efficacy. In contrast, a close analog of VU0092273 and [(18)F]FPEB, VU0360172, provided robust efficacy in rodent models in the absence of detectable occupancy. Furthermore, a structurally unrelated mGlu5 negative allosteric modulator, VU0409106, displayed measures of in vivo occupancy that correlated well with behavioral effects, despite the fact that VU0409106 is structurally unrelated to [(18)F]FPEB. Interestingly, all three compounds inhibit radioligand binding to the prototypical MPEP/FPEB allosteric site in vitro. However, VU0092273 and VU0409106 bind to this site in a fully competitive manner, whereas the interaction of VU0360172 is noncompetitive. Thus, while close structural similarity between PET ligands and drug leads does not circumvent issues associated with differential binding to a given target, detailed molecular pharmacology analysis accurately predicts utility of ligand pairs for in vivo occupancy studies.
Collapse
Affiliation(s)
- Jerri M Rook
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammed N Tantawy
- Vanderbilt University Institute of Imaging Sciences, Nashville, TN, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad S Ansari
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew S Felts
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shaun R Stauffer
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle A Emmitte
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert M Kessler
- Department of Radiology, University of Alabama, Birmingham, AL, USA
| | - Colleen M Niswender
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J Scott Daniels
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, 1215D Light Hall, 2215-B Garland Avenue, Nashville, TN 37232-0697, USA, Tel: +1 615 936 2478, Fax: +1 615 343 3088, E-mail:
| |
Collapse
|
38
|
Structures of mGluRs shed light on the challenges of drug development of allosteric modulators. Curr Opin Pharmacol 2015; 20:1-7. [DOI: 10.1016/j.coph.2014.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/24/2014] [Accepted: 09/27/2014] [Indexed: 01/06/2023]
|
39
|
Metabotropic glutamate receptor 5 as drug target for Fragile X syndrome. Curr Opin Pharmacol 2015; 20:124-34. [DOI: 10.1016/j.coph.2014.11.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 11/17/2022]
|
40
|
Rascol O, Fox S, Gasparini F, Kenney C, Di Paolo T, Gomez-Mancilla B. Use of metabotropic glutamate 5-receptor antagonists for treatment of levodopa-induced dyskinesias. Parkinsonism Relat Disord 2014; 20:947-56. [DOI: 10.1016/j.parkreldis.2014.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/02/2014] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
|
41
|
Conn PJ, Lindsley CW, Meiler J, Niswender CM. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat Rev Drug Discov 2014; 13:692-708. [PMID: 25176435 PMCID: PMC4208620 DOI: 10.1038/nrd4308] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel allosteric modulators of G protein-coupled receptors (GPCRs) are providing fundamental advances in the development of GPCR ligands with high subtype selectivity and novel modes of efficacy that have not been possible with traditional approaches. As new allosteric modulators are advancing as drug candidates, we are developing an increased understanding of the major advantages and broad range of activities that can be achieved with these agents through selective modulation of specific signalling pathways, differential effects on GPCR homodimers versus heterodimers, and other properties. This understanding creates exciting opportunities, as well as unique challenges, in the optimization of novel therapeutic agents for disorders of the central nervous system.
Collapse
Affiliation(s)
- P Jeffrey Conn
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 1215D LH, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 1215D LH, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 1215D LH, USA
| |
Collapse
|
42
|
Gómez-Santacana X, Rovira X, Dalton JA, Goudet C, Pin JP, Gorostiza P, Giraldo J, Llebaria A. A double effect molecular switch leads to a novel potent negative allosteric modulator of metabotropic glutamate receptor 5. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00208c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Nógrádi K, Wágner G, Domány G, Bobok A, Magdó I, Kiss B, Kolok S, Fónagy K, Gyertyán I, Háda V, Kóti J, Gál K, Farkas S, Keserű GM, Greiner I, Szombathelyi Z. Thieno[2,3-b]pyridines as negative allosteric modulators of metabotropic GluR5 receptors: Hit-to-lead optimization. Bioorg Med Chem Lett 2014; 24:3845-9. [DOI: 10.1016/j.bmcl.2014.06.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 11/16/2022]
|
44
|
Petrov D, Pedros I, de Lemos ML, Pallàs M, Canudas AM, Lazarowski A, Beas-Zarate C, Auladell C, Folch J, Camins A. Mavoglurant as a treatment for Parkinson's disease. Expert Opin Investig Drugs 2014; 23:1165-79. [PMID: 24960254 DOI: 10.1517/13543784.2014.931370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION A major unresolved issue in the Parkinson's disease (PD) treatment is the development of l-DOPA-induced dyskinesias (LIDs) as a side effect of chronic L-DOPA administration. Currently, LIDs are managed in part by reducing the L-DOPA dose or by the administration of amantadine. However, this treatment is only partially effective. A potential strategy, currently under investigation, is the coadministration of metabotropic glutamate receptor 5 (mGluR5) negative allosteric modulators (NAMs) and L-DOPA; a treatment that results in the improvement of dyskinesia symptoms and that permits reductions in l-DOPA dosage frequency. AREAS COVERED The authors examine the role of mGluR5 in the pathophysiology of PD and the potential use of mGluR5 NAM as an adjuvant therapy together with a primary treatment with L-DOPA. Specifically, the authors look at the mavoglurant therapy and the evidence presented through preclinical and clinical trials. EXPERT OPINION Interaction between mGluR5 NAM and L-DOPA is an area of interest in PD research as concomitant treatment results in the improvement of LID symptoms in humans, thus enhancing the patient's quality of life. However, few months ago, Novartis decided to discontinue clinical trials of mavoglurant for the treatment of LID, due to the lack of efficacy demonstrated in trials NCT01385592 and NCT01491529, although no safety concerns were involved in this decision. Nevertheless, the potential application of mGluR5 antagonists as neuroprotective agents must be considered and further studies are warranted to better investigate their potential.
Collapse
Affiliation(s)
- Dmitry Petrov
- Universitat de Barcelona, Institut de Biomedicina (IBUB), Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Unitat de Farmacologia I Farmacognòsia, Facultat de Farmàcia , Barcelona, Avda/Joan XXIII , Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bates BS, Rodriguez AL, Felts AS, Morrison RD, Venable DF, Blobaum AL, Byers FW, Lawson KP, Daniels JS, Niswender CM, Jones CK, Conn PJ, Lindsley CW, Emmitte KA. Discovery of VU0431316: a negative allosteric modulator of mGlu5 with activity in a mouse model of anxiety. Bioorg Med Chem Lett 2014; 24:3307-14. [PMID: 24969015 DOI: 10.1016/j.bmcl.2014.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
Abstract
Development of SAR in an aryl ether series of mGlu5 NAMs leading to the identification of pyrazine analog VU0431316 is described in this Letter. VU0431316 is a potent and selective non-competitive antagonist of mGlu5 that binds at a known allosteric binding site. VU0431316 demonstrates an attractive DMPK profile, including moderate clearance and good bioavailability in rats. Intraperitoneal (IP) dosing of VU0431316 in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu5 antagonists and other anxiolytics, produced dose proportional effects.
Collapse
Affiliation(s)
- Brittney S Bates
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daryl F Venable
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frank W Byers
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kera P Lawson
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
46
|
Mølck C, Harpsøe K, Gloriam DE, Mathiesen JM, Nielsen SM, Bräuner-Osborne H. mGluR5: Exploration of Orthosteric and Allosteric Ligand Binding Pockets and Their Applications to Drug Discovery. Neurochem Res 2014; 39:1862-75. [DOI: 10.1007/s11064-014-1248-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
|
47
|
Newell KA, Matosin N. Rethinking metabotropic glutamate receptor 5 pathological findings in psychiatric disorders: implications for the future of novel therapeutics. BMC Psychiatry 2014; 14:23. [PMID: 24472577 PMCID: PMC3907147 DOI: 10.1186/1471-244x-14-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pharmacological modulation of metabotropic glutamate receptor 5 (mGluR5) is of marked interest as a novel therapeutic mechanism to treat schizophrenia and major depression. However, the status of mGluR5 in the pathophysiology of these disorders remains unknown. DISCUSSION The majority of studies in the schizophrenia post-mortem brain indicate that total mGluR5 expression is unaltered. However, close examination of the literature suggests that these findings are superficial, and in actuality, a number of critical factors have not yet been considered; alterations may be highly dependent on brain region, neuronal population or molecular organisation in specific cellular compartments. A number of genetic knockout studies (mGluR5, Norbin, Homer1 etc.) continue to lend support to a role of mGluR5 in the pathology of schizophrenia, providing impetus to explore the regulation of mGluR5 beyond total mGluR5 protein and mRNA levels. With regards to major depression, preliminary evidence to date shows a reduction in total mGluR5 protein and mRNA levels; however, as in schizophrenia, there are no studies examining mGluR5 function or regulation in the pathological state. A comprehensive understanding of mGluR5 regulation in major depression, particularly in comparison to schizophrenia, is crucial as this has extensive implications for mGluR5 targeting novel therapeutics, especially considering that opposing modulation of mGluR5 is of therapeutic interest for these two disorders. SUMMARY Despite the complexities, examinations of post-mortem human brain provide valuable insights into the pathologies of these inherently human disorders. It is important, especially with regards to the identification of novel therapeutic drug targets, to have an in depth understanding of the pathophysiologies of these disorders. We posit that brain region- and cell type-specific alterations exist in mGluR5 in schizophrenia and depression, with evidence pointing towards altered regulation of this receptor in psychiatric pathology. We consider the implications of these alterations, as well as the distinction between schizophrenia and depression, in the context of novel mGluR5 based therapeutics.
Collapse
Affiliation(s)
- Kelly A Newell
- Centre for Translational Neuroscience, Faculty of Science, Medicine and Health and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Natalie Matosin
- Centre for Translational Neuroscience, Faculty of Science, Medicine and Health and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia,Schizophrenia Research Institute, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
48
|
Zhang L, Balan G, Barreiro G, Boscoe BP, Chenard LK, Cianfrogna J, Claffey MM, Chen L, Coffman KJ, Drozda SE, Dunetz JR, Fonseca KR, Galatsis P, Grimwood S, Lazzaro JT, Mancuso JY, Miller EL, Reese MR, Rogers BN, Sakurada I, Skaddan M, Smith DL, Stepan AF, Trapa P, Tuttle JB, Verhoest PR, Walker DP, Wright AS, Zaleska MM, Zasadny K, Shaffer CL. Discovery and preclinical characterization of 1-methyl-3-(4-methylpyridin-3-yl)-6-(pyridin-2-ylmethoxy)-1H-pyrazolo-[3,4-b]pyrazine (PF470): a highly potent, selective, and efficacious metabotropic glutamate receptor 5 (mGluR5) negative allosteric modulator. J Med Chem 2014; 57:861-77. [PMID: 24392688 DOI: 10.1021/jm401622k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel series of pyrazolopyrazines is herein disclosed as mGluR5 negative allosteric modulators (NAMs). Starting from a high-throughput screen (HTS) hit (1), a systematic structure-activity relationship (SAR) study was conducted with a specific focus on balancing pharmacological potency with physicochemical and pharmacokinetic (PK) properties. This effort led to the discovery of 1-methyl-3-(4-methylpyridin-3-yl)-6-(pyridin-2-ylmethoxy)-1H-pyrazolo[3,4-b]pyrazine (PF470, 14) as a highly potent, selective, and orally bioavailable mGluR5 NAM. Compound 14 demonstrated robust efficacy in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-rendered Parkinsonian nonhuman primate model of l-DOPA-induced dyskinesia (PD-LID). However, the progression of 14 to the clinic was terminated because of a potentially mechanism-mediated finding consistent with a delayed-type immune-mediated type IV hypersensitivity in a 90-day NHP regulatory toxicology study.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Medicinal Chemistry, ‡Neuroscience Pharmacokinetics, Dynamics and Metabolism, and §Neuroscience Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nickols HH, Conn PJ. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 2014; 61:55-71. [PMID: 24076101 PMCID: PMC3875303 DOI: 10.1016/j.nbd.2013.09.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 12/14/2022] Open
Abstract
The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as "bitopic" ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction.
Collapse
Key Words
- (+)-6-(2,4-dimethylphenyl)-2-ethyl-6,7-dihydrobenzo[d]oxazol-4(5H)-one
- (1-(4-cyano-4-(pyridine-2-yl)piperidine-1-yl)methyl-4-oxo-4H-quinolizine-3-carboxylic acid)
- (1S,2S)-N(1)-(3,4-dichlorophenyl)cyclohexane-1,2-dicarboxamide
- (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid
- (3,4-dihydro-2H-pyrano[2,3]b quinolin-7-yl)(cis-4-methoxycyclohexyl) methanone
- (3aS,5S,7aR)-methyl 5-hydroxy-5-(m-tolylethynyl)octahydro-1H-indole-1-carboxylate
- 1-(1′-(2-methylbenzyl)-1,4′-bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one
- 1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone
- 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine
- 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1Himidazol-4-yl)ethynyl)pyridine
- 2-methyl-6-(2-phenylethenyl)pyridine
- 2-methyl-6-(phenylethynyl)-pyridine
- 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide
- 3-cyclohexyl-5-fluoro-6-methyl-7-(2-morpholin-4-ylethoxy)-4H-chromen-4-one
- 3[(2-methyl-1,3-thiazol-4-yl)ethylnyl]pyridine
- 4-((E)-styryl)-pyrimidin-2-ylamine
- 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide
- 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine
- 5-methyl-6-(phenylethynyl)-pyridine
- 5MPEP
- 6-(4-methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one
- 6-OHDA
- 6-hydroxydopamine
- 6-methyl-2-(phenylazo)-3-pyridinol
- 77-LH-28-1
- 7TMR
- AC-42
- ACPT-1
- AChE
- AD
- ADX71743
- AFQ056
- APP
- Allosteric modulator
- Alzheimer's disease
- BINA
- BQCA
- CDPPB
- CFMMC
- CNS
- CPPHA
- CTEP
- DA
- DFB
- DHPG
- Drug discovery
- ERK1/2
- FMRP
- FTIDC
- FXS
- Fragile X syndrome
- GABA
- GPCR
- JNJ16259685
- L-AP4
- L-DOPA
- Lu AF21934
- Lu AF32615
- M-5MPEP
- MMPIP
- MPEP
- MPTP
- MTEP
- Metabotropic glutamate receptor
- Muscarinic acetylcholine receptor
- N-[4-chloro-2[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl]-2-hydrobenzamide
- N-methyl-d-aspartate
- N-phenyl-7-(hydroxylimino)cyclopropa[b]chromen-1a-carboxamide
- NAM
- NMDA
- PAM
- PCP
- PD
- PD-LID
- PET
- PHCCC
- PQCA
- Parkinson's disease
- Parkinson's disease levodopa-induced dyskinesia
- SAM
- SIB-1757
- SIB-1893
- TBPB
- [(3-fluorophenyl)methylene]hydrazone-3-fluorobenzaldehyde
- acetylcholinesterase
- amyloid precursor protein
- benzylquinolone carboxylic acid
- central nervous system
- dihydroxyphenylglycine
- dopamine
- extracellular signal-regulated kinase 1/2
- fragile X mental retardation protein
- l-(+)-2-amino-4-phosphonobutyric acid
- l-3,4-dihydroxyphenylalanine
- mGlu
- metabotropic glutamate receptor
- negative allosteric modulator
- phencyclidine
- positive allosteric modulator
- positron emission tomography
- potassium 30-([(2-cyclopentyl-6-7-dimethyl-1-oxo-2,3-dihydro-1H-inden-5yl)oxy]methyl)biphenyl l-4-carboxylate
- seven transmembrane receptor
- silent allosteric modulator
- γ-aminobutyric acid
Collapse
Affiliation(s)
- Hilary Highfield Nickols
- Division of Neuropathology, Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
50
|
Metabotropic glutamate receptor 5-negative allosteric modulators for the treatment of psychiatric and neurological disorders (2009–July 2013). Pharm Pat Anal 2013; 2:767-802. [DOI: 10.4155/ppa.13.58] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Negative allosteric modulators of metabotropic glutamate receptor 5 (mGlu5) have been actively pursued for over a decade as a potential treatment for anxiety, depression, substance abuse, pain, levodopa-induced dyskinesia in Parkinson’s disease, fragile X Syndrome, autism, gastroesophageal reflux disease and lower-urinary-tract disorders. This article begins with an introduction of preclinical validation of potential therapies for psychiatric and neurological disorders, and of clinical results, followed by a comprehensive overview of the mGlu5-negative allosteric modulator patent applications published between 2009 and July 2013, with a focus on the analysis of structure and in silico CNS drug-like properties of example compounds and disclosed data. Given positive results in proof-of-concept studies in humans for certain indications such as levodopa-induced dyskinesia in Parkinson’s disease, fragile X Syndrome, gastroesophageal reflux disease, migraine and anxiety, and the soaring chemical diversity among the mGlu5-negative allosteric modulators, there is reason to believe that a drug will emerge from this therapeutic class in the near future.
Collapse
|