1
|
Zhang S, Liu Y, Sun L, Wang B, Zhao J, Qu J, Zhou Y. Palladium-catalyzed regio- and enantio-selective trifluoromethylated allylic alkylation of diphenylphosphine oxides. Org Biomol Chem 2025; 23:4457-4462. [PMID: 40208064 DOI: 10.1039/d5ob00096c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The first convenient method for the allylic alkylation of diphenylphosphine oxides catalyzed by palladium has been designed and developed, affording various chiral allylphosphine oxides bearing CF3 groups with exclusive regio-selectivity and excellent enantioselective control. The reaction was performed in one pot under relatively mild reaction conditions using "easy-to-prepare" starting materials and relatively inexpensive chiral bis(phosphines) ligands. Further transformations of a representative product confirm the feasibility and potential applications of our synthetic strategies. In conclusion, this study provides a valuable method method for synthesizing chiral molecules bearing CF3 and allylphosphine oxide.
Collapse
Affiliation(s)
- Shuaibo Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yunzhe Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Luyang Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Bangzhong Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
2
|
Zhang HM, Yao B, Li L, Guo SS, Deng HY, Ren YP. Causal relationship between OHSS and immune cells: A Mendelian randomization study. J Reprod Immunol 2024; 165:104314. [PMID: 39173334 DOI: 10.1016/j.jri.2024.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE To confirm the causal relationship between immune cells and Ovarian Hyperstimulation Syndrome. DESIGN Obtaining data, collecting single nucleotide polymorphisms, detecting instrumental variables heterogeneity, assessing causality, and assessing bidirectional causality. SUBJECTS A two sample Mendelian study to confirm the causal relationship between immune cells and Ovarian Hyperstimulation Syndrome. EXPOSURE Immune cell phenotype (including 22 million SNPs from GWAS on 3757 European individuals). MAIN OUTCOME MEASURES Inverse variance weighting, one-sample analysis, MR-Egger, weighted median and weighted mode are used to assess the causal relationship between 731 immunophenotypes and Ovarian Hyperstimulation Syndrome. The weighted median and Mendelian Randomization multi-effect residuals and Mendelian Randomization multi-effect residuals and outlier tests are used to assess bidirectional causality between this two. RESULTS After False Discovery Rate correction, 9 immunophenotypes were found to be significantly associated with the risk of Ovarian Hyperstimulation Syndrome. B cell panel: IgD+ AC (OR, 0.90) 、CD19 on CD24+ CD27+ (OR, 0.86) 、BAFF-R on CD20- CD38 (OR, -1.22); Mature T cell group panel: EM DN (CD4 -CD8-) AC (OR, 1.46); Myeloid cell panel: Mo MDSC AC (OR, 1.13) 、CD45 on CD33br HLA-DR+ (OR, 0.87); Monocyte panel: HLA-DR on monocyte (OR, 0.86) 、CCR2 on CD14+ CD16+ monocyte (OR, 1.15) 、cDC panel: HLA-DR on myeloid DC (OR, 0.89). CONCLUSION This study shows the potential link between OHSS and immune cells by genetic means, providing new ideas for future clinical and basic research.
Collapse
Affiliation(s)
- Hai-Ming Zhang
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China
| | - Bo Yao
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China; Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Li Li
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shi-Shi Guo
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hong-Yi Deng
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan-Ping Ren
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
3
|
Dawson JRD, Wadman GM, Zhang P, Tebben A, Carter PH, Gu S, Shroka T, Borrega-Roman L, Salanga CL, Handel TM, Kufareva I. Molecular determinants of antagonist interactions with chemokine receptors CCR2 and CCR5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.15.567150. [PMID: 38014122 PMCID: PMC10680698 DOI: 10.1101/2023.11.15.567150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
By driving monocyte chemotaxis, the chemokine receptor CCR2 shapes inflammatory responses and the formation of tumor microenvironments. This makes it a promising target in inflammation and immuno-oncology; however, despite extensive efforts, there are no FDA-approved CCR2-targeting therapeutics. Cited challenges include the redundancy of the chemokine system, suboptimal properties of compound candidates, and species differences that confound the translation of results from animals to humans. Structure-based drug design can rationalize and accelerate the discovery and optimization of CCR2 antagonists to address these challenges. The prerequisites for such efforts include an atomic-level understanding of the molecular determinants of action of existing antagonists. In this study, using molecular docking and artificial-intelligence-powered compound library screening, we uncover the structural principles of small molecule antagonism and selectivity towards CCR2 and its sister receptor CCR5. CCR2 orthosteric inhibitors are shown to universally occupy an inactive-state-specific tunnel between receptor helices 1 and 7; we also discover an unexpected role for an extra-helical groove accessible through this tunnel, suggesting its potential as a new targetable interface for CCR2 and CCR5 modulation. By contrast, only shape complementarity and limited helix 8 hydrogen bonding govern the binding of various chemotypes of allosteric antagonists. CCR2 residues S1012.63 and V2446.36 are implicated as determinants of CCR2/CCR5 and human/mouse orthosteric and allosteric antagonist selectivity, respectively, and the role of S1012.63 is corroborated through experimental gain-of-function mutagenesis. We establish a critical role of induced fit in antagonist recognition, reveal strong chemotype selectivity of existing structures, and demonstrate the high predictive potential of a new deep-learning-based compound scoring function. Finally, this study expands the available CCR2 structural landscape with computationally generated chemotype-specific models well-suited for structure-based antagonist design.
Collapse
Affiliation(s)
- John R D Dawson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Grant M Wadman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | | | | - Percy H Carter
- Bristol Myers Squibb Company, Princeton, NJ, USA
- (current affiliation) Blueprint Medicines, Cambridge, MA, USA
| | - Siyi Gu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- (current affiliation) Lycia Therapeutics, South San Francisco, CA
| | - Thomas Shroka
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- (current affiliation) Avidity Biosciences Inc., San Diego, CA
| | - Leire Borrega-Roman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Germano DB, Oliveira SB, Bachi ALL, Juliano Y, Novo NF, Bussador do Amaral J, França CN. Monocyte chemokine receptors as therapeutic targets in cardiovascular diseases. Immunol Lett 2023; 256-257:1-8. [PMID: 36893859 DOI: 10.1016/j.imlet.2023.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Chemokine receptors are fundamental in many processes related to cardiovascular diseases, such as monocyte migration to vessel walls, cell adhesion, and angiogenesis, among others. Even though many experimental studies have shown the utility of blocking these receptors or their ligands in the treatment of atherosclerosis, the findings in clinical research are still poor. Thus, in the current review we aimed to describe some promising results concerning the blockade of chemokine receptors as therapeutic targets in the treatment of cardiovascular diseases and also to discuss some challenges that need to be overcome before using these strategies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yára Juliano
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Neil Ferreira Novo
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Jônatas Bussador do Amaral
- ENT Research Laboratory, Otorhinolaryngology -Head and Neck Surgery Department, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil.
| |
Collapse
|
5
|
Na HS, Lee SY, Lee DH, Woo JS, Choi SY, Cho KH, Kim SA, Go EJ, Lee AR, Choi JW, Kim SJ, Cho ML. Soluble CCR2 gene therapy controls joint inflammation, cartilage damage, and the progression of osteoarthritis by targeting MCP-1 in a monosodium iodoacetate (MIA)-induced OA rat model. J Transl Med 2022; 20:428. [PMID: 36138477 PMCID: PMC9503236 DOI: 10.1186/s12967-022-03515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Osteoarthritis (OA) is the most common type of degenerative arthritis and affects the entire joint, causing pain, joint inflammation, and cartilage damage. Various risk factors are implicated in causing OA, and in recent years, a lot of research and interest have been directed toward chronic low-grade inflammation in OA. Monocyte chemoattractant protein-1 (MCP-1; also called CCL2) acts through C–C chemokine receptor type 2 (CCR2) in monocytes and is a chemotactic factor of monocytes that plays an important role in the initiation of inflammation. The targeting of CCL2–CCR2 is being studied as part of various topics including the treatment of OA. Methods In this study, we evaluated the potential therapeutic effects the sCCR2 E3 gene may exert on OA. The effects of sCCR2 E3 were investigated in animal experiments consisting of intra-articular injection of sCCR2 E3 in a monosodium iodoacetate (MIA)-induced OA rat model. The effects after intra-articular injection of sCCR2 E3 (fusion protein encoding 20 amino acids of the E3 domain of the CCL2 receptor) in a monosodium iodoacetate-induced OA rat model were compared to those in rats treated with empty vector (mock treatment) and full-length sCCR2. Results Pain improved with expression of the sCCR2 gene. Improved bone resorption upon sCCR2 E3 gene activation was confirmed via bone analyses using micro-computed tomography. Histologic analyses showed that the sCCR2 E3 gene exerted protective effects against cartilage damage and anti-inflammatory effects on joints and the intestine. Conclusions These results show that sCCR2 E3 therapy is effective in reducing pain severity, inhibiting cartilage destruction, and suppressing intestinal damage and inflammation. Thus, sCCR2 E3 may be a potential therapy for OA.
Collapse
Affiliation(s)
- Hyun Sik Na
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seon-Yeong Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dong Hwan Lee
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Jin Seok Woo
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Si-Young Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Keun-Hyung Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seon Ae Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Eun Jeong Go
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - A Ram Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jeong-Won Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea.
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
6
|
Lin R, Gong Y, Salter R. Synthesis of Deuterium-Labeled CCR2 Antagonist JNJ-26131300, [4-(1H-Indol-3-yl)-piperidin-1-yl]-{1-[3-(3,4,5-trifluoro-phenyl)-acryloyl]-piperidin-4-yl}-acetic acid. J Labelled Comp Radiopharm 2022; 65:147-151. [PMID: 35218060 DOI: 10.1002/jlcr.3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/10/2022]
Abstract
Synthesis of multiple deuterium-labeled CCR2 antagonist JNJ-26131300, i.e. [4-(1H-indol-3-yl)-piperidin-1-yl]-{1-[3-(3,4,5-trifluoro-phenyl)-acryloyl]-piperidin-4-yl}-acetic acid is described. First, condensation of indole-D7 with 4-piperidone produced 3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole-D5 , which subsequently underwent catalytic hydrogenation to give 3-piperidin-4-yl-1H-indole-D5 . Next, bromo-{1-[3-(3,4,5-trifluoro-phenyl)-acryloyl]-piperidin-4-yl}-acetic acid was prepared through multiple steps from 3-(3,4,5-trifluoro-phenyl)-acrylic acid and bromo-piperidin-4-yl-acetic acid ethyl ester. Nucleophilic coupling of 3-piperidin-4-yl-1H-indole-D5 with bromo-{1-[3-(3,4,5-trifluoro-phenyl)-acryloyl]-piperidin-4-yl}-acetic acid afforded the desired compound [4-(1H-indol-3-yl)-piperidin-1-yl]-{1-[3-(3,4,5-trifluoro-phenyl)-acryloyl]-piperidin-4-yl}-acetic acid-D5 .
Collapse
Affiliation(s)
- Ronghui Lin
- Janssen Research & Development LLC, Janssen Pharmaceutical Companies of Johnson & Johnson, Welsh & McKean Road, Spring House, PA, USA
| | - Yong Gong
- Janssen Research & Development LLC, Janssen Pharmaceutical Companies of Johnson & Johnson, Welsh & McKean Road, Spring House, PA, USA
| | - Rhys Salter
- Janssen Research & Development LLC, Janssen Pharmaceutical Companies of Johnson & Johnson, Welsh & McKean Road, Spring House, PA, USA
| |
Collapse
|
7
|
Cherney RJ, Anjanappa P, Selvakumar K, Batt DG, Brown GD, Rose AV, Vuppugalla R, Chen J, Pang J, Xu S, Yarde M, Tebben AJ, Paidi VR, Cvijic ME, Mathur A, Barrish JC, Mandlekar S, Zhao Q, Carter PH. BMS-813160: A Potent CCR2 and CCR5 Dual Antagonist Selected as a Clinical Candidate. ACS Med Chem Lett 2021; 12:1753-1758. [PMID: 34795864 DOI: 10.1021/acsmedchemlett.1c00373] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
BMS-813160 (compound 3) was identified as a potent and selective CCR2/5 dual antagonist. Compound 3 displayed good permeability at pH = 7.4 in PAMPA experiments and demonstrated excellent human liver microsome stability. Pharmacokinetic studies established that 3 had excellent oral bioavailability and exhibited low clearance in dog and cyno. Compound 3 was also studied in the mouse thioglycollate-induced peritonitis model, which confirmed its ability to inhibit the migration of inflammatory monocytes and macrophages. As a result of this profile, compound 3 was selected as a clinical candidate.
Collapse
Affiliation(s)
- Robert J. Cherney
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Prakash Anjanappa
- Biocon Bristol Myers Squibb Research and Development Center, Bangalore 560099, India
| | - Kumaravel Selvakumar
- Biocon Bristol Myers Squibb Research and Development Center, Bangalore 560099, India
| | - Douglas G. Batt
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Gregory D. Brown
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Anne V. Rose
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Ragini Vuppugalla
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Jing Chen
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Jian Pang
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Songmei Xu
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Melissa Yarde
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Andrew J. Tebben
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Venkatram Reddy Paidi
- Biocon Bristol Myers Squibb Research and Development Center, Bangalore 560099, India
| | - Mary Ellen Cvijic
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Arvind Mathur
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Joel C. Barrish
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Sandhya Mandlekar
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Qihong Zhao
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| | - Percy H. Carter
- Bristol Myers Squibb Company, Research and Early Development, Princeton, New Jersey 08540-4000, United States
| |
Collapse
|
8
|
Yang MG, Xiao Z, Zhao R, Tebben AJ, Wang B, Cherney RJ, Batt DG, Brown GD, Cvijic ME, Duncia JV, Gallela MA, Gardner DS, Khandelwal P, Malley MF, Pang J, Rose AV, Santella JB, Sarjeant AA, Xu S, Mathur A, Mandlekar S, Vuppugalla R, Zhao Q, Carter PH. Discovery of BMS-753426: A Potent Orally Bioavailable Antagonist of CC Chemokine Receptor 2. ACS Med Chem Lett 2021; 12:969-975. [PMID: 34141082 DOI: 10.1021/acsmedchemlett.1c00082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
To improve the metabolic stability profile of BMS-741672 (1a), we undertook a structure-activity relationship study in our trisubstituted cyclohexylamine series. This ultimately led to the identification of 2d (BMS-753426) as a potent and orally bioavailable antagonist of CCR2. Compared to previous clinical candidate 1a, the tert-butyl amine 2d showed significant improvements in pharmacokinetic properties, with lower clearance and higher oral bioavailability. Furthermore, compound 2d exhibited improved affinity for CCR5 and good activity in models of both monocyte migration and multiple sclerosis in the hCCR2 knock-in mouse. The synthesis of 2d was facilitated by the development of a simplified approach to key intermediate (4R)-9b that deployed a stereoselective reductive amination which may prove to be of general interest.
Collapse
Affiliation(s)
- Michael G. Yang
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Zili Xiao
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Rulin Zhao
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Andrew J. Tebben
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Bei Wang
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Robert J. Cherney
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Douglas G. Batt
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Gregory D. Brown
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Mary Ellen Cvijic
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - John V. Duncia
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Michael A. Gallela
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Daniel S. Gardner
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Purnima Khandelwal
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Mary F. Malley
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Jian Pang
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Anne V. Rose
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Joseph B. Santella
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Amy A. Sarjeant
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Songmei Xu
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Arvind Mathur
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Sandhya Mandlekar
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Ragini Vuppugalla
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Qihong Zhao
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| | - Percy H. Carter
- Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
9
|
Jin H, Xia J, Liu Z, Wang XS, Zhang L. A unique ligand-steered strategy for CC chemokine receptor 2 homology modeling to facilitate structure-based virtual screening. Chem Biol Drug Des 2021; 97:944-961. [PMID: 33386704 PMCID: PMC8048943 DOI: 10.1111/cbdd.13820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 12/29/2022]
Abstract
CC chemokine receptor 2 (CCR2) antagonists that disrupt CCR2/MCP-1 interaction are expected to treat a variety of inflammatory and autoimmune diseases. The lack of CCR2 crystal structure limits the application of structure-based drug design (SBDD) to this target. Although a few three-dimensional theoretical models have been reported, their accuracy remains to be improved in terms of templates and modeling approaches. In this study, we developed a unique ligand-steered strategy for CCR2 homology modeling. It starts with an initial model based on the X-ray structure of the closest homolog so far, that is, CXCR4. Then, it uses Elastic Network Normal Mode Analysis (EN-NMA) and flexible docking (FD) by AutoDock Vina software to generate ligand-induced fit models. It selects optimal model(s) as well as scoring function(s) via extensive evaluation of model performance based on a unique benchmarking set constructed by our in-house tool, that is, MUBD-DecoyMaker. The model of 81_04 presents the optimal enrichment when combined with the scoring function of PMF04, and the proposed binding mode between CCR2 and Teijin lead by this model complies with the reported mutagenesis data. To highlight the advantage of our strategy, we compared it with the only reported ligand-steered strategy for CCR2 homology modeling, that is, Discovery Studio/Ligand Minimization. Lastly, we performed prospective virtual screening based on 81_04 and CCR2 antagonist bioassay. The identification of two hit compounds, that is, E859-1281 and MolPort-007-767-945, validated the efficacy of our model and the ligand-steered strategy.
Collapse
Affiliation(s)
- Hongwei Jin
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesDepartment of New Drug Research and DevelopmentInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Xiang Simon Wang
- Molecular Modeling and Drug Discovery Core for District of Columbia Center for AIDS Research (DC CFAR)Laboratory of Cheminformatics and Drug DesignDepartment of Pharmaceutical SciencesCollege of PharmacyHoward UniversityWashingtonDCUSA
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijingChina
| |
Collapse
|
10
|
Ortiz Zacarías NV, Chahal KK, Šimková T, van der Horst C, Zheng Y, Inoue A, Theunissen E, Mallee L, van der Es D, Louvel J, IJzerman AP, Handel TM, Kufareva I, Heitman LH. Design and Characterization of an Intracellular Covalent Ligand for CC Chemokine Receptor 2. J Med Chem 2021; 64:2608-2621. [PMID: 33600174 PMCID: PMC7958898 DOI: 10.1021/acs.jmedchem.0c01137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Covalently acting inhibitors constitute a large and growing fraction of approved
small-molecule therapeutics as well as useful tools for a variety of in
vitro and in vivo applications. Here, we aimed to develop a
covalent antagonist of CC chemokine receptor 2 (CCR2), a class A GPCR that has been
pursued as a therapeutic target in inflammation and immuno-oncology. Based on a known
intracellularly binding CCR2 antagonist, several covalent derivatives were synthesized
and characterized by radioligand binding and functional assays. These studies revealed
compound 14 as an intracellular covalent ligand for CCR2. In
silico modeling followed by site-directed mutagenesis confirmed that
14 forms a covalent bond with one of three proximal cysteine residues,
which can be engaged interchangeably. To our knowledge, compound 14
represents the first covalent ligand reported for CCR2. Due to its unique properties, it
may represent a promising tool for ongoing and future studies of CCR2 pharmacology.
Collapse
Affiliation(s)
- Natalia V Ortiz Zacarías
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.,Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Kirti K Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Tereza Šimková
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Cas van der Horst
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Yi Zheng
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Emy Theunissen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Lloyd Mallee
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Daan van der Es
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Julien Louvel
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.,Oncode Institute, 2333 CC Leiden, The Netherlands
| |
Collapse
|
11
|
Yang MG, Xiao Z, Cherney RJ, Tebben AJ, Batt DG, Brown GD, Chen J, Cvijic ME, Dabros M, Duncia JV, Galella M, Gardner DS, Khandelwal P, Ko SS, Malley MF, Mo R, Pang J, Rose AV, Santella JB, Shi H, Srivastava A, Traeger SC, Wang B, Xu S, Zhao R, Barrish JC, Mandlekar S, Zhao Q, Carter PH. Use of a Conformational-Switching Mechanism to Modulate Exposed Polarity: Discovery of CCR2 Antagonist BMS-741672. ACS Med Chem Lett 2019; 10:300-305. [PMID: 30891130 DOI: 10.1021/acsmedchemlett.8b00439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
We encountered a dilemma in the course of studying a series of antagonists of the G-protein coupled receptor CC chemokine receptor-2 (CCR2): compounds with polar C3 side chains exhibited good ion channel selectivity but poor oral bioavailability, whereas compounds with lipophilic C3 side chains exhibited good oral bioavailability in preclinical species but poor ion channel selectivity. Attempts to solve this through the direct modulation of physicochemical properties failed. However, the installation of a protonation-dependent conformational switching mechanism resolved the problem because it enabled a highly selective and relatively polar molecule to access a small population of a conformer with lower polar surface area and higher membrane permeability. Optimization of the overall properties in this series yielded the CCR2 antagonist BMS-741672 (7), which embodied properties suitable for study in human clinical trials.
Collapse
Affiliation(s)
- Michael G. Yang
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Zili Xiao
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Robert J. Cherney
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Andrew J. Tebben
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Douglas G. Batt
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Gregory D. Brown
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Jing Chen
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Mary Ellen Cvijic
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Marta Dabros
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - John V. Duncia
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Michael Galella
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Daniel S. Gardner
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Purnima Khandelwal
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Soo S. Ko
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Mary F. Malley
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Ruowei Mo
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Jian Pang
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Anne V. Rose
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Joseph B. Santella
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Hong Shi
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Anurag Srivastava
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Sarah C. Traeger
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Bei Wang
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Songmei Xu
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Rulin Zhao
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Joel C. Barrish
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Sandhya Mandlekar
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Qihong Zhao
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Percy H. Carter
- Bristol-Myers Squibb Company, Research and Development, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
12
|
Apel AK, Cheng RK, Tautermann CS, Brauchle M, Huang CY, Pautsch A, Hennig M, Nar H, Schnapp G. Crystal Structure of CC Chemokine Receptor 2A in Complex with an Orthosteric Antagonist Provides Insights for the Design of Selective Antagonists. Structure 2019; 27:427-438.e5. [DOI: 10.1016/j.str.2018.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/08/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022]
|
13
|
Latinovic OS, Reitz M, Heredia A. CCR5 Inhibitors and HIV-1 Infection. JOURNAL OF AIDS AND HIV TREATMENT 2019; 1:1-5. [PMID: 31414081 PMCID: PMC6693856 DOI: 10.33696/aids.1.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Olga S. Latinovic
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marvin Reitz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- School of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Qin LH, Wang ZL, Xie X, Long YQ. Discovery and synthesis of 6,7,8,9-tetrahydro-5H-pyrido[4,3-c]azepin-5-one-based novel chemotype CCR2 antagonists via scaffold hopping strategy. Bioorg Med Chem 2018; 26:3559-3572. [PMID: 29805075 DOI: 10.1016/j.bmc.2018.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 12/16/2022]
Abstract
The chemokine CC receptor subtype 2 (CCR2) has attracted intensive interest for drug development in diverse therapeutic areas, including chronic inflammatory diseases, diabetes, neuropathic pain, atherogenesis and cancer. By employing a cut-and-sew scaffold hopping strategy, we identified an active scaffold of 3,4-dihydro-2,6-naphthyridin-1(2H)-one as the central pharmacophore to derive novel CCR2 antagonists. Systematic structure-activity relationship study with respect to the ring size and the substitution on the naphthyridinone ring gave birth to 1-arylamino-6-alkylheterocycle-6,7,8,9-tetrahydro-5H-pyrido[4,3-c]azepin-5-ones as a brand new chemotype of CCR2 antagonists with nanomolar inhibitory activity. The best antagonism activity in this series was exemplified by compound 13a, which combined the optimal substitutions of 3,4-dichlorophenylamino at C-1 and 3-(4-(N-methylmethylsulfonamido)piperidin-1-yl)propyl at N-6 position, leading to an IC50 value of 61 nM and 10-fold selectivity for CCR2 over CCR5. Efficient and general synthesis was established to construct the innovative core structure and derive the compound collections. This is the first report on our designed 6,7,8,9-tetrahydro-5H-pyrido[4,3-c]azepin-5-one as novel CCR2 antagonist scaffold and its synthesis.
Collapse
Affiliation(s)
- Li-Huai Qin
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; College of Pharmaceutic Sciences, Soochow University, 199 Renai Road, Suzhou 215123, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhi-Long Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ya-Qiu Long
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; College of Pharmaceutic Sciences, Soochow University, 199 Renai Road, Suzhou 215123, China.
| |
Collapse
|
15
|
Ortiz Zacarías NV, Lenselink EB, IJzerman AP, Handel TM, Heitman LH. Intracellular Receptor Modulation: Novel Approach to Target GPCRs. Trends Pharmacol Sci 2018; 39:547-559. [PMID: 29653834 DOI: 10.1016/j.tips.2018.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/23/2022]
Abstract
Recent crystal structures of multiple G protein-coupled receptors (GPCRs) have revealed a highly conserved intracellular pocket that can be used to modulate these receptors from the inside. This novel intracellular site partially overlaps with the G protein and β-arrestin binding site, providing a new manner of pharmacological intervention. Here we provide an update of the architecture and function of the intracellular region of GPCRs, until now portrayed as the signaling domain. We review the available evidence on the presence of intracellular binding sites among chemokine receptors and other class A GPCRs, as well as different strategies to target it, including small molecules, pepducins, and nanobodies. Finally, the potential advantages of intracellular (allosteric) ligands over orthosteric ligands are also discussed.
Collapse
Affiliation(s)
- Natalia V Ortiz Zacarías
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Eelke B Lenselink
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Tracy M Handel
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92093, USA
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
16
|
Liu Y, Gunsten SP, Sultan DH, Luehmann HP, Zhao Y, Blackwell TS, Bollermann-Nowlis Z, Pan JH, Byers DE, Atkinson JJ, Kreisel D, Holtzman MJ, Gropler RJ, Combadiere C, Brody SL. PET-based Imaging of Chemokine Receptor 2 in Experimental and Disease-related Lung Inflammation. Radiology 2017; 283:758-768. [PMID: 28045644 PMCID: PMC5452886 DOI: 10.1148/radiol.2016161409] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose To characterize a chemokine receptor type 2 (CCR2)-binding peptide adapted for use as a positron emission tomography (PET) radiotracer for noninvasive detection of lung inflammation in a mouse model of lung injury and in human tissues from subjects with lung disease. Materials and Methods The study was approved by institutional animal and human studies committees. Informed consent was obtained from patients. A 7-amino acid CCR2 binding peptide (extracellular loop 1 inverso [ECL1i]) was conjugated to tetraazacyclododecane tetraacetic acid (DOTA) and labeled with copper 64 (64Cu) or fluorescent dye. Lung inflammation was induced with intratracheal administration of lipopolysaccharide (LPS) in wild-type (n = 19) and CCR2-deficient (n = 4) mice, and these mice were compared with wild-type mice given control saline (n = 5) by using PET performed after intravenous injection of 64Cu-DOTA-ECL1i. Lung immune cells and those binding fluorescently labeled ECL1i in vivo were detected with flow cytometry. Lung inflammation in tissue from subjects with nondiseased lungs donated for lung transplantation (n = 11) and those with chronic obstructive pulmonary disease (COPD) who were undergoing lung transplantation (n = 16) was evaluated for CCR2 with immunostaining and autoradiography (n = 6, COPD) with 64Cu-DOTA-ECL1i. Groups were compared with analysis of variance, the Mann-Whitney U test, or the t test. Results Signal on PET images obtained in mouse lungs after injury with LPS was significantly greater than that in the saline control group (mean = 4.43% of injected dose [ID] per gram of tissue vs 0.99% of injected dose per gram of tissue; P < .001). PET signal was significantly diminished with blocking studies using nonradiolabeled ECL1i in excess (mean = 0.63% ID per gram of tissue; P < .001) and in CCR2-deficient mice (mean = 0.39% ID per gram of tissue; P < .001). The ECL1i signal was associated with an elevated level of mouse lung monocytes. COPD lung tissue displayed significantly elevated CCR2 levels compared with nondiseased tissue (median = 12.8% vs 1.2% cells per sample; P = .002), which was detected with 64Cu-DOTA-ECL1i by using autoradiography. Conclusion 64Cu-DOTA-ECL1i is a promising tool for PET-based detection of CCR2-directed inflammation in an animal model and in human tissues as a step toward clinical translation. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Yongjian Liu
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Sean P. Gunsten
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Deborah H. Sultan
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Hannah P. Luehmann
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Yongfeng Zhao
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - T. Scott Blackwell
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Zachary Bollermann-Nowlis
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Jie-hong Pan
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Derek E. Byers
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Jeffrey J. Atkinson
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Daniel Kreisel
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Michael J. Holtzman
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Robert J. Gropler
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Christophe Combadiere
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| | - Steven L. Brody
- From the Mallinckrodt Institute of Radiology (Y.L., D.H.S., H.P.L., Y.Z., R.J.G., S.L.B.) and Departments of Medicine (S.P.G., T.S.B., Z.B.N., J.H.P., D.E.B., J.J.A., M.J.H., R.J.G., S.L.B.), Surgery (D.K.), Pathology and Immunology (D.K.), and Cell Biology (M.J.H.), Washington University School of Medicine, 660 S Euclid Ave, Box 8052, St Louis, MO 63110; and Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Faculté de Médecine Pitié-Salpêtrière, Paris INSERM, Paris, France (C.C.)
| |
Collapse
|
17
|
Abstract
Chirality is a key factor in the safety and efficacy of many drug products and thus the production of single enantiomers of drug intermediates and drugs has become important and state of the art in the pharmaceutical industry. There has been an increasing awareness of the enormous potential of microorganisms and enzymes (biocatalysts) for the transformation of synthetic chemicals with high chemo-, regio- and enatioselectivities providing products in high yields and purity. In this article, biocatalytic processes are described for the synthesis of key chiral intermediates for development pharmaceuticals.
Collapse
Affiliation(s)
- Ramesh N Patel
- SLRP Associates, LLC, Consultation in Biocatalysis and Biotechnology, 572 Cabot Hill Road, Bridgewater, NJ 08807, USA.
| |
Collapse
|
18
|
Deerberg J, Prasad SJ, Sfouggatakis C, Eastgate MD, Fan Y, Chidambaram R, Sharma P, Li L, Schild R, Müslehiddinoğlu J, Chung HJ, Leung S, Rosso V. Stereoselective Bulk Synthesis of CCR2 Antagonist BMS-741672: Assembly of an All-cis (S,R,R)-1,2,4-Triaminocyclohexane (TACH) Core via Sequential Heterogeneous Asymmetric Hydrogenations. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Joerg Deerberg
- Chemical and Synthetic
Development, Bristol-Myers
Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Siva J. Prasad
- Chemical and Synthetic
Development, Bristol-Myers
Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Chris Sfouggatakis
- Chemical and Synthetic
Development, Bristol-Myers
Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Martin D. Eastgate
- Chemical and Synthetic
Development, Bristol-Myers
Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Yu Fan
- Chemical and Synthetic
Development, Bristol-Myers
Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Ramakrishnan Chidambaram
- Chemical and Synthetic
Development, Bristol-Myers
Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Praveen Sharma
- Chemical and Synthetic
Development, Bristol-Myers
Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Li Li
- Chemical and Synthetic
Development, Bristol-Myers
Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Richard Schild
- Chemical and Synthetic
Development, Bristol-Myers
Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Jale Müslehiddinoğlu
- Chemical and Synthetic
Development, Bristol-Myers
Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Hyei-Jha Chung
- Chemical and Synthetic
Development, Bristol-Myers
Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Simon Leung
- Chemical and Synthetic
Development, Bristol-Myers
Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Victor Rosso
- Chemical and Synthetic
Development, Bristol-Myers
Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
19
|
Zhao W, Wang X, Ransohoff RM, Zhou L. CCR2 deficiency does not provide sustained improvement of muscular dystrophy in mdx5cv mice. FASEB J 2016; 31:35-46. [PMID: 27655900 DOI: 10.1096/fj.201600619r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/07/2016] [Indexed: 01/18/2023]
Abstract
Genetic ablation or pharmacologic inhibition of CC chemokine receptor type 2 (CCR2) reduced macrophage (MP) infiltration and improved muscle pathology and function in mdx diaphragm muscle at early stages. We addressed whether CCR2 deficiency resulted in sustained improvement of mdx5cv-Ccr2-/- diaphragm. Compared to mdx5cv controls, CCR2 deficiency in mdx5cv-Ccr2-/- mice markedly reduced intramuscular Ly6Chi MPs at all stages, but it reduced Ly6Clow MPs only at early stages (4 and 9 wk). CCR2 deficiency reduced quadriceps and diaphragm muscle damage and fibrosis at 14 wk but not at 6 mo, and it improved diaphragm muscle regeneration and respiratory function at 14 wk but not at 6 mo. Intramuscular MPs in mdx5cv-Ccr2-/- diaphragm expressed a low level of IL-1β, IL-6, and IFN-γ genes, a similar level of TNF-α, TGF-β1, and platelet-derived growth factor α genes, and a high level of IGF-1 and osteopontin genes compared to mdx5cv controls. Diaphragm fibroblasts at 14 wk showed a similar cell number with a similar level of collagen and profibrogenic growth factor gene expression in mdx5cv-Ccr2-/- and mdx5cv mice. Diaphragm MPs from both mdx5cv-Ccr2-/- and mdx5cv mice stimulated collagen gene expression by cocultured fibroblasts. The findings suggest that CCR2 deficiency does not provide a sustained benefit and that Ly6Clow MPs may contribute to the progressive fibrosis and dysfunction of mdx5cv diaphragm.-Zhao, W., Wang, X., Ransohoff, R. M., Zhou, L. CCR2 deficiency does not provide sustained improvement of muscular dystrophy in mdx5cv mice.
Collapse
Affiliation(s)
- Wanming Zhao
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; and
| | - Xingyu Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; and
| | | | - Lan Zhou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; and
| |
Collapse
|
20
|
Brown GD, Shi Q, Delucca GV, Batt DG, Galella MA, Cvijic ME, Liu RQ, Qiu F, Zhao Q, Barrish JC, Carter PH. Discovery and synthesis of cyclohexenyl derivatives as modulators of CC chemokine receptor 2 activity. Bioorg Med Chem Lett 2015; 26:662-666. [PMID: 26631321 DOI: 10.1016/j.bmcl.2015.11.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
Abstract
A novel cyclohexenyl series of CCR2 antagonists has been discovered. This series of small, rigid compounds exhibits submicromolar binding affinity for CCR2. Modification of the substituents on the cyclohexene ring led to the identification of potent CCR2 antagonists. Progress from initial lead 5 (IC50=700nM) to (-)-38 (IC50=9.0nM) is discussed.
Collapse
Affiliation(s)
- Gregory D Brown
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543-4000, United States.
| | - Qing Shi
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543-4000, United States
| | - George V Delucca
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543-4000, United States
| | - Douglas G Batt
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543-4000, United States
| | - Michael A Galella
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543-4000, United States
| | - Mary-Ellen Cvijic
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543-4000, United States
| | - Rui-Qin Liu
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543-4000, United States
| | - Feng Qiu
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543-4000, United States
| | - Qihong Zhao
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543-4000, United States
| | - Joel C Barrish
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543-4000, United States
| | - Percy H Carter
- Research and Development, Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543-4000, United States
| |
Collapse
|
21
|
Strunz AK, Zweemer AJ, Weiss C, Schepmann D, Junker A, Heitman LH, Koch M, Wünsch B. Synthesis and biological evaluation of spirocyclic antagonists of CCR2 (chemokine CC receptor subtype 2). Bioorg Med Chem 2015; 23:4034-49. [DOI: 10.1016/j.bmc.2015.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
|
22
|
Carter PH, Brown GD, Cherney RJ, Batt DG, Chen J, Clark CM, Cvijic ME, Duncia JV, Ko SS, Mandlekar S, Mo R, Nelson DJ, Pang J, Rose AV, Santella JB, Tebben AJ, Traeger SC, Xu S, Zhao Q, Barrish JC. Discovery of a Potent and Orally Bioavailable Dual Antagonist of CC Chemokine Receptors 2 and 5. ACS Med Chem Lett 2015; 6:439-44. [PMID: 25893046 DOI: 10.1021/ml500505q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/04/2015] [Indexed: 12/15/2022] Open
Abstract
We describe the hybridization of our previously reported acyclic and cyclic CC chemokine receptor 2 (CCR2) antagonists to lead to a new series of dual antagonists of CCR2 and CCR5. Installation of a γ-lactam as the spacer group and a quinazoline as a benzamide mimetic improved oral bioavailability markedly. These efforts led to the identification of 13d, a potent and orally bioavailable dual antagonist suitable for use in both murine and monkey models of inflammation.
Collapse
Affiliation(s)
- Percy H. Carter
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Gregory D. Brown
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Robert J. Cherney
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Douglas G. Batt
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Jing Chen
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Cheryl M. Clark
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Mary Ellen Cvijic
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - John V. Duncia
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Soo S. Ko
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Sandhya Mandlekar
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Ruowei Mo
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - David J. Nelson
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Jian Pang
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Anne V. Rose
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Joseph B. Santella
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Andrew J. Tebben
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Sarah C. Traeger
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Songmei Xu
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Qihong Zhao
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Joel C. Barrish
- Departments of Discovery Chemistry, ‡Lead Discovery & Optimization, §Preclinical Candidate Optimization, ∥Molecular Discovery Technologies, and ⊥Disease Sciences & Biology, Research and Development, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| |
Collapse
|
23
|
Cumming JG, MacFaul PA, Leach AG. Novel N-thiazolyl piperazine-1-carboxamide CCR2 antagonists – investigation of an unexpected reaction with glutathione. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00362h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of CCR2 antagonists containing halothiazoles were found to undergo an unexpected reaction with glutathione.
Collapse
Affiliation(s)
| | | | - A. G. Leach
- School of Pharmacy and Biomolecular Sciences
- James Parsons Building
- Liverpool
- UK
| |
Collapse
|
24
|
Design and synthesis of novel small molecule CCR2 antagonists: Evaluation of 4-aminopiperidine derivatives. Bioorg Med Chem Lett 2014; 24:5377-80. [DOI: 10.1016/j.bmcl.2014.10.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 11/18/2022]
|
25
|
Williams DW, Byrd D, Rubin LH, Anastos K, Morgello S, Berman JW. CCR2 on CD14(+)CD16(+) monocytes is a biomarker of HIV-associated neurocognitive disorders. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2014; 1:e36. [PMID: 25340088 PMCID: PMC4204222 DOI: 10.1212/nxi.0000000000000036] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/29/2014] [Indexed: 01/05/2023]
Abstract
Objective: To evaluate C-C chemokine receptor type 2 (CCR2) on monocyte subsets as a prognostic peripheral blood biomarker of HIV-associated neurocognitive disorders (HAND). Methods: We characterized monocyte populations in HIV-infected individuals with and without HAND from 2 cohorts and assessed their transmigration across an in vitro model of the human blood-brain barrier (BBB). We examined CCR2 expression among the monocyte populations as a prognostic/predictive biomarker of HAND and its functional consequences in facilitating monocyte diapedesis. Results: We determined that CCR2 was significantly increased on CD14+CD16+ monocytes in individuals with HAND compared to infected people with normal cognition. CCR2 remained elevated irrespective of the severity of cognitive impairment, combined antiretroviral therapy status, viral load, and current or nadir CD4 T-cell count. There was no association between CCR2 on other monocyte populations and HAND. There was a functional consequence to the increase in CCR2, as CD14+CD16+ monocytes from individuals with HAND transmigrated across our model of the human BBB in significantly higher numbers in response to its ligand chemokine (C-C) motif ligand 2 (CCL2) compared to the cell migration that occurred in people with no cognitive deficits. It should be noted that our study had the limitation of a smaller sample size of unimpaired individuals. In contrast, there was no difference in the transmigration of other monocyte subsets across the BBB in response to CCL2 in seropositive individuals with or without HAND. Conclusions: Our findings indicate CCR2 on CD14+CD16+ monocytes is a novel peripheral blood biomarker of HAND.
Collapse
Affiliation(s)
- Dionna W Williams
- Departments of Pathology (D.W.W., J.W.B.), Medicine and Epidemiology & Population Health (K.A.), and Microbiology and Immunology (J.W.B.), The Albert Einstein College of Medicine, Bronx, NY; Departments of Neurology (D.B., S.M.), Neuroscience (S.M.), and Pathology (S.M.), The Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Psychiatry (L.H.R.), University of Illinois at Chicago, IL
| | - Desiree Byrd
- Departments of Pathology (D.W.W., J.W.B.), Medicine and Epidemiology & Population Health (K.A.), and Microbiology and Immunology (J.W.B.), The Albert Einstein College of Medicine, Bronx, NY; Departments of Neurology (D.B., S.M.), Neuroscience (S.M.), and Pathology (S.M.), The Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Psychiatry (L.H.R.), University of Illinois at Chicago, IL
| | - Leah H Rubin
- Departments of Pathology (D.W.W., J.W.B.), Medicine and Epidemiology & Population Health (K.A.), and Microbiology and Immunology (J.W.B.), The Albert Einstein College of Medicine, Bronx, NY; Departments of Neurology (D.B., S.M.), Neuroscience (S.M.), and Pathology (S.M.), The Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Psychiatry (L.H.R.), University of Illinois at Chicago, IL
| | - Kathryn Anastos
- Departments of Pathology (D.W.W., J.W.B.), Medicine and Epidemiology & Population Health (K.A.), and Microbiology and Immunology (J.W.B.), The Albert Einstein College of Medicine, Bronx, NY; Departments of Neurology (D.B., S.M.), Neuroscience (S.M.), and Pathology (S.M.), The Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Psychiatry (L.H.R.), University of Illinois at Chicago, IL
| | - Susan Morgello
- Departments of Pathology (D.W.W., J.W.B.), Medicine and Epidemiology & Population Health (K.A.), and Microbiology and Immunology (J.W.B.), The Albert Einstein College of Medicine, Bronx, NY; Departments of Neurology (D.B., S.M.), Neuroscience (S.M.), and Pathology (S.M.), The Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Psychiatry (L.H.R.), University of Illinois at Chicago, IL
| | - Joan W Berman
- Departments of Pathology (D.W.W., J.W.B.), Medicine and Epidemiology & Population Health (K.A.), and Microbiology and Immunology (J.W.B.), The Albert Einstein College of Medicine, Bronx, NY; Departments of Neurology (D.B., S.M.), Neuroscience (S.M.), and Pathology (S.M.), The Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Psychiatry (L.H.R.), University of Illinois at Chicago, IL
| |
Collapse
|
26
|
The discovery and SAR of cyclopenta[b]furans as inhibitors of CCR2. Bioorg Med Chem Lett 2014; 24:2137-40. [PMID: 24685539 DOI: 10.1016/j.bmcl.2014.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 11/21/2022]
Abstract
The discovery of a novel series of cyclopenta[b]furans as CCR2 inhibitors is discussed. This series has excellent CCR2 potency and PK characteristics, and good cardiovascular safety.
Collapse
|
27
|
Alkylsulfone-containing trisubstituted cyclohexanes as potent and bioavailable chemokine receptor 2 (CCR2) antagonists. Bioorg Med Chem Lett 2014; 24:1843-5. [PMID: 24613378 DOI: 10.1016/j.bmcl.2014.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/24/2022]
Abstract
We describe novel alkylsulfones as potent CCR2 antagonists with reduced hERG channel activity and improved pharmacokinetics over our previously described antagonists. Several of these new alkylsulfones have a profile that includes functional antagonism of CCR2, in vitro microsomal stability, and oral bioavailability. With this improved profile, we demonstrate that two of these antagonists, 2 and 12, are orally efficacious in an animal model of inflammatory recruitment.
Collapse
|
28
|
Skelton AA, Maharaj YR, Soliman MES. Target-Bound Generated Pharmacophore Model to Improve the Pharmacophore-Based Virtual Screening: Identification of G-Protein Coupled Human CCR2 Receptors Inhibitors as Anti-Inflammatory Drugs. Cell Mol Bioeng 2013. [DOI: 10.1007/s12195-013-0304-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|