1
|
Wang Y, Liu Z, Si Q, Lu W, Song Y, Jin W, Yang X, Li Z, Hu X, Ding L, Jing Y, Weng P, Yu Q, O'Reilly LA, Silke J, Zhang X, Hu Q, Ni Y. Complex IIa formation and ABC transporters determine sensitivity of OSCC to Smac mimetics. Cell Death Dis 2024; 15:855. [PMID: 39578442 PMCID: PMC11584628 DOI: 10.1038/s41419-024-07253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Small molecule inhibitors of apoptosis proteins (IAPs) antagonists, known as Smac mimetics (SMs), activate non-canonical NF-κB and sensitize cancer cells to TNF-induced cell death. SMs are currently in phase III clinical trials for head and neck squamous cell carcinoma (HNSCC) after promising phase II trials. To explore the utility of SMs in oral squamous cell carcinoma (OSCC), we tested nine human OSCC cell lines and correlated SM sensitivity with both IAP mutation and expression levels. cIAP1 protein expression was shown to be higher in OSCC and a predictor of poor prognosis. However, our in vitro and in vivo testing demonstrated differential sensitivity to SMs, which did not correlate with cIAP1 and cIAP2 expression in these OSCC cell lines. Exogenous TNF failed to effectively increase the sensitivity of SM-resistant OSCC cells to SM-induced cell death. SM resistance was associated with a deficiency in Complex IIa formation, but activation of non-canonical NF-κB was not a determinant of SM efficacy. Finally, metabolic analysis revealed that the ABC transporter pathway was activated in SM-resistant OSSC cells, and SMs combined with ABC transporter inhibitors improved cell death sensitivity to overcome SM resistance. These studies highlight the therapeutic potential of SMs in OSCC and support patient stratification to improve efficacy with the addition of adjuvant therapy.
Collapse
Affiliation(s)
- Yuhan Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zijian Liu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Si
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wanqiu Lu
- School of Biopharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Wanyong Jin
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zihui Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinyang Hu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Pei Weng
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Qiuya Yu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Xiaoxin Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Han MM, Wang HT, Zhang HJ, Lu JT, Guo JL, Qiu LL, Zhang X, Wang XY, Wang TY, Jia YL. A novel dual-epigenetic inhibitor enhances recombinant monoclonal antibody expression in CHO cells. Appl Microbiol Biotechnol 2024; 108:467. [PMID: 39292268 PMCID: PMC11411004 DOI: 10.1007/s00253-024-13302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Epigenetic regulation plays a central role in the regulation of a number of cellular processes such as proliferation, differentiation, cell cycle, and apoptosis. In particular, small molecule epigenetic modulators are key elements that can effectively influence gene expression by precisely regulating the epigenetic state of cells. To identify useful small-molecule regulators that enhance the expression of recombinant proteins in Chinese hamster ovary (CHO) cells, we examined a novel dual-HDAC/LSD1 inhibitor I-4 as a supplement for recombinant CHO cells. Treatment with 2 μM I-4 was most effective in increasing monoclonal antibody production. Despite cell cycle arrest at the G1/G0 phase, which inhibits cell growth, the addition of the inhibitor at 2 µM to monoclonal antibody-expressing CHO cell cultures resulted in a 1.94-fold increase in the maximal monoclonal antibody titer and a 2.43-fold increase in specific monoclonal antibody production. In addition, I-4 significantly increased the messenger RNA levels of the monoclonal antibody and histone H3 acetylation and methylation levels. We also investigated the effect on HDAC-related isoforms and found that interference with the HDAC5 gene increased the monoclonal antibody titer by 1.64-fold. The results of this work provide an effective method of using epigenetic regulatory strategies to enhance the expression of recombinant proteins in CHO cells. KEY POINTS: • HDAC/LSD1 dual-target small molecule inhibitor can increase the expression level of recombinant monoclonal antibodies in CHO cells. • By affecting the acetylation and methylation levels of histones in CHO cells and downregulating HDAC5, the production of recombinant monoclonal antibodies increased. • It provides an effective pathway for applying epigenetic regulation strategies to enhance the expression of recombinant proteins.
Collapse
Affiliation(s)
- Ming-Ming Han
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hai-Tong Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hui-Jie Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jiang-Tao Lu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jia-Liang Guo
- Junji College, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Le-Le Qiu
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xi Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Yan-Long Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
3
|
Li Y, Song Y, Liang Y. AREL1 resists the apoptosis induced by TGF-β by inhibiting SMAC in vascular endothelial cells. J Biochem Mol Toxicol 2023; 37:e23439. [PMID: 37522329 DOI: 10.1002/jbt.23439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 03/27/2023] [Accepted: 06/14/2023] [Indexed: 08/01/2023]
Abstract
Abnormal apoptosis of vascular endothelial cells is an important feature of arteriosclerosis (AS). Here, we induced apoptosis in human umbilical vein endothelial cells (HUVECs) using transforming growth factor-β (TGF-β), and investigated the role of antiapoptotic E3 ubiquitin ligase (AREL1) in the apoptosis of vascular endothelial cells. We proved that AREL1 is downregulated in TGF-β treated HUVECs. The overexpression of AREL1 inhibits the activation of Caspase-3 and Caspase-9 and attenuates cell apoptosis induced by TGF-β. According to the result of coimmunoprecipitation, AREL1 interacts with the proapoptotic proteins the second mitochondria-derived activator of caspases (SMAC) in TGF-β treated HUVECs. In addition, miR-320b inhibits the expression of AREL1, and the overexpression of AREL1 attenuates the apoptosis induced by miR-320b mimics in HUVECs. In conclusion, AREL1 is downregulated by miR-320b. AREL1 overexpression inhibits TGF-β induced apoptosis through downregulating SMAC in vascular endothelial cells. Our study explores pathogenesis regulation mechanism and new biological therapeutic targets for vascular disease.
Collapse
Affiliation(s)
- Yun Li
- Department of Medicine, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| | - Yunhong Song
- Department of Medicine, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| | - Yulian Liang
- Department of Medicine, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| |
Collapse
|
4
|
Zhan J, Song H, Wang N, Guo C, Shen N, Hua R, Shi Y, Angel C, Gu X, Xie Y, Lai W, Peng X, Yang G. Molecular and Functional Characterization of Inhibitor of Apoptosis Proteins (IAP, BIRP) in Echinococcus granulosus. Front Microbiol 2020; 11:729. [PMID: 32390980 PMCID: PMC7188921 DOI: 10.3389/fmicb.2020.00729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
The larval stage of Echinococcus granulosus sensu lato, resulting in cystic echinococcosis, a parasitic zoonosis, causes huge economic losses to the livestock industry and poses a threat to public health. Inhibitor of apoptosis proteins (IAPs) is a class of endogenous anti-apoptotic family, which plays a significant functional role in the regulation of organism’s development. Herein, to explore potential functions of IAPs in E. granulosus, two members of IAPs from E. granulosus (Eg-IAP and Eg-BIRP) were cloned, expressed, and molecularly characterized. Eg-IAP and Eg-BIRP encoded putative 331 and 168 residue proteins, respectively. Bioinformatic analysis showed that both proteins contained a type II BIR domain-the essential functional domain of IAPs. Fluorescence immunohistochemistry revealed that both proteins were ubiquitously localized in all life-cycle stages of E. granulosus. Our fluorescent quantitative PCR (RT-qPCR) results revealed relatively higher transcription levels of two Eg-IAPs in protoscoleces (PSCs) compared to the 18-day strobilated worms. We further used different concentrations of LCL161, a Smac-mimetic pan-IAPs inhibitor, to induce the apoptosis in PSCs in vitro, and revealed that the survival rate of PSCs and transcription levels of both genes were negatively correlated with the concentration of LCL161. While the results of light microscopy, transmission electron microscopy (TEM), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay also showed a higher apoptotic rate in PSCs with the increasing concentrations of LCL161. Taken together, our findings provide the reasonable evidence that both Eg-IAP and Eg-BIRP have potential implication in critical anti-apoptotic roles during the development of E. granulosus.
Collapse
Affiliation(s)
- Jiafei Zhan
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Guo
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan Shi
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Christiana Angel
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Chengdu, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Structure-based design, synthesis, and evaluation of the biological activity of novel phosphoroorganic small molecule IAP antagonists. Invest New Drugs 2020; 38:1350-1364. [PMID: 32270379 PMCID: PMC7497679 DOI: 10.1007/s10637-020-00923-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
One of the strategies employed by novel anticancer therapies is to put the process of apoptosis back on track by blocking the interaction between inhibitor of apoptosis proteins (IAPs) and caspases. The activity of caspases is modulated by the caspases themselves in a caspase/procaspase proteolytic cascade and by their interaction with IAPs. Caspases can be released from the inhibitory influence of IAPs by proapoptotic proteins such as secondary mitochondrial activator of caspases (Smac) that share an IAP binding motif (IBM). The main purpose of the present study was the design and synthesis of phosphorus-based peptidyl antagonists of IAPs that mimic the endogenous Smac protein, which blocks the interaction between IAPs and caspases. Based on the structure of the IAP antagonist and recently reported thiadiazole derivatives, we designed and evaluated the biochemical properties of a series of phosphonic peptides bearing the N-Me-Ala-Val/Chg-Pro-OH motif (Chg: cyclohexylglycine). The ability of the obtained compounds to interact with the binding groove of the X-linked inhibitor of apoptosis protein baculovirus inhibitor of apoptosis protein repeat (XIAP BIR3) domain was examined by a fluorescence polarization assay, while their potential to induce autoubiquitination followed by proteasomal degradation of cellular IAP1 was examined using the MDA-MB-231 breast cancer cell line. The highest potency against BIR3 was observed among peptides containing C-terminal phosphonic phenylalanine analogs, which displayed nanomolar Ki values. Their antiproliferative potential as well as their proapoptotic action, manifested by an increase in caspase-3 activity, was examined using various cell lines.
Collapse
|
6
|
Blaquiere N, Villemure E, Staben ST. Medicinal Chemistry of Inhibiting RING-Type E3 Ubiquitin Ligases. J Med Chem 2020; 63:7957-7985. [PMID: 32142281 DOI: 10.1021/acs.jmedchem.9b01451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The ubiquitin proteasome system (UPS) presents many opportunities for pharmacological intervention. Key players in the UPS are E3 ubiquitin ligases, responsible for conjugation of ubiquitin to specific cognate substrates. Numbering more than 600 members, these ligases represent the most selective way to intervene within this physiologically important system. This Perspective highlights some of the dedicated medicinal chemistry efforts directed at inhibiting the function of specific single-protein and multicomponent RING-type E3 ubiquitin ligases. We present opportunities and challenges associated with targeting this important class of enzymes.
Collapse
Affiliation(s)
- Nicole Blaquiere
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Elisia Villemure
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven T Staben
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Future Therapeutic Directions for Smac-Mimetics. Cells 2020; 9:cells9020406. [PMID: 32053868 PMCID: PMC7072318 DOI: 10.3390/cells9020406] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
It is well accepted that the ability of cancer cells to circumvent the cell death program that untransformed cells are subject to helps promote tumor growth. Strategies designed to reinstate the cell death program in cancer cells have therefore been investigated for decades. Overexpression of members of the Inhibitor of APoptosis (IAP) protein family is one possible mechanism hindering the death of cancer cells. To promote cell death, drugs that mimic natural IAP antagonists, such as second mitochondria-derived activator of caspases (Smac/DIABLO) were developed. Smac-Mimetics (SMs) have entered clinical trials for hematological and solid cancers, unfortunately with variable and limited results so far. This review explores the use of SMs for the treatment of cancer, their potential to synergize with up-coming treatments and, finally, discusses the challenges and optimism facing this strategy.
Collapse
|
8
|
Tomicic MT, Steigerwald C, Rasenberger B, Brozovic A, Christmann M. Functional mismatch repair and inactive p53 drive sensitization of colorectal cancer cells to irinotecan via the IAP antagonist BV6. Arch Toxicol 2019; 93:2265-2277. [PMID: 31289894 DOI: 10.1007/s00204-019-02513-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/04/2019] [Indexed: 11/26/2022]
Abstract
A common strategy to overcome acquired chemotherapy resistance is the combination of a specific anticancer drug (e.g., topoisomerase I inhibitor irinotecan) together with a putative sensitizer. The purpose of this study was to analyze the cytostatic/cytotoxic response of colorectal carcinoma (CRC) cells to irinotecan, depending on the mismatch repair (MMR) and p53 status and to examine the impact of BV6, a bivalent antagonist of inhibitors of apoptosis c-IAP1/c-IAP2, alone or combined with irinotecan. Therefore, several MSH2- or MSH6-deficient cell lines were complemented for MMR deficiency, or MSH6 was knocked out/down in MMR-proficient cells. Upon irinotecan, MMR-deficient/p53-mutated lines repaired DNA double-strand breaks by homologous recombination less efficiently than MMR-proficient/p53-mutated lines and underwent elevated caspase-9-dependent apoptosis. Opposite, BV6-mediated sensitization was achieved only in MMR-proficient/p53-mutated cells. In those cells, c-IAP1 and c-IAP2 were effectively degraded by BV6, caspase-8 was fully activated, and both canonical and non-canonical NF-κB signaling were triggered. The results were confirmed ex vivo in tumor organoids from CRC patients. Therefore, the particular MMR+/p53mt signature, often found in non-metastasizing (stage II) CRC might be used as a prognostic factor for an adjuvant therapy using low-dose irinotecan combined with a bivalent IAP antagonist.
Collapse
Affiliation(s)
- Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany.
| | - Christian Steigerwald
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| | - Birgit Rasenberger
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| | - Anamaria Brozovic
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| |
Collapse
|
9
|
Huang Q, Peng Y, Peng Y, Wei D, Wei Y, Feng S. The TwistDock workflow for evaluation of bivalent Smac mimetics targeting XIAP. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1373-1388. [PMID: 31118573 PMCID: PMC6499140 DOI: 10.2147/dddt.s194276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/05/2019] [Indexed: 01/13/2023]
Abstract
Purpose: Mimetics based on Smac, the native inhibitor of XIAP, are promising drug-candidates for the treatment of cancer. Bivalent Smac mimetics inhibit XIAP with even higher potency than monovalent mimetics, but how to optimize the linker that tethers the two monovalent binding motifs remains controversial. Methods: To construct an ensemble of bivalent complex structures for evaluating various linkers, we propose herein a workflow, named TwistDock, consisting of steps of monovalent docking and linker twisting, in which the degrees of freedom are sampled focusing on the rotation of single bonds of the linker. Results: The obtained conformations of bivalent complex distribute randomly in the conformational space with respect to two reaction coordinates introduced by the linker, which are the distance of the two binding motifs and the dihedral angle of the two planes through the linker and each of the binding motifs. Molecular dynamics starting from 10 conformations with the lowest enthalpy of every complex shows that the conformational tendency of the complex participated by compound 9, one of the compounds with the largest binding affinity, is distinct from others. By umbrella sampling of the complex, we find its global minimum of the free energy landscape. The structure shows that the linker favors a compact conformation, and the two BIR domains of XIAP encompass the ligand on the opposite sides. Conclusion: TwistDock can be used in fine-tuning of bivalent ligands targeting XIAP and similar receptors dimerized or oligomerized.
Collapse
Affiliation(s)
- Qingsheng Huang
- Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology and Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Yin Peng
- Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Yuefeng Peng
- Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology and Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China.,Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, MD 20903, USA
| | - Dan Wei
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Yanjie Wei
- Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology and Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Shengzhong Feng
- Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology and Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
10
|
Cong H, Xu L, Wu Y, Qu Z, Bian T, Zhang W, Xing C, Zhuang C. Inhibitor of Apoptosis Protein (IAP) Antagonists in Anticancer Agent Discovery: Current Status and Perspectives. J Med Chem 2019; 62:5750-5772. [DOI: 10.1021/acs.jmedchem.8b01668] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hui Cong
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Lijuan Xu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yougen Wu
- College of Tropical Agriculture and Forestry, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Tengfei Bian
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
11
|
Huang X, Xiao F, Li Y, Qian W, Ding W, Ye X. Bypassing drug resistance by triggering necroptosis: recent advances in mechanisms and its therapeutic exploitation in leukemia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:310. [PMID: 30541583 PMCID: PMC6291981 DOI: 10.1186/s13046-018-0976-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022]
Abstract
Resistance to regulated cell death is one of the hallmarks of human cancers; it maintains cell survival and significantly limits the effectiveness of conventional drug therapy. Leukemia represents a class of hematologic malignancies that is characterized by dysregulation of cell death pathways and treatment-related resistance. As the majority of chemotherapeutic and targeted drugs kill leukemia cells by triggering apoptosis, the observed resistance indicates the need for novel therapeutic strategies to reactivate nonapoptotic cell death programs in refractory leukemia. Necroptosis is a regulated form of necrosis that is precisely modulated by intracellular signaling pathways and thus provides potential molecular targets for rational therapeutic intervention. Indeed, accumulating evidence indicates that many current antitumor agents can activate necroptotic pathways and thereby induce leukemia cell death. Elucidation of the complete regulatory mechanism of necroptosis is expected to accelerate the development of novel therapeutic strategies for overcoming apoptosis resistance in leukemia. Here, we review the latest research advances in the regulatory mechanisms of necroptosis and summarize the progression of necroptosis-based therapeutic strategies in leukemia.
Collapse
Affiliation(s)
- Xianbo Huang
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China
| | - Feng Xiao
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China.,Malignant Lymphoma Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yuan Li
- Institute of Hematology, the First Hospital of Jiaxing, Jiaxing, 314000, China
| | - Wenbin Qian
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China.,Malignant Lymphoma Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wei Ding
- Department of Pathology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China.
| | - Xiujin Ye
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
12
|
Rathore R, McCallum JE, Varghese E, Florea AM, Büsselberg D. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs). Apoptosis 2018; 22:898-919. [PMID: 28424988 PMCID: PMC5486846 DOI: 10.1007/s10495-017-1375-1] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibitors of apoptosis (IAPs) are a family of proteins that play a significant role in the control of programmed cell death (PCD). PCD is essential to maintain healthy cell turnover within tissue but also to fight disease or infection. Uninhibited, IAPs can suppress apoptosis and promote cell cycle progression. Therefore, it is unsurprising that cancer cells demonstrate significantly elevated expression levels of IAPs, resulting in improved cell survival, enhanced tumor growth and subsequent metastasis. Therapies to target IAPs in cancer has garnered substantial scientific interest and as resistance to anti-cancer agents becomes more prevalent, targeting IAPs has become an increasingly attractive strategy to re-sensitize cancer cells to chemotherapies, antibody based-therapies and TRAIL therapy. Antagonism strategies to modulate the actions of XIAP, cIAP1/2 and survivin are the central focus of current research and this review highlights advances within this field with particular emphasis upon the development and specificity of second mitochondria-derived activator of caspase (SMAC) mimetics (synthetic analogs of endogenously expressed inhibitors of IAPs SMAC/DIABLO). While we highlight the potential of SMAC mimetics as effective single agent or combinatory therapies to treat cancer we also discuss the likely clinical implications of resistance to SMAC mimetic therapy, occasionally observed in cancer cell lines.
Collapse
Affiliation(s)
- Rama Rathore
- College of Literature, Sciences and the Arts, University of Michigan-Ann Arbor, Ann Arbor, MI, 48109, USA
| | | | | | - Ana-Maria Florea
- Institute of Neuropathology, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | | |
Collapse
|
13
|
Finimundy TC, Abreu RM, Bonetto N, Scariot FJ, Dillon AJ, Echeverrigaray S, Barros L, Ferreira IC, Henriques JA, Roesch-Ely M. Apoptosis induction by Pleurotus sajor-caju (Fr.) Singer extracts on colorectal cancer cell lines. Food Chem Toxicol 2018; 112:383-392. [DOI: 10.1016/j.fct.2018.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/01/2023]
|
14
|
Wang L, Wei Y, Yan Y, Wang H, Yang J, Zheng Z, Zha J, Bo P, Tang Y, Guo X, Chen W, Zhu X, Ge L. CircDOCK1 suppresses cell apoptosis via inhibition of miR‑196a‑5p by targeting BIRC3 in OSCC. Oncol Rep 2017; 39:951-966. [PMID: 29286141 PMCID: PMC5802043 DOI: 10.3892/or.2017.6174] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most frequent oral cancer in the world, accounting for more than 90% of all oral cancer diagnosis. Circular RNAs (circRNAs) are large types of non-coding RNAs, demonstrating a great capacity of regulating the expression of genes. However, most of the functions of circRNAs are still unknown. Recent research revealed that circRNAs could serve as a miRNA-sponge, consequently regulating the expression of target genes indirectly, including oncogenes. In this study, we built an apoptotic model with TNF-α, and then we confirmed a circRNA associated with the apoptosis of OSCC cells, circDOCK1 by comparing the expression profile of circRNAs in an apoptotic model with that in untreated OSCC cells. We ascertained the presence of circDOCK1 with qRT-PCR and circRNA sequencing. The knockdown of the expression of circDOCK1 led to the increase of apoptosis. Utilizing multiple bioinformatics methods, we predicted the interactions among circRNAs, miRNAs and genes, and built the circDOCK1/miR-196a-5p/BIRC3 axis. Both the silencing of circDOCK1 with small interfering RNA and the upregulation of the expression of miR-196a-5p with mimics led OSCC cells to increase apoptosis and decrease BIRC3 formation. We further confirmed this outcome by comparing the expression of circDOCK1, miR-196a-5p and BIRC3 in oral squamous carcinoma tissue with those in para-carcinoma tissue, and examining the expression profile of circRNAs in oral squamous carcinoma tissue and para-carcinoma tissue with microarray. Our results demonstrated that circDOCK1 regulated BIRC3 expression by functioning as a competing endogenous RNA (ceRNA) and participated in the process of OSCC apoptosis. Thus, we propose that circDOCK1 could represent a novel potential biomarker and therapeutic target of OSCC.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Yongxiang Wei
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Haiyan Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Jiantin Yang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Zhichao Zheng
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Jun Zha
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Peng Bo
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Yinghua Tang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Xueqi Guo
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Weihong Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Xinxin Zhu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| |
Collapse
|
15
|
Systematic approaches to identify E3 ligase substrates. Biochem J 2017; 473:4083-4101. [PMID: 27834739 PMCID: PMC5103871 DOI: 10.1042/bcj20160719] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022]
Abstract
Protein ubiquitylation is a widespread post-translational modification, regulating cellular signalling with many outcomes, such as protein degradation, endocytosis, cell cycle progression, DNA repair and transcription. E3 ligases are a critical component of the ubiquitin proteasome system (UPS), determining the substrate specificity of the cascade by the covalent attachment of ubiquitin to substrate proteins. Currently, there are over 600 putative E3 ligases, but many are poorly characterized, particularly with respect to individual protein substrates. Here, we highlight systematic approaches to identify and validate UPS targets and discuss how they are underpinning rapid advances in our understanding of the biochemistry and biology of the UPS. The integration of novel tools, model systems and methods for target identification is driving significant interest in drug development, targeting various aspects of UPS function and advancing the understanding of a diverse range of disease processes.
Collapse
|
16
|
SHh-Gli1 signaling pathway promotes cell survival by mediating baculoviral IAP repeat-containing 3 (BIRC3) gene in pancreatic cancer cells. Tumour Biol 2016; 37:9943-50. [PMID: 26815504 DOI: 10.1007/s13277-016-4898-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/20/2016] [Indexed: 12/19/2022] Open
Abstract
The abnormally activated hedgehog (Hh) signaling pathway is involved in the regulation of proliferation and apoptosis in pancreatic cancer cells, while its exact molecular mechanism is not clear. The purpose of this study was to investigate the regulatory effect of Hh signaling pathway on the transcription of BIRC3 gene and its underlying mechanism in pancreatic cancer cells, as well as the relationship between the Gli1-dependent BIRC3 transcription and cell survival. Firstly, we examined the effect of knockdown or overexpression of Hh on BIRC3 messenger RNA (mRNA) expression by real-time RT-PCR. Then, the regulatory mechanism of Gli1 to BIRC3 gene transcription was investigated by XChIP-PCR and luciferase assays. Finally, the cell survival mediated by the Gli1-dependent BIRC3 transcription was studied by MTT and annexin V-FITC/propidiumiodide (PI) assays. We found that the expression level of BIRC3 mRNA was positively correlated to SHh/Gli1 signaling activation in three pancreatic cancer cell lines. The XChIP-PCR and luciferase assays data showed that the transcription factor Gli1 bound to some enhancers within the promoter regions of BIRC3 gene and promoted gene transcription. The cell proliferation was increased significantly by SHh/Gli1 expression while the apoptotic rate was reduced under the same condition. Moreover, BIRC3 knockdown inhibited cell proliferation and survival induced by SHh overexpression. Our study reveals that Gli1 promoted transcription of BIRC3 gene via cis-acting elements and the SHh-Gli1 signaling pathway maintained cell survival partially through this Gli1-dependent BIRC3 model in pancreatic cancer cells.
Collapse
|