1
|
Jeon D, Hill E, McNeel DG. Toll-like receptor agonists as cancer vaccine adjuvants. Hum Vaccin Immunother 2024; 20:2297453. [PMID: 38155525 PMCID: PMC10760790 DOI: 10.1080/21645515.2023.2297453] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy to treat cancer patients. Among the wide range of immunological approaches, cancer vaccines have been investigated to activate and expand tumor-reactive T cells. However, most cancer vaccines have not shown significant clinical benefit as monotherapies. This is likely due to the antigen targets of vaccines, "self" proteins to which there is tolerance, as well as to the immunosuppressive tumor microenvironment. To help circumvent immune tolerance and generate effective immune responses, adjuvants for cancer vaccines are necessary. One representative adjuvant family is Toll-Like receptor (TLR) agonists, synthetic molecules that stimulate TLRs. TLRs are the largest family of pattern recognition receptors (PRRs) that serve as the sensors of pathogens or cellular damage. They recognize conserved foreign molecules from pathogens or internal molecules from cellular damage and propel innate immune responses. When used with vaccines, activation of TLRs signals an innate damage response that can facilitate the development of a strong adaptive immune response against the target antigen. The ability of TLR agonists to modulate innate immune responses has positioned them to serve as adjuvants for vaccines targeting infectious diseases and cancers. This review provides a summary of various TLRs, including their expression patterns, their functions in the immune system, as well as their ligands and synthetic molecules developed as TLR agonists. In addition, it presents a comprehensive overview of recent strategies employing different TLR agonists as adjuvants in cancer vaccine development, both in pre-clinical models and ongoing clinical trials.
Collapse
Affiliation(s)
- Donghwan Jeon
- Department of Oncology, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ethan Hill
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Douglas G. McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
2
|
Zhang Q, Yu J, You Q, Wang L. Modulating Phosphorylation by Proximity-Inducing Modalities for Cancer Therapy. J Med Chem 2024; 67:21695-21716. [PMID: 39648992 DOI: 10.1021/acs.jmedchem.4c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Abnormal phosphorylation of proteins can lead to various diseases, particularly cancer. Therefore, the development of small molecules for precise regulation of protein phosphorylation holds great potential for drug design. While the traditional kinase/phosphatase small-molecule modulators have shown some success, achieving precise phosphorylation regulation has proven to be challenging. The emergence of heterobifunctional molecules, such as phosphorylation-inducing chimeric small molecules (PHICSs) and phosphatase recruiting chimeras (PHORCs), with proximity-inducing modalities is expected to lead to a breakthrough by specifically recruiting kinase or phosphatase to the protein of interest. Herein, we summarize the drug targets with aberrant phosphorylation in cancer and underscore the potential of correcting phosphorylation in cancer therapy. Through reported cases of heterobifunctional molecules targeting phosphorylation regulation, we highlight the current design strategies and features of these molecules. We also provide a systematic elaboration of the link between aberrantly phosphorylated targets and cancer as well as the existing challenges and future research directions for developing heterobifunctional molecular drugs for phosphorylation regulation.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Gao L, Zuo XL, Dong LL, Zhou SF, Wang ZJ, Duan YS, Chen MY, Zhu QX, Zhang JX. Hepatocyte mitochondrial DNA mediates macrophage immune response in liver injury induced by trichloroethylene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116317. [PMID: 38615641 DOI: 10.1016/j.ecoenv.2024.116317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
We have previously shown that excessive activation of macrophage proinflammatory activity plays a key role in TCE-induced immune liver injury, but the mechanism of polarization is unclear. Recent studies have shown that TLR9 activation plays an important regulatory role in macrophage polarization. In the present study, we demonstrated that elevated levels of oxidative stress in hepatocytes mediate the release of mtDNA into the bloodstream, leading to the activation of TLR9 in macrophages to regulate macrophage polarization. In vivo experiments revealed that pretreatment with SS-31, a mitochondria-targeting antioxidant peptide, reduced the level of oxidative stress in hepatocytes, leading to a decrease in mtDNA release. Importantly, SS-31 pretreatment inhibited TLR9 activation in macrophages, suggesting that hepatocyte mtDNA may activate TLR9 in macrophages. Further studies revealed that pharmacological inhibition of TLR9 by ODN2088 partially blocked macrophage activation, suggesting that the level of macrophage activation is dependent on TLR9 activation. In vitro experiments involving the extraction of mtDNA from TCE-sensitized mice treated with RAW264.7 cells further confirmed that hepatocyte mtDNA can activate TLR9 in mouse peritoneal macrophages, leading to macrophage polarization. In summary, our study comprehensively confirmed that TLR9 activation in macrophages is dependent on mtDNA released by elevated levels of oxidative stress in hepatocytes and that TLR9 activation in macrophages plays a key role in regulating macrophage polarization. These findings reveal the mechanism of macrophage activation in TCE-induced immune liver injury and provide new perspectives and therapeutic targets for the treatment of OMDT-induced immune liver injury.
Collapse
Affiliation(s)
- Lei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xu-Lei Zuo
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Luo-Lun Dong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Si-Fan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhou-Jian Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuan-Sheng Duan
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mu-Yue Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qi-Xing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.
| | - Jia-Xiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
4
|
Andersson P. Preclinical Safety Assessment of Therapeutic Oligonucleotides. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2434:355-370. [PMID: 35213031 DOI: 10.1007/978-1-0716-2010-6_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the last decade, therapeutic oligonucleotide drugs (OND) have witnessed a tremendous development in chemistry and mechanistic understanding that have translated into successful clinical applications. Depending on the specific OND mechanism, chemistry, and design, the DMPK and toxicity properties can vary significantly between different OND classes and delivery approaches, the latter including lipid formulations or conjugation approaches to enhance productive OND uptake. At the same time, with the only difference between compounds being the nucleobase sequence, ONDs with same mechanism of action, chemistry, and design show relatively consistent behavior, allowing certain extrapolations between compounds within an OND class. This chapter provides a summary of the most common toxicities, the improved mechanistic understanding and the safety assessment activities performed for therapeutic oligonucleotides during the drug discovery and development process. Several of the considerations described for therapeutic applications should also be of value for the scientists mainly using oligonucleotides as research tools to explore various biological processes.
Collapse
Affiliation(s)
- Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
5
|
Karime C, Wang J, Woodhead G, Mody K, Hennemeyer CT, Borad MJ, Mahadevan D, Chandana SR, Babiker H. Tilsotolimod: an investigational synthetic toll-like receptor 9 (TLR9) agonist for the treatment of refractory solid tumors and melanoma. Expert Opin Investig Drugs 2021; 31:1-13. [PMID: 34913781 DOI: 10.1080/13543784.2022.2019706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cancer immunotherapy has seen tremendous strides in the past 15 years, with the introduction of several novel immunotherapeutic agents. Nevertheless, as clinical practice has shown, significant challenges remain with a considerable number of patients responding sub-optimally to available therapeutic options. Research has demonstrated the important immunoregulatory role of the tumor microenvironment (TME), with the potential to either hinder or promote an effective anti-tumor immune response. As such, scientific efforts have focused on investigating novel candidate immunomodulatory agents with the potential to alter the TME toward a more immunopotentiating composition. AREAS COVERED Herein, we discuss the novel investigational toll-like receptor 9 agonist tilsotolimod currently undergoing phase II and III clinical trials for advanced refractory cancer, highlighting its mode of action, efficacy, tolerability, and potential future applications in the treatment of cancer. To this effect, we conducted an exhaustive Web of Science and PubMed search to evaluate available research on tilsotolimod as of August 2021. EXPERT OPINION With encouraging early clinical results demonstrating extensive TME immunomodulation and abscopal effects on distant tumor lesions, tilsotolimod has emerged as a potential candidate immunomodulatory agent with the possibility to augment currently available immunotherapy and provide novel avenues of treatment for patients with advanced refectory cancer.
Collapse
Affiliation(s)
| | - Jing Wang
- Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Gregory Woodhead
- Department of Medical Imaging, University of Arizona Collage of Medicine, Tucson, AZ, USA
| | - Kabir Mody
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Charles T Hennemeyer
- Department of Medical Imaging, University of Arizona Collage of Medicine, Tucson, AZ, USA
| | - Mitesh J Borad
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Daruka Mahadevan
- Division of Hematology and Oncology, University of Texas Health San Antonio, TX, USA
| | - Sreenivasa R Chandana
- Department of Medicine, Michigan State University, East Lansing, MI, USA.,Phase I Program, Start Midwest, Grand Rapids, MI, USA
| | - Hani Babiker
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
6
|
Tseng JC, Yang JX, Liu YL, Su YW, Lee AYL, Chen YW, Liu KJ, Luo Y, Hong YR, Chuang TH. Sharpening up tumor microenvironment to enhance the efficacy of immune checkpoint blockade on head and neck cancer using a CpG-oligodeoxynucleotide. Cancer Immunol Immunother 2021; 71:1115-1128. [PMID: 34581869 PMCID: PMC9016021 DOI: 10.1007/s00262-021-03062-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/17/2021] [Indexed: 12/09/2022]
Abstract
Head and neck cancers are a type of life-threatening cancers characterized by an immunosuppressive tumor microenvironment. Only less than 20% of the patients respond to immune checkpoint blockade therapy, indicating the need for a strategy to increase the efficacy of immunotherapy for this type of cancers. Previously, we identified a type B CpG-oligodeoxynucleotide (CpG-ODN) called CpG-2722, which has the universal activity of eliciting an immune response in grouper, mouse, and human cells. In this study, we further characterized and compared its cytokine-inducing profiles with different types of CpG-ODNs. The antitumor effect of CpG-2722 was further investigated alone and in combination with an immune checkpoint inhibitor in a newly developed syngeneic orthotopic head and neck cancer animal model. Along with other inflammatory cytokines, CpG-2722 induces the gene expressions of interleukin-12 and different types of interferons, which are critical for the antitumor response. Both CpG-2722 and anti-programmed death (PD)-1 alone suppressed tumor growth. Their tumor suppression efficacies were further enhanced when CpG-2722 and anti-PD-1 were used in combination. Mechanistically, CpG-2722 shaped a tumor microenvironment that is favorable for the action of anti-PD-1, which included promoting the expression of different cytokines such as IL-12, IFN-β, and IFN-γ, and increasing the presence of plasmacytoid dendritic cells, M1 macrophages, and CD8 positive T cells. Overall, CpG-2722 provided a priming effect for CD8 positive T cells by sharpening the tumor microenvironment, whereas anti-PD-1 released the brake for their tumor-killing effect, resulting in an enhanced efficacy of the combined CpG-2722 and anti-PD-1.
Collapse
Affiliation(s)
- Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
7
|
Jin Y, Zhuang Y, Dong X, Liu M. Development of CpG oligodeoxynucleotide TLR9 agonists in anti-cancer therapy. Expert Rev Anticancer Ther 2021; 21:841-851. [PMID: 33831324 DOI: 10.1080/14737140.2021.1915136] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Toll-like receptor-9(TLR9) can recognize the foreign unmethylated CpG DNA, and thus intrigue a strong Th1 response which plays a crucial role in the innate and adaptive immune responses. To date, CpG oligodeoxynucleotide (ODN)-based TLR9 agonists have undergone four generations. Each generations' breakthroughs in immune activation, safety profiles and pharmacokinetic properties were confirmed by both preclinical and clinical studies. AREAS COVERED We reviewed the development and major clinical trials of TLR9 agonists and summarized the optimization strategies of each generation. The applications, limitations and prospects of TLR9 agonists in cancer immunotherapy are also discussed. EXPERT OPINION Clinical trials of CpG ODN TLR9 agonists as a single agent demonstrated insufficient efficacy to reverse the immunosuppressive status of majority of patients with high tumor burden. Therefore, more efforts are now been carried out in combination with chemotherapy, radiotherapy and immunotherapy maintenance therapy as well as vaccine adjuvant. Importantly, the synergistic and complementary effect of TLR9 agonists and tumor immune checkpoint inhibitor therapy is expected to exert greater potential. On the other hand, the double-edged sword effect of TLR9 activation in tumor and toxic effect reported in combination therapies should be noted and further studies required.
Collapse
Affiliation(s)
- Yizhen Jin
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yuxin Zhuang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Mei Liu
- Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, P.R. China
| |
Collapse
|
8
|
Sommariva M, De Cecco L, Tagliabue E, Balsari A. Modulation of DNA repair genes induced by TLR9 agonists: A strategy to eliminate "altered" cells? Oncoimmunology 2021; 1:258-259. [PMID: 22720263 PMCID: PMC3377000 DOI: 10.4161/onci.1.2.18343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We provided evidence that the TLR9 engagement of innate immune cells present in the tumor microenvironment by CpG-oligodeoxynucleotide (CpG-ODN) induces down-modulation of DNA repair gene expression in tumor cells, sensitizing cancer cells to DNA-damaging chemotherapy. These findings expand the benefits of CpG-ODN therapy beyond induction of a strong immune response.
Collapse
Affiliation(s)
- Michele Sommariva
- Department of Human Morphology and Biomedical Sciences "Città Studi"; Università degli Studi di Milano; Milan, Italy ; Molecular Targeting Unit Fondazione IRCCS; Istituto Nazionale Tumori; Milan, Italy
| | | | | | | |
Collapse
|
9
|
Chuang YC, Tseng JC, Huang LR, Huang CM, Huang CYF, Chuang TH. Adjuvant Effect of Toll-Like Receptor 9 Activation on Cancer Immunotherapy Using Checkpoint Blockade. Front Immunol 2020; 11:1075. [PMID: 32547560 PMCID: PMC7274158 DOI: 10.3389/fimmu.2020.01075] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy using checkpoint blockade has revolutionized cancer treatment, improving patient survival and quality of life. Nevertheless, the clinical outcomes of such immunotherapy are highly heterogeneous between patients. Depending on the cancer type, the patient response rates to this immunotherapy are limited to 20–30%. Based on the mechanism underlying the antitumor immune response, new therapeutic strategies have been designed with the aim of increasing the effectiveness and specificity of the antitumor immune response elicited by checkpoint blockade agents. The activation of toll-like receptor 9 (TLR9) by its synthetic agonists induces the antitumor response within the innate immunity arm, generating adjuvant effects and priming the adaptive immune response elicited by checkpoint blockade during the effector phase of tumor-cell killing. This review first describes the underlying mechanisms of action and current status of monotherapy using TLR9 agonists and immune checkpoint inhibitors for cancer immunotherapy. The rationale for combining these two agents is discussed, and evidence indicating the current status of such combination therapy as a novel cancer treatment strategy is presented.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
10
|
Palomares F, Ramos‐Soriano J, Gomez F, Mascaraque A, Bogas G, Perkins JR, Gonzalez M, Torres MJ, Diaz‐Perales A, Rojo J, Mayorga C. Pru p 3‐Glycodendropeptides Based on Mannoses Promote Changes in the Immunological Properties of Dendritic and T‐Cells from LTP‐Allergic Patients. Mol Nutr Food Res 2019; 63:e1900553. [DOI: 10.1002/mnfr.201900553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/13/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Francisca Palomares
- Research LaboratoryIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
| | - Javier Ramos‐Soriano
- Glycosystems LaboratoryInstitute for Chemical Research (IIQ)CSIC – University of Seville 41092 Seville Spain
| | - Francisca Gomez
- Allergy UnitIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
| | - Ainhoa Mascaraque
- Glycosystems LaboratoryInstitute for Chemical Research (IIQ)CSIC – University of Seville 41092 Seville Spain
| | - Gador Bogas
- Allergy UnitIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
| | - James Richard Perkins
- Research LaboratoryIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
| | - Miguel Gonzalez
- Research LaboratoryIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
| | - Maria Jose Torres
- Allergy UnitIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
| | | | - Javier Rojo
- Glycosystems LaboratoryInstitute for Chemical Research (IIQ)CSIC – University of Seville 41092 Seville Spain
| | - Cristobalina Mayorga
- Research LaboratoryIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
- Allergy UnitIBIMA‐Regional University Hospital of Malaga‐UMA 29009 Malaga Spain
| |
Collapse
|
11
|
Huynh J, Chand A, Gough D, Ernst M. Therapeutically exploiting STAT3 activity in cancer - using tissue repair as a road map. Nat Rev Cancer 2019; 19:82-96. [PMID: 30578415 DOI: 10.1038/s41568-018-0090-8] [Citation(s) in RCA: 352] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tightly orchestrated temporal and spatial control of signal transducer and activator of transcription 3 (STAT3) activity in epithelial, immune and stromal cells is critical for wound healing and tissue repair. Excessive STAT3 activation within cancer cells and cells of the tumour microenvironment can be viewed as a neoplastic mimic of an inflammation-driven repair response that collectively promotes tumour progression. In addition to the canonical transcriptional pathways by which STAT3 promotes stem cell-like characteristics, survival, proliferation, metastatic potential and immune evasion, cytoplasmic STAT3 activity fuels tumour growth by metabolic and other non-transcriptional mechanisms. Here, we review the tumour-modulating activities of STAT3 in light of its role as a signalling node integrating inflammatory responses during wound healing. Accordingly, many of the cytokines that contribute to the para-inflammatory state of most solid malignancies converge on and underpin dysregulated STAT3 activity. Targeting of these cytokines, their cognate receptors and associated signalling cascades in clinical trials is beginning to demonstrate therapeutic efficacy, given that interference with STAT3 activity is likely to simultaneously curb the growth of cancer cells and augment antitumour immunity.
Collapse
Affiliation(s)
- Jennifer Huynh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Ashwini Chand
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia
| | - Daniel Gough
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria, Australia.
| |
Collapse
|
12
|
Rajendrakumar SK, Uthaman S, Cho CS, Park IK. Nanoparticle-Based Phototriggered Cancer Immunotherapy and Its Domino Effect in the Tumor Microenvironment. Biomacromolecules 2018; 19:1869-1887. [DOI: 10.1021/acs.biomac.8b00460] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|
13
|
Yuan S, Qiao T, Li X, Zhuang X, Chen W, Chen X, Zhang Q. Toll-like receptor 9 activation by CpG oligodeoxynucleotide 7909 enhances the radiosensitivity of A549 lung cancer cells via the p53 signaling pathway. Oncol Lett 2018. [PMID: 29541253 DOI: 10.3892/ol.2018.7916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Unmethylated cytosine-phosphorothioate-guanine (CpG)-containing oligodeoxynucleotides (ODNs) are synthetic DNA sequences that mimic bacterial DNA, and are known to serve as ligands for Toll-like receptor 9 (TLR9). The interaction between a CpG ODNs with TLR9 activates the complex downstream cascade that contributes to exerting its function. In the present study, the results of clonogenic assays demonstrated that the activation of TLR9 by CpG ODNs significantly increased the radiosensitivity of A549 lung cancer cells, with a sensitivity enhancement ratio (SER) of 1.28. When the expression of TLR9 was effectively silenced, CpG ODNs used alone were identified to produce SERs as low as 1.01. Flow cytometry demonstrated that the interaction between TLR9 and CpG ODN 7909 alone did not significantly affect the rate of apoptosis, but may significantly enhance the radiation-induced apoptosis of A549 cells. Western blot analysis revealed that TLR9 activation by CpG ODN 7909 increased the levels of mitogen-activated protein kinase 14, cellular tumor antigen p53, B-cell lymphoma 2 associated X protein and genome polyprotein, and decreased Bcl-2 expression levels, whereas these effects were not observed in CpG ODN 7909-treated cells in which TLR9 was knocked down. These results suggest that CpG ODN 7909 may enhance radiosensitivity through TLR9 activation, and partially via the p53 pathway in A549 lung cancer cells.
Collapse
Affiliation(s)
- Sujuan Yuan
- Department of Oncology, Jinshan Hospital, Shanghai Medical College, Fudan University, Shanghai 201508, P.R. China
| | - Tiankui Qiao
- Department of Oncology, Jinshan Hospital, Shanghai Medical College, Fudan University, Shanghai 201508, P.R. China
| | - Xuan Li
- Department of Oncology, Jinshan Hospital, Shanghai Medical College, Fudan University, Shanghai 201508, P.R. China
| | - Xibing Zhuang
- Department of Oncology, Jinshan Hospital, Shanghai Medical College, Fudan University, Shanghai 201508, P.R. China
| | - Wei Chen
- Department of Oncology, Jinshan Hospital, Shanghai Medical College, Fudan University, Shanghai 201508, P.R. China
| | - Xue Chen
- Department of Radiology, Shanghai Cancer Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Qi Zhang
- Department of Oncology, Jinshan Hospital, Shanghai Medical College, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
14
|
Abstract
The development of immunotherapies for lymphoma has undergone a revolutionary evolution over the past decades. Since the advent of rituximab as the first successful immunotherapy for B-cell non-Hodgkin lymphoma over two decades ago, a plethora of new immunotherapeutic approaches to treat lymphoma has ensued. Four of the most exciting classes of immunotherapies include: chimeric antigen receptor T-cells, bispecific antibodies, immune checkpoint inhibitors, and vaccines. However, with addition of these novel therapies the appropriate timing of treatment, optimal patient population, duration of therapy, toxicity, and cost must be considered. In this review, we describe the most-promising immunotherapeutic approaches for the treatment of lymphoma in clinical development, specifically focusing on clinical trials performed to date and strategies for improvement.
Collapse
Affiliation(s)
- Benjamin Heyman
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine.,Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
15
|
Sawa-Wejksza K, Kandefer-Szerszeń M. Tumor-Associated Macrophages as Target for Antitumor Therapy. Arch Immunol Ther Exp (Warsz) 2017; 66:97-111. [PMID: 28660349 PMCID: PMC5851686 DOI: 10.1007/s00005-017-0480-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
It is well known that the microenvironment of solid tumors is rich in inflammatory cells that influence tumor growth and development. Macrophages, called tumor-associated macrophages (TAMs), are the most abundant immune cell population present in tumor tissue. Several studies have demonstrated that the density of TAMs is associated with a poor prognosis and positively correlates with tumor growth. Several studies have proved that TAMs may activate and protect tumor stem cells, stimulate their proliferation as well as promote angiogenesis and metastasis. Furthermore, TAMs-derived cytokines and other proteins, such as CCL-17, CCL-22, TGF-β, IL-10, arginase 1, and galectin-3, make a significant contribution to immunosuppression. Since TAMs influence various aspects of cancer progression, there are many attempts to use them as a target for immunotherapy. The numerous studies have shown that the primary tumor growth and the number of metastatic sites can be significantly decreased by decreasing the population of macrophages in tumor tissue, for example, by blocking recruitment of monocytes or eliminating TAMs already present in the tumor tissue. Moreover, there are attempts at reprogramming TAMs into proinflammatory M1 macrophages or neutralizing the protumoral products of TAMs. Another approach uses TAMs for anticancer drug delivery into the tumor environment. In this review, we would like to summarize the clinical and preclinical trials that were focused on macrophages as a target for anticancer therapies.
Collapse
Affiliation(s)
- Katarzyna Sawa-Wejksza
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Martyna Kandefer-Szerszeń
- Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
16
|
Local Delivery of the Toll-Like Receptor 9 Ligand CpG Downregulates Host Immune and Inflammatory Responses, Ameliorating Established Leishmania (Viannia) panamensis Chronic Infection. Infect Immun 2017; 85:IAI.00981-16. [PMID: 28052994 DOI: 10.1128/iai.00981-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/26/2016] [Indexed: 01/26/2023] Open
Abstract
Infection by Leishmania (Viannia) panamensis, the predominant etiologic agent for cutaneous leishmaniasis in Colombia, is characterized by a chronic mixed inflammatory response. Current treatment options are plagued by toxicity, lengthy treatment regimens, and growing evidence of drug resistance. Immunotherapy, modulating the immune system to mount a protective response, may provide an alternate therapeutic approach. We investigated the ability of the Toll-like receptor 9 (TLR9) ligand CpG to modulate established disease in the L (V) panamensis mouse model. Treatment of established infection with a high dose (50 μg) of CpG ameliorated disease and lowered parasite burden. Interestingly, immediately after treatment there was a significant increase in transforming growth factor β (TGF-β) and concomitantly an increase in T regulatory cell (Treg) function. Although a general reduction in cell-mediated immune cytokine and chemokine (gamma interferon [IFN-γ], interleukin 10 [IL-10], IL-13, IL-6, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-4, and MIP-1α) responses of the treated mice was observed, certain chemokines (RANTES, monocyte chemoattractant protein 1[MCP-1], and IP-10) were increased. Further, in peripheral blood mononuclear cells (PBMCs) from patients with cutaneous leishmaniasis, CpG treatment similarly exhibited a dose-response effect on the production of IFN-γ, IL-17, IL-10, and IL-13, with reductions observed at higher doses. To further understand the underlying mechanisms and cell populations driving the CpG mediated response, we examined the ex vivo dose effects mediated by the TLR9+ cell populations (dendritic cells, macrophages, and B cells) found to accumulate labeled CpG in vivo Notably, B cells altered the production of IL-17, IL-13, and IFN-γ, supporting a role for B cells functioning as antigen-presenting cells (APCs) and/or regulatory cells during infection. Interestingly, B cells have been previously demonstrated as a primary type of APC in patients infected with L (V) panamensis and thus may be useful targets of immunotherapy. Collectively, our results show that CpG-induced immune regulation leads to a dampening of the host immune response and healing in the mouse model, and it may provide an alternate approach to treatment of cutaneous leishmaniasis caused by L (V) panamensis.
Collapse
|
17
|
Stress impairs the efficacy of immune stimulation by CpG-C: Potential neuroendocrine mediating mechanisms and significance to tumor metastasis and the perioperative period. Brain Behav Immun 2016; 56:209-220. [PMID: 26944000 PMCID: PMC4917466 DOI: 10.1016/j.bbi.2016.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 12/29/2022] Open
Abstract
We recently reported that immune stimulation can be compromised if animals are simultaneously subjected to stressful conditions. To test the generalizability of these findings, and to elucidate neuroendocrine mediating mechanisms, we herein employed CpG-C, a novel TLR-9 immune-stimulating agent. Animals were subjected to ongoing stress (20-h of wet cage exposure) during CpG-C treatment, and antagonists to glucocorticoids, β-adrenoceptor, COX2, or opioids were employed (RU486, nadolol, etodolac, naltrexone). In F344 rats, marginating-pulmonary NK cell numbers and cytotoxicity were studied, and the NK-sensitive MADB106 experimental metastasis model was used. In Balb/C mice, experimental hepatic metastases of the CT-26 colon tumor were studied; and in C57BL/6J mice, survival rates following excision of B16 melanoma was assessed - both mouse tumor models involved surgical stress. The findings indicated that simultaneous blockade of glucocorticoid and β-adrenergic receptors improved CpG-C efficacy against MADB106 metastasis. In mice bearing B16 melanoma, long-term survival rate was improved by CpG-C only when employed simultaneously with blockers of glucocorticoids, catecholamines, and prostaglandins. Prolonged stress impaired CpG-C efficacy in potentiating NK activity, and in resisting MADB106 metastasis in both sexes, as also supported by in vitro studies. This latter effect was not blocked by any of the antagonists or by adrenalectomy. In the CT26 model, prolonged stress only partially reduced the efficacy of CpG-C. Overall, our findings indicate that ongoing behavioral stress and surgery can jeopardize immune-stimulatory interventions and abolish their beneficial metastasis-reducing impacts. These findings have implications for the clinical setting, which often involve psychological and physiological stress responses during immune-stimulation.
Collapse
|
18
|
Jang JK, Khawli LA, Canter DC, Hu P, Zhu TH, Wu BW, Angell TE, Li Z, Epstein AL. Systemic delivery of chTNT-3/CpG immunoconjugates for immunotherapy in murine solid tumor models. Cancer Immunol Immunother 2016; 65:511-23. [PMID: 26960932 DOI: 10.1007/s00262-016-1813-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/19/2016] [Indexed: 12/25/2022]
Abstract
CpG oligodeoxynucleotides (CpG) potently activate the immune system by mimicking microbial DNA. Conjugation of CpG to chTNT-3, an antibody targeting the necrotic centers of tumors, enabled CpG to accumulate in tumors after systemic delivery, where it can activate the immune system in the presence of tumor antigens. CpG chemically conjugated to chTNT-3 (chTNT-3/CpG) were compared to free CpG in their ability to stimulate the immune system in vitro and reduce tumor burden in vivo. In subcutaneous Colon 26 adenocarcinoma and B16-F10 melanoma models in BALB/c and C57BL/6 mice, respectively, chTNT-3/CpG, free CpG, or several different control constructs were administered systemically. Intraperitoneal injections of chTNT-3/CpG delayed tumor growth and improved survival and were comparable to intratumorally administered CpG. Compared to saline-treated mice, chTNT-3/CpG-treated mice had smaller average tumor volumes by as much as 72% in Colon 26-bearing mice and 79% in B16-bearing mice. Systemically delivered free CpG and CpG conjugated to an isotype control antibody did not reduce tumor burden or improve survival. In this study, chTNT-3/CpG retained immunostimulatory activity of the CpG moiety and enabled delivery to tumors. Because systemically administered CpG rapidly clear the body and do not accumulate into tumors, chTNT-3/CpG provide a solution to the limitations observed in preclinical and clinical trials.
Collapse
Affiliation(s)
- Julie K Jang
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Leslie A Khawli
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - David C Canter
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Peisheng Hu
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Tian H Zhu
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Brian W Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Trevor E Angell
- Department of Endocrinology, Metabolism, and Hypertension, Thyroid Section, Brigham and Women's Hospital, Boston, MA, USA
| | - Zhongjun Li
- Department of Blood Transfusion, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Alan L Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA.
| |
Collapse
|
19
|
Xing N, Qiao T, Zhuang X, Yuan S, Zhang Q, Xu G. CpG oligodeoxyribonucleotide 7909 enhances radiosensitivity via downregulating Oct-4 expression in radioresistant lung cancer cells. Onco Targets Ther 2015; 8:1443-9. [PMID: 26109868 PMCID: PMC4472028 DOI: 10.2147/ott.s84467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy is a powerful cure for local advanced non-small cell lung cancer. However, radioresistance and tumor relapse still occur in a high proportion of patients. Octamer-4 (Oct-4), a transcription factor of the POU family, plays a key role in maintaining chemoradioresistant properties and regulating cancer progression. In this study, we demonstrated that Oct-4 expression was significantly increased in radioresistant H460 (H460R) cell line. CpG oligodeoxyribonucleotide (CpG-ODN) 7909 sensitized H460R cells when combined with irradiation treatment. The clonogenic capacity was significantly decreased, and the values of D0 and Dq were lower than those of irradiation alone group. The sensitive enhancement ratio (SER) of D0 was 1.224. This combined treatment led to a dramatic reduction in Oct-4 expression in a dose-dependent manner and also showed increased percentage of cells in the radiosensitive G2/M phase relative to either treatment alone. These results identified that Oct-4 was involved in radioresistance. CpG-ODN 7909 could enhance radiosensitivity partly through downregulating Oct-4 expression in radioresistant lung cancer cells.
Collapse
Affiliation(s)
- Na Xing
- Department of Oncology, Fudan University, Shanghai, People's Republic of China
| | - Tiankui Qiao
- Department of Oncology, Fudan University, Shanghai, People's Republic of China
| | - Xibing Zhuang
- Department of Oncology, Fudan University, Shanghai, People's Republic of China
| | - Sujuan Yuan
- Department of Oncology, Fudan University, Shanghai, People's Republic of China
| | - Qi Zhang
- Department of Oncology, Fudan University, Shanghai, People's Republic of China
| | - Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Govan JM, Young DD, Lively MO, Deiters A. Optically Triggered Immune Response through Photocaged Oligonucleotides. Tetrahedron Lett 2015; 56:3639-3642. [PMID: 26034339 DOI: 10.1016/j.tetlet.2015.01.165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacterial and viral CpG oligonculeotides are unmethylated cytosine-phosphate-guanosine dinucleotide sequences and trigger an innate immune response through activation of the toll-like receptor 9 (TLR9). We have developed synthetic photocaged CpGs via site-specific incorporation of nitropiperonyloxymethyl (NPOM)-caged thymidine residues. These oligonucleotides enable the optical control of TLR9 function and thereby provide light-activation of an immune response. We provide a proof-of-concept model by applying a reporter assay in live cells and by quantification of endogenous production of interleukin 6.
Collapse
Affiliation(s)
| | | | - Mark O Lively
- Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Alexander Deiters
- North Carolina State University, Raleigh, NC 27167 ; University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
21
|
Synergy of anti-CD40, CpG and MPL in activation of mouse macrophages. Mol Immunol 2015; 66:208-15. [PMID: 25829245 DOI: 10.1016/j.molimm.2015.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 12/23/2022]
Abstract
Activation of macrophages is a prerequisite for their antitumor effects. Several reagents, including agonistic anti-CD40 monoclonal antibody (anti-CD40), CpG oligodeoxynucleotides (CpG) and monophosphoryl lipid A (MPL), can stimulate activation of macrophages. Our previous studies showed synergy between anti-CD40 and CpG and between anti-CD40 and MPL in macrophage activation and antitumor efficacy in mice. In the present study, we asked whether there was synergy among these three reagents. The activation of adherent peritoneal exudate cells (PEC) obtained from mice injected with anti-CD40 and then treated with CpG and/or MPL in vitro was determined by their ability to suppress proliferation of tumor cells and to produce various cytokines and chemokines in vitro. Cell sorting and histology followed by functional testing showed that macrophages were the main cell population in PEC activated by CD40 ligation in vivo. A combination of anti-CD40, CpG or MPL activated PEC to suppress proliferation of B16 cells and produce nitric oxide far greater than the single reagents or any of the double combinations of these reagents. In addition, the combination of all three reagents activated PEC to secrete IL-12, IFN-γ and MCP-1 to a greater degree than any single reagent or any two combined reagents. These results demonstrate that macrophages can be synergistically activated by anti-CD40, CpG and MPL, suggesting that this novel combined approach might be further investigated as potential cancer therapy.
Collapse
|
22
|
Phase I clinical study of the toll-like receptor 9 agonist MGN1703 in patients with metastatic solid tumours. Eur J Cancer 2015; 51:146-56. [DOI: 10.1016/j.ejca.2014.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 11/03/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023]
|
23
|
Li TT, Ogino S, Qian ZR. Toll-like receptor signaling in colorectal cancer: Carcinogenesis to cancer therapy. World J Gastroenterol 2014; 20:17699-17708. [PMID: 25548469 PMCID: PMC4273121 DOI: 10.3748/wjg.v20.i47.17699] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/27/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are germ line encoded innate immune sensors that recognize conserved microbial structures and host alarmins, and signal expression of major histocompatibility complex proteins, costimulatory molecules, and inflammatory mediators by macrophages, neutrophils, dendritic cells, and other cell types. These protein receptors are characterized by their ability to respond to invading pathogens promptly by recognizing particular TLR ligands, including flagellin and lipopolysaccharide of bacteria, nucleic acids derived from viruses, and zymosan of fungi. There are 2 major TLR pathways; one is mediated by myeloid differentiation factor 88 (MYD88) adaptor proteins, and the other is independent of MYD88. The MYD88-dependent pathway involves early-phase activation of nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1) and all the TLRs, except TLR3, have been shown to activate this pathway. TLR3 and TLR4 act via MYD88-independent pathways with delayed activation of NF-κB signaling. TLRs play a vital role in activating immune responses. TLRs have been shown to mediate inflammatory responses and maintain epithelial barrier homeostasis, and are highly likely to be involved in the activation of a number of pathways following cancer therapy. Colorectal cancer (CRC) is one of the most common cancers, and accounts for almost half a million deaths annually worldwide. Inflammation is considered a risk factor for many common malignancies including cancers of the colorectum. The key molecules involved in inflammation-driven carcinogenesis include TLRs. As sensors of cell death and tissue remodeling, TLRs may have a universal role in cancer; stimulation of TLRs to activate the innate immune system has been a legitimate therapeutic strategy for some years. TLRs 3/4/7/8/9 are all validated targets for cancer therapy, and a number of companies are developing agonists and vaccine adjuvants. On the other hand, antagonists may favor inhibition of signaling responsible for autoimmune responses. In this paper, we review TLR signaling in CRC from carcinogenesis to cancer therapy.
Collapse
|
24
|
MGN1703, an immunomodulator and toll-like receptor 9 (TLR-9) agonist: from bench to bedside. Crit Rev Oncol Hematol 2014; 94:31-44. [PMID: 25577571 DOI: 10.1016/j.critrevonc.2014.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/06/2014] [Accepted: 12/09/2014] [Indexed: 02/06/2023] Open
Abstract
The adaptive immune system has been the main focus of immunological strategies in oncology with only more recent approaches targeting innate immunity. Endosomal toll-like receptors (TLR-7, TLR-9) activate innate immune responses by signaling damage-associated molecular patterns (DAMP) from decaying tumor cells. This has led to the development of DNA-based TLR-9 agonists, which induce antitumor activity through innate and subsequent adaptive immune responses. Early clinical trials with CpG-ODN as TLR-9 agonists were associated with unfavorable tolerability and narrow clinical efficacy, leading to failure in pivotal trials. dSLIM, the active ingredient of MGN1703, is a DNA-based, radically different molecular alternative to CpG-ODN, which results in genuine antitumor immunomodulation. Preclinical and clinical studies of MGN1703 have confirmed that this TLR-9 agonist has therapeutic potential in a variety of solid tumors, while long-term treatment with high doses was very well tolerated. A pivotal trial of first-line maintenance treatment with MGN1703 in patients with metastatic colorectal cancer is underway.
Collapse
|
25
|
Abstract
Breast cancer is one of the leading causes of mortality in the females. Intensive efforts have been made to understand the molecular mechanisms of pathogenesis of breast cancer. The physiological conditions that lead to tumorigenesis including breast cancer are not well understood. Toll like receptors (TLRs) are essential components of innate immune system that protect the host against bacterial and viral infection. The emerging evidences suggest that TLRs are activated through pathogen associated molecular patterns (PAMPs) as well as endogenous molecules, which lead to the activation of inflammatory pathways. This leads to increased levels of several pro-inflammatory cytokines and chemokines mounting inflammation. Several evidences support the view that chronic inflammation can lead to cancerous condition. Inflammation aids in tumor progression and metastasis. Association of inflammation with breast cancer is emerging. TLR mediated activation of NF-κB and IRF is an essential link connecting inflammation to cancer. The recent reports provide several evidences, which suggest the important role of TLRs in breast cancer pathogenesis and recurrence. The current review focuses on emerging studies suggesting the strong linkages of TLR mediated regulation of inflammation during breast cancer and its metastasis emphasizing the initiation of the systematic study.
Collapse
|
26
|
Köchling J, Schmidt M, Rott Y, Sagner M, Ungefroren H, Wittig B, Henze G. Can anthocyanins improve maintenance therapy of Ph+acute lymphoblastic leukaemia? Eur J Haematol 2013; 90:291-300. [DOI: 10.1111/ejh.12071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - Yvonne Rott
- Department of Paediatrics; UKSH; Campus Lübeck; Universität zu Lübeck; Germany
| | | | | | - Burghard Wittig
- Foundation Institute Molecular Biology and Bioinformatics; Freie Universität Berlin; Germany
| | - Günter Henze
- Department of Paediatric Oncology and Haematology; Charité - Universitätsmedizin Berlin; Germany
| |
Collapse
|
27
|
Eriksen AB, Indrevær RL, Holm KL, Landskron J, Blomhoff HK. TLR9-signaling is required for turning retinoic acid into a potent stimulator of RP105 (CD180)-mediated proliferation and IgG synthesis in human memory B cells. Cell Immunol 2012; 279:87-95. [PMID: 23103284 DOI: 10.1016/j.cellimm.2012.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 11/16/2022]
Abstract
The role of vitamin A in the various parts of the immune system remains elusive. Toll-like receptors (TLRs) are involved in innate polyclonal activation of B-cells, and as such they are important for maintaining long-lasting first line defense against pathogens. Here we explore the impact of all-trans retinoic acid (RA) on B cell responses mediated via the TLR homolog RP105 (CD180). We show that RA slightly reduces the proliferation and IgG production in CD27+ memory B cells stimulated by anti-RP105 alone. However, co-stimulation with the TLR9-ligand CpG results in turning RA into a potent stimulator of RP105-induced proliferation and IgG synthesis in memory B cells. The results emphasize the important role of RA in stimulating TLR-mediated polyclonal activation and differentiation of B cells, and reveal the complex interplay between various TLRs that may underlie the ability of RA to fight pathogens.
Collapse
Affiliation(s)
- Agnete Bratsberg Eriksen
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | | | | | | | | |
Collapse
|
28
|
Köchling J, Rott Y, Arndt S, Marschke C, Schmidt M, Wittig B, Kalies K, Westermann J, Henze G. Prevention and synergistic control of Ph+ ALL by a DNA vaccine and 6-mercaptopurine. Vaccine 2012; 30:5949-55. [DOI: 10.1016/j.vaccine.2012.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/03/2012] [Accepted: 07/18/2012] [Indexed: 02/05/2023]
|
29
|
Abstract
Non-small-cell lung cancer and mesothelioma are thoracic malignancies, which in their advanced stages are incurable and have poor prognosis. Advances in our understanding of immune responses to tumours, tumour immunosuppression mechanisms, and tumour-specific shared antigens enabled successful early clinical trials of several specific and non-specific immunotherapies. For non-small-cell lung cancer, phase 3 clinical trial results of Toll-like receptor agonists show little promise. However, ongoing phase 3 trials are assessing melanoma-associated antigen A3 vaccine, liposomal BLP25, belagenpumatucel-L, and talactoferrin. In mesothelioma, immunotherapies being investigated include dendritic cell-based and Listeria-based vaccines, and allogeneic tumour cell and WT1 analogue peptide vaccines. Selection of appropriate patients and disease stages for immunotherapy, measurement of tumour-specific immune responses, and understanding the association between immune and clinical responses are some of the major challenges for the development of immunotherapies for these malignancies.
Collapse
Affiliation(s)
- Anish Thomas
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
30
|
Liu J, Xu C, Liu YL, Matsuo H, Hsieh RPF, Lo JF, Tseng PH, Yuan CJ, Luo Y, Xiang R, Chuang TH. Activation of rabbit TLR9 by different CpG-ODN optimized for mouse and human TLR9. Comp Immunol Microbiol Infect Dis 2012; 35:443-51. [PMID: 22560893 DOI: 10.1016/j.cimid.2012.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 03/24/2012] [Accepted: 03/28/2012] [Indexed: 01/08/2023]
Abstract
Synthetic CpG-oligodeoxynucleotides (CpG-ODN) are potent adjuvants that accelerate and boost antigen-specific immune responses. Toll-like receptor 9 (TLR9) is the cellular receptor for these CpG-ODN. Previous studies have shown species-specific activation of mouse TLR9 (mTLR9) and human TLR9 (hTLR9) by their optimized CpG-ODN. The interaction between rabbit TLR9 (rabTLR9) and CpG-ODN, however, has not been previously investigated. Here, we cloned and characterized rabTLR9 and comparatively investigated the activation of the rabbit, mouse, and human TLR9 by CpG-ODN. The complete open reading frame of rabTLR9 encodes 1028 amino acid residues, which share 70.6% and 75.5% of the identities of mTLR9 and hTLR9, respectively. Rabbit TLR9 is preferentially expressed in immune cells rich tissues, and is localized in intracellular vesicles. While mTLR9 and hTLR9 displayed species-specific recognition of their optimized CpG-ODN, rabbit TLR9 was activated by these CpG-ODN without any preference. This result suggests that rabTLR9 has a broader ligand-recognition profile than mouse and human TLR9.
Collapse
Affiliation(s)
- Jin Liu
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Goutagny N, Estornes Y, Hasan U, Lebecque S, Caux C. Targeting pattern recognition receptors in cancer immunotherapy. Target Oncol 2012; 7:29-54. [PMID: 22399234 DOI: 10.1007/s11523-012-0213-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 01/13/2012] [Indexed: 12/20/2022]
Abstract
Pattern recognition receptors (PRRs) are known for many years for their role in the recognition of microbial products and the subsequent activation of the immune system. The 2011 Nobel Prize for medicine indeed rewarded J. Hoffmann/B. Beutler and R. Steinman for their revolutionary findings concerning the activation of the immune system, thus stressing the significance of understanding the mechanisms of activation of the innate immunity. Such immunostimulatory activities are of major interest in the context of cancer to induce long-term antitumoral responses. Ligands for the toll-like receptors (TLRs), a well-known family of PRR, have been shown to have antitumoral activities in several cancers. Those ligands are now undergoing extensive clinical investigations both as immunostimulant molecules and as adjuvant along with vaccines. However, when considering the use of these ligands in tumor therapy, one shall consider the potential effect on the tumor cells themselves as well as on the entire organism. Recent data indeed demonstrate that TLR activation in tumor cells could trigger both pro- or antitumoral effect depending on the context. This review discusses this balance between the intrinsic activation of PRR in tumor cells and the extrinsic microenvironment activation in term of overall effect of PRR ligands on tumor development. We review recent advances in the field and underline appealing prospects for clinical development of PRR agonists in the light of our current knowledge on their expression and activation.
Collapse
Affiliation(s)
- Nadège Goutagny
- Université de Lyon, Université Lyon I, UMR INSERM 1052 CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon, France.
| | | | | | | | | |
Collapse
|
32
|
Plasmacytoid dendritic cells and their Toll-like receptor 9 expression selectively decrease with age. Hum Immunol 2012; 73:493-7. [PMID: 22386694 DOI: 10.1016/j.humimm.2012.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/30/2012] [Accepted: 02/10/2012] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DCs) play a crucial role in the initiation of immune responses against infectious particles and tumor cells; however, the impact of age, anthropometric parameters, and gender on the number and the expression of function-associated molecules of human DCs is poorly understood. In this study, blood DCs of 50 volunteers (19-84 years old) with no acute or chronic inflammatory diseases were examined using 4-color flow cytometry. Increasing age was associated with a decrease in blood plasmacytoid, but not myeloid DCs and a selective decrease in Toll-like receptor 9 (TLR9) expression by plasmacytoid DCs. In contrast, gender and body mass index did not impact the number of DC subsets or the expression of function-associated DC molecules. Thus, we demonstrate that age has a selective impact on plasmacytoid DCs and their TLR9 expression. This may contribute to an increased susceptibility to infections and tumors with increasing age.
Collapse
|
33
|
Germano G, Mantovani A, Allavena P. Targeting of the innate immunity/inflammation as complementary anti-tumor therapies. Ann Med 2011; 43:581-93. [PMID: 21756064 DOI: 10.3109/07853890.2011.595732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Different types of cancer take advantage of inflammatory components to improve their life-span in the organs. A sustenance of growth factors and cytokines (e.g. interleukin (IL)-1, tumor necrosis factor, IL-6, vascular endothelial growth factor) supports malignant cell progression and contributes to suppress the body immune defense. Strategies to modulate the host micro-environment offer new approaches for anti-cancer therapies. For these reasons new molecules with anti-tumor and anti-inflammatory features (e.g. trabectedin) are looked at with new eyes in the light of the crucial link between inflammation and cancer.
Collapse
Affiliation(s)
- Giovanni Germano
- Department of Immunology and Inflammation, IRCCS Humanitas Clinical Institute, Rozzano, Milan, Italy
| | | | | |
Collapse
|
34
|
Gutierrez A, Arendt BK, Tschumper RC, Kay NE, Zent CS, Jelinek DF. Differentiation of chronic lymphocytic leukemia B cells into immunoglobulin secreting cells decreases LEF-1 expression. PLoS One 2011; 6:e26056. [PMID: 21998751 PMCID: PMC3188588 DOI: 10.1371/journal.pone.0026056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 09/16/2011] [Indexed: 11/18/2022] Open
Abstract
Lymphocyte enhancer binding factor 1 (LEF-1) plays a crucial role in B lineage development and is only expressed in B cell precursors as B cell differentiation into mature B and plasma cells silences its expression. Chronic lymphocytic leukemia (CLL) cells aberrantly express LEF-1 and its expression is required for cellular survival. We hypothesized that modification of the differentiation status of CLL cells would result in loss of LEF-1 expression and eliminate the survival advantage provided by its aberrant expression. In this study, we first established a methodology that induces CLL cells to differentiate into immunoglobulin (Ig) secreting cells (ISC) using the TLR9 agonist, CpG, together with cytokines (CpG/c). CpG/c stimulation resulted in dramatic CLL cell phenotypic and morphologic changes, expression of cytoplasmic Ig, and secretion of light chain restricted Ig. CpG/c stimulation also resulted in decreased CLL cell LEF-1 expression and increased Blimp-1 expression, which is crucial for plasma cell differentiation. Further, Wnt pathway activation and cellular survival were impaired in differentiated CLL cells compared to undifferentiated CLL cells. These data support the notion that CLL can differentiate into ISC and that this triggers decreased leukemic cell survival secondary to the down regulation of LEF-1 and decreased Wnt pathway activation.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- B-Lymphocytes/cytology
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/immunology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Survival/immunology
- Cytokines/pharmacology
- Cytoplasm/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunoglobulin Light Chains/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoid Enhancer-Binding Factor 1/metabolism
- Male
- Middle Aged
- Oligodeoxyribonucleotides/pharmacology
- Positive Regulatory Domain I-Binding Factor 1
- Repressor Proteins/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Wnt Proteins/metabolism
Collapse
Affiliation(s)
- Albert Gutierrez
- Department of Immunology, Mayo Graduate School, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Bonnie K. Arendt
- Department of Immunology, Mayo Graduate School, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Renee C. Tschumper
- Department of Immunology, Mayo Graduate School, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Neil E. Kay
- Department of Internal Medicine, Mayo Graduate School, College of Medicine, Rochester, Mayo Clinic, Minnesota, United States of America
| | - Clive S. Zent
- Department of Internal Medicine, Mayo Graduate School, College of Medicine, Rochester, Mayo Clinic, Minnesota, United States of America
| | - Diane F. Jelinek
- Department of Immunology, Mayo Graduate School, College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
35
|
Horak F. VTX-1463, a novel TLR8 agonist for the treatment of allergic rhinitis. Expert Opin Investig Drugs 2011; 20:981-6. [DOI: 10.1517/13543784.2011.583237] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|