1
|
Kumar R, Khan MI, Panwar A, Vashist B, Rai SK, Kumar A. PDE4 Inhibitors and their Potential Combinations for the Treatment of Chronic Obstructive Pulmonary Disease: A Narrative Review. Open Respir Med J 2024; 18:e18743064340418. [PMID: 39839967 PMCID: PMC11748061 DOI: 10.2174/0118743064340418241021095046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 01/23/2025] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is associated with cough, sputum production, and a reduction in lung function, quality of life, and life expectancy. Currently, bronchodilator combinations (β2-agonists and muscarinic receptor antagonists, dual therapy) and bronchodilators combined with inhaled corticosteroids (ICS), triple therapy, are the mainstays for the management of COPD. However, the use of ICS in triple therapy has been shown to increase the risk of pneumonia in some patients. These findings have laid the foundation for developing new therapies that possess both anti-inflammatory and/or bronchodilation properties. Phosphodiesterase-4 (PDE4) inhibitors have been reported as an effective therapeutic strategy for inflammatory conditions, such as asthma and COPD, but their use is limited because of class-related side effects. Efforts have been made to mitigate these side effects by targeting the PDE4B subtype of PDE4, which plays a pivotal role in the anti-inflammatory effects. Unfortunately, no selective oral PDE4B inhibitors have progressed to clinical trials. This has led to the development of inhaled PDE4 inhibitors to minimize systemic exposure and maximize the therapeutic effect. Another approach, the bronchodilation property of PDE3 inhibitors, is combined with anti-inflammatory PDE4 inhibitors to develop dual inhaled PDE4/PDE3 inhibitors. A few of these dual inhibitors have shown positive effects and are in phase 3 studies. The current review provides an overview of various PDE4 inhibitors in the treatment of COPD. The possibility of studying different selective PDE4 inhibitors and dual PDE3/4 inhibitors in combination with currently available treatments as a way forward to increase their therapeutic effectiveness is also emphasized.
Collapse
Affiliation(s)
- Rakesh Kumar
- New Drug Discovery Research, Mankind Research Centre, Mankind Pharma Limited, Plot No 191-E, Sector 4-II, IMT Manesar, Gurugram, India-122051
| | - Mohd Imran Khan
- New Drug Discovery Research, Mankind Research Centre, Mankind Pharma Limited, Plot No 191-E, Sector 4-II, IMT Manesar, Gurugram, India-122051
| | - Amit Panwar
- New Drug Discovery Research, Mankind Research Centre, Mankind Pharma Limited, Plot No 191-E, Sector 4-II, IMT Manesar, Gurugram, India-122051
| | - Bhavishya Vashist
- New Drug Discovery Research, Mankind Research Centre, Mankind Pharma Limited, Plot No 191-E, Sector 4-II, IMT Manesar, Gurugram, India-122051
| | - Santosh Kumar Rai
- New Drug Discovery Research, Mankind Research Centre, Mankind Pharma Limited, Plot No 191-E, Sector 4-II, IMT Manesar, Gurugram, India-122051
| | - Anil Kumar
- New Drug Discovery Research, Mankind Research Centre, Mankind Pharma Limited, Plot No 191-E, Sector 4-II, IMT Manesar, Gurugram, India-122051
| |
Collapse
|
2
|
Mikheil D, Larsen MA, Hsiao K, Murray NH, Ugo T, Wang H, Goueli SA. A bioluminescent and homogeneous assay for monitoring GPCR-mediated cAMP modulation and PDE activity. Sci Rep 2024; 14:4440. [PMID: 38396287 PMCID: PMC10891162 DOI: 10.1038/s41598-024-55038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
3',5'-Cyclic adenosine monophosphate (cAMP), the first identified second messenger, is implicated in diverse cellular processes involving cellular metabolism, cell proliferation and differentiation, apoptosis, and gene expression. cAMP is synthesized by adenylyl cyclase (AC), which converts ATP to cAMP upon activation of Gαs-protein coupled receptors (GPCRs) in most cases and hydrolyzed by cyclic nucleotide phosphodiesterases (PDEs) to 5'-AMP. Dysregulation of cAMP signaling is implicated in a wide range of pathophysiological conditions such as cardiovascular diseases, neurodegenerative and behavioral disorders, cancers, diabetes, obesity, cataracts, and others. Therefore, cAMP targeted therapies have been and are still undergoing intense investigation for the treatment of these and other diseases. This highlights the need for developing assays to detect and monitor cAMP levels. In this study, we show cAMP Lumit assay as a highly specific homogeneous bioluminescent assay suitable for high throughput screenings with a large assay window and a wide dynamic range for cAMP detection. We believe that this assay will aid and simplify drug discovery screening efforts for cAMP signaling targeted therapies.
Collapse
Affiliation(s)
- Dareen Mikheil
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA
| | - Matthew A Larsen
- Promega Biosciences, 277 Granada Drive, San Luis Obispo, CA, 93401, USA
| | - Kevin Hsiao
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA
| | - Nathan H Murray
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA
| | - Tim Ugo
- Promega Biosciences, 277 Granada Drive, San Luis Obispo, CA, 93401, USA
| | - Hui Wang
- Promega Biosciences, 277 Granada Drive, San Luis Obispo, CA, 93401, USA
| | - Said A Goueli
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA.
| |
Collapse
|
3
|
Latli B, Hrapchak MJ, Tampone TG, Frutos RP, Lee H. Carbon 14 and stable isotope synthesis of two potent and selective phosphodiesterase type 4 inhibitors. J Labelled Comp Radiopharm 2023; 66:353-361. [PMID: 37487707 DOI: 10.1002/jlcr.4054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
(R)-2-(4-(Benzo[d]oxazol-2-yl)piperazin-1-yl)-4-((tetrahydro-2H-pyran-4-yl)amino)-6,7-dihydrothieno[3,2-d]pyrimidine 5-oxide (1) and (R)-2-(4-(4-chlorophenoxy)piperidin-1-yl)-4-((tetrahydro-2H-pyran-4-yl)amino)-6,7-dihydrothieno[3,2-d]pyrimidine 5-oxide (2) are two potent and selective inhibitors of phosphodiesterase type 4 (PDE4). In this manuscript, we report the detailed synthesis of these two compounds labeled with carbon 14 and with stable isotopes. The core (R)-4-((tetrahydro-2H-pyran-4-yl)amino)-6,7-dihydrothieno[3,2-d]pyrimidine 5-oxide is common in both inhibitors. In the radioactive synthesis, the carbon 14 atom was introduced in the benzoxazole moiety using [14 C]carbon disulfide to obtain [14 C]-1 in five steps at a 55% overall yield. [14 C]Urea was used to incorporate the carbon 14 atom in two steps in the dihydrothieno[3,2-d]pyrimidine intermediate, which was then transformed in four more steps to [14 C]-2 at a 30% overall yield. Both compounds were isolated with specific activities higher than 54 mCi/mmol, radio- and chemical-purities higher than 99%, and with excellent enantiomeric excess. In the stable isotope synthesis, [2 H8 ]piperazine was used to prepare [2 H8 ]-1 in three steps in 72% overall yield, while [13 C6 ]phenol was used to prepare [13 C6 ]-2 in four steps in 18% overall yield.
Collapse
Affiliation(s)
- Bachir Latli
- The Radiosynthesis Laboratory, Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Matt J Hrapchak
- The Radiosynthesis Laboratory, Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Thomas G Tampone
- The Radiosynthesis Laboratory, Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Rogelio P Frutos
- The Radiosynthesis Laboratory, Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | - Heewon Lee
- The Radiosynthesis Laboratory, Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| |
Collapse
|
4
|
Allart-Simon I, Moniot A, Bisi N, Ponce-Vargas M, Audonnet S, Laronze-Cochard M, Sapi J, Hénon E, Velard F, Gérard S. Pyridazinone derivatives as potential anti-inflammatory agents: synthesis and biological evaluation as PDE4 inhibitors. RSC Med Chem 2021; 12:584-592. [PMID: 34046629 PMCID: PMC8127987 DOI: 10.1039/d0md00423e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
Cyclic nucleotide phosphodiesterase type 4 (PDE4), which controls the intracellular level of cyclic adenosine monophosphate (cAMP), has aroused scientific attention as a suitable target for anti-inflammatory therapy of respiratory diseases. This work describes the development and characterization of pyridazinone derivatives bearing an indole moiety as potential PDE4 inhibitors and their evaluation as anti-inflammatory agents. Among these derivatives, 4-(5-methoxy-1H-indol-3-yl)-6-methylpyridazin-3(2H)-one possesses promising activity, and selectivity towards PDE4B isoenzymes and is able to regulate potent pro-inflammatory cytokine and chemokine production by human primary macrophages.
Collapse
Affiliation(s)
- Ingrid Allart-Simon
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Aurélie Moniot
- Université de Reims-Champagne-Ardenne, EA 4691 Biomatériaux & Inflammation en site OSseux (BIOS), UFR Pharmacie and UFR Odontologie 51 rue Cognacq-Jay F-51096 Reims France
| | - Nicolo Bisi
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Miguel Ponce-Vargas
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Sandra Audonnet
- Université de Reims-Champagne-Ardenne, URCACyt, UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Marie Laronze-Cochard
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Janos Sapi
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Eric Hénon
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Frédéric Velard
- Université de Reims-Champagne-Ardenne, EA 4691 Biomatériaux & Inflammation en site OSseux (BIOS), UFR Pharmacie and UFR Odontologie 51 rue Cognacq-Jay F-51096 Reims France
| | - Stéphane Gérard
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| |
Collapse
|
5
|
Rashid HU, Martines MAU, Duarte AP, Jorge J, Rasool S, Muhammad R, Ahmad N, Umar MN. Research developments in the syntheses, anti-inflammatory activities and structure-activity relationships of pyrimidines. RSC Adv 2021; 11:6060-6098. [PMID: 35423143 PMCID: PMC8694831 DOI: 10.1039/d0ra10657g] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Pyrimidines are aromatic heterocyclic compounds that contain two nitrogen atoms at positions 1 and 3 of the six-membered ring. Numerous natural and synthetic pyrimidines are known to exist. They display a range of pharmacological effects including antioxidants, antibacterial, antiviral, antifungal, antituberculosis, and anti-inflammatory. This review sums up recent developments in the synthesis, anti-inflammatory effects, and structure-activity relationships (SARs) of pyrimidine derivatives. Numerous methods for the synthesis of pyrimidines are described. Anti-inflammatory effects of pyrimidines are attributed to their inhibitory response versus the expression and activities of certain vital inflammatory mediators namely prostaglandin E2, inducible nitric oxide synthase, tumor necrosis factor-α, nuclear factor κB, leukotrienes, and some interleukins. Literature studies reveal that a large number of pyrimidines exhibit potent anti-inflammatory effects. SARs of numerous pyrimidines have been discussed in detail. Several possible research guidelines and suggestions for the development of new pyrimidines as anti-inflammatory agents are also given. Detailed SAR analysis and prospects together provide clues for the synthesis of novel pyrimidine analogs possessing enhanced anti-inflammatory activities with minimum toxicity.
Collapse
Affiliation(s)
- Haroon Ur Rashid
- Institute of Chemistry, Federal University of Mato Grosso do Sul Campo Grande MS Brazil
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | | | | | - Juliana Jorge
- Institute of Chemistry, Federal University of Mato Grosso do Sul Campo Grande MS Brazil
| | - Shagufta Rasool
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Riaz Muhammad
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Nasir Ahmad
- Department of Chemistry, Islamia College University Peshawar Khyber Pakhtunkhwa Pakistan
| | - Muhammad Naveed Umar
- Department of Chemistry, University of Malakand Chakdara, Dir (L) Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
6
|
Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, Tian H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther 2020; 5:248. [PMID: 33110061 PMCID: PMC7588592 DOI: 10.1038/s41392-020-00345-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is emphysema and/or chronic bronchitis characterised by long-term breathing problems and poor airflow. The prevalence of COPD has increased over the last decade and the drugs most commonly used to treat it, such as glucocorticoids and bronchodilators, have significant therapeutic effects; however, they also cause side effects, including infection and immunosuppression. Here we reviewed the pathogenesis and progression of COPD and elaborated on the effects and mechanisms of newly developed molecular targeted COPD therapeutic drugs. Among these new drugs, we focussed on thioredoxin (Trx). Trx effectively prevents the progression of COPD by regulating redox status and protease/anti-protease balance, blocking the NF-κB and MAPK signalling pathways, suppressing the activation and migration of inflammatory cells and the production of cytokines, inhibiting the synthesis and the activation of adhesion factors and growth factors, and controlling the cAMP-PKA and PI3K/Akt signalling pathways. The mechanism by which Trx affects COPD is different from glucocorticoid-based mechanisms which regulate the inflammatory reaction in association with suppressing immune responses. In addition, Trx also improves the insensitivity of COPD to steroids by inhibiting the production and internalisation of macrophage migration inhibitory factor (MIF). Taken together, these findings suggest that Trx may be the ideal drug for treating COPD.
Collapse
Affiliation(s)
- Cuixue Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jiedong Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jinquan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Shujing Li
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China.
- Jiaozhimei Biotechnology (Shaoxing) Co, Ltd, Shaoxing, 312000, China.
| |
Collapse
|
7
|
Dominant-Negative Attenuation of cAMP-Selective Phosphodiesterase PDE4D Action Affects Learning and Behavior. Int J Mol Sci 2020; 21:ijms21165704. [PMID: 32784895 PMCID: PMC7460819 DOI: 10.3390/ijms21165704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/26/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
PDE4 cyclic nucleotide phosphodiesterases reduce 3′, 5′ cAMP levels in the CNS and thereby regulate PKA activity and the phosphorylation of CREB, fundamental to depression, cognition, and learning and memory. The PDE4 isoform PDE4D5 interacts with the signaling proteins β-arrestin2 and RACK1, regulators of β2-adrenergic and other signal transduction pathways. Mutations in PDE4D in humans predispose to acrodysostosis, associated with cognitive and behavioral deficits. To target PDE4D5, we developed mice that express a PDE4D5-D556A dominant-negative transgene in the brain. Male transgenic mice demonstrated significant deficits in hippocampus-dependent spatial learning, as assayed in the Morris water maze. In contrast, associative learning, as assayed in a fear conditioning assay, appeared to be unaffected. Male transgenic mice showed augmented activity in prolonged (2 h) open field testing, while female transgenic mice showed reduced activity in the same assay. Transgenic mice showed no demonstrable abnormalities in prepulse inhibition. There was also no detectable difference in anxiety-like behavior, as measured in the elevated plus-maze. These data support the use of a dominant-negative approach to the study of PDE4D5 function in the CNS and specifically in learning and memory.
Collapse
|
8
|
Pospelov EV, Golovanov IS, Ioffe SL, Sukhorukov AY. The Cyclic Nitronate Route to Pharmaceutical Molecules: Synthesis of GSK's Potent PDE4 Inhibitor as a Case Study. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25163613. [PMID: 32784502 PMCID: PMC7464803 DOI: 10.3390/molecules25163613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023]
Abstract
An efficient asymmetric synthesis of GlaxoSmithKline’s potent PDE4 inhibitor was accomplished in eight steps from a catechol-derived nitroalkene. The key intermediate (3-acyloxymethyl-substituted 1,2-oxazine) was prepared in a straightforward manner by tandem acylation/(3,3)-sigmatropic rearrangement of the corresponding 1,2-oxazine-N-oxide. The latter was assembled by a (4 + 2)-cycloaddition between the suitably substituted nitroalkene and vinyl ether. Facile acetal epimerization at the C-6 position in 1,2-oxazine ring was observed in the course of reduction with NaBH3CN in AcOH. Density functional theory (DFT) calculations suggest that the epimerization may proceed through an unusual tricyclic oxazolo(1,2)oxazinium cation formed via double anchimeric assistance from a distant acyloxy group and the nitrogen atom of the 1,2-oxazine ring.
Collapse
Affiliation(s)
- Evgeny V. Pospelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.P.); (I.S.G.); (S.L.I.)
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan S. Golovanov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.P.); (I.S.G.); (S.L.I.)
| | - Sema L. Ioffe
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.P.); (I.S.G.); (S.L.I.)
| | - Alexey Yu. Sukhorukov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.V.P.); (I.S.G.); (S.L.I.)
- Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-499-135-53-29
| |
Collapse
|
9
|
Phillips JE. Inhaled Phosphodiesterase 4 (PDE4) Inhibitors for Inflammatory Respiratory Diseases. Front Pharmacol 2020; 11:259. [PMID: 32226383 PMCID: PMC7080983 DOI: 10.3389/fphar.2020.00259] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/24/2020] [Indexed: 01/09/2023] Open
Abstract
PDE4 inhibitors can suppress a variety of inflammatory cell functions that contribute to their anti-inflammatory actions in respiratory diseases like chronic obstructive pulmonary disease (COPD) and asthma. The systemically delivered PDE4 inhibitor roflumilast has been approved for use in a subset of patients with severe COPD with chronic bronchitis and a history of exacerbations. Use of systemically delivered PDE4 inhibitors has been limited by systemic side effects. Inhaled PDE4 inhibitors have been considered as a viable alternative to increase tolerability and determine the maximum therapeutic potential of PDE4 inhibition in respiratory diseases.
Collapse
Affiliation(s)
- Jonathan E. Phillips
- Department of Inflammation Research, Amgen Research, Thousand Oaks, CA, United States
| |
Collapse
|
10
|
Novel phosphodiesterases inhibitors from the group of purine-2,6-dione derivatives as potent modulators of airway smooth muscle cell remodelling. Eur J Pharmacol 2019; 865:172779. [PMID: 31705904 DOI: 10.1016/j.ejphar.2019.172779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Airway remodelling (AR) is an important pathological feature of chronic asthma and chronic obstructive pulmonary disease. The etiology of AR is complex and involves both lung structural and immune cells. One of the main contributors to airway remodelling is the airway smooth muscle (ASM), which is thickened by asthma, becomes more contractile and produces more extracellular matrix. As a second messenger, adenosine 3',5'-cyclic monophosphate (cAMP) has been shown to contribute to ASM cell (ASMC) relaxation as well as to anti-remodelling effects in ASMC. Phosphodiesterase (PDE) inhibitors have drawn attention as an interesting new group of potential anti-inflammatory and anti-remodelling drugs. Recently, new hydrazide and amide purine-2,6-dione derivatives with anti-inflammatory properties have been synthesized by our team (compounds 1 and 2). We expanded our study of their PDE selectivity profile, ability to increase intracellular cAMP levels, metabolic stability and, above all, their capacity to modulate cell responses associated with ASMC remodelling. The results show that both compounds have subtype specificity for several PDE isoforms (including inhibition of PDE1, PDE3, PDE4 and PDE7). Interestingly, such combined PDE subtype inhibition exerts improved anti-remodelling efficacies against several ASMC-induced responses such as proliferation, contractility, extracellular matrix (ECM) protein expression and migration when compared to other non-selective and selective PDE inhibitors. Our findings open novel perspectives in the search for new chemical entities with dual anti-inflammatory and anti-remodelling profiles in the group of purine-2,6-dione derivatives as broad-spectrum PDE inhibitors.
Collapse
|
11
|
Hütten MC, Fehrholz M, Konrad FM, Ophelders D, Kleintjes C, Ottensmeier B, Spiller OB, Glaser K, Kramer BW, Kunzmann S. Detrimental Effects of an Inhaled Phosphodiesterase-4 Inhibitor on Lung Inflammation in Ventilated Preterm Lambs Exposed to Chorioamnionitis Are Dose Dependent. J Aerosol Med Pulm Drug Deliv 2019; 32:396-404. [PMID: 31573405 DOI: 10.1089/jamp.2019.1528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Treatment of bronchopulmonary dysplasia in preterm infants is challenging due to its multifactorial origin. In rodent models of neonatal lung injury, selective inhibition of phosphodiesterase 4 (PDE4) has been shown to exert anti-inflammatory properties in the lung. We hypothesized that GSK256066, a highly selective, inhalable PDE4 inhibitor, would have beneficial effects on lung injury and inflammation in a triple hit lamb model of Ureaplasma parvum (UP)-induced chorioamnionitis, prematurity, and mechanical ventilation. Methods: Twenty-one preterm lambs were surgically delivered preterm at 129 days after 7 days intrauterine exposure to UP. Sixteen animals were subsequently ventilated for 24 hours and received endotracheal surfactant and intravenous caffeine citrate. Ten animals were randomized to receive twice a high (10 μg/kg) or low dose (1 μg/kg) of nebulized PDE4 inhibitor. Results: Nebulization of high, but not low, doses of PDE4 inhibitor led to a significant decrease in pulmonary PDE activity, and was associated with lung injury and vasculitis, influx of neutrophils, and increased proinflammatory cytokine messenger RNA levels. Conclusion: Contrary to our hypothesis, we found in our model a dose-dependent proinflammatory effect of an inhaled highly selective PDE4 inhibitor in the lung. Our findings indicate the narrow therapeutic range of inhaled PDE4 inhibitors in the preterm population.
Collapse
Affiliation(s)
- Matthias C Hütten
- Neonatology, Pediatrics Department, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands.,University Children's Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Markus Fehrholz
- University Children's Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Franziska M Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Daan Ophelders
- Neonatology, Pediatrics Department, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Clementine Kleintjes
- Neonatology, Pediatrics Department, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Barbara Ottensmeier
- University Children's Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Owen Brad Spiller
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kirsten Glaser
- University Children's Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Boris W Kramer
- Neonatology, Pediatrics Department, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Steffen Kunzmann
- University Children's Hospital Würzburg, University of Würzburg, Würzburg, Germany.,Clinic of Neonatology, Bürgerhospital Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
12
|
Roth-Walter F, Adcock IM, Benito-Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung K, Diamant Z, Eguiluz-Gracia I, Knol E, Kolios AGA, Levi-Schaffer F, Nocentini G, Palomares O, Puzzovio PG, Redegeld F, van Esch BCAM, Stellato C. Comparing biologicals and small molecule drug therapies for chronic respiratory diseases: An EAACI Taskforce on Immunopharmacology position paper. Allergy 2019; 74:432-448. [PMID: 30353939 DOI: 10.1111/all.13642] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Chronic airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), together with their comorbidities, bear a significant burden on public health. Increased appreciation of molecular networks underlying inflammatory airway disease needs to be translated into new therapies for distinct phenotypes not controlled by current treatment regimens. On the other hand, development of new safe and effective therapies for such respiratory diseases is an arduous and expensive process. Antibody-based (biological) therapies are successful in treating certain respiratory conditions not controlled by standard therapies such as severe allergic and refractory eosinophilic severe asthma, while in other inflammatory respiratory diseases, such as COPD, biologicals are having a more limited impact. Small molecule drug (SMD)-based therapies represent an active field in pharmaceutical research and development. SMDs expand biologicals' therapeutic targets by reaching the intracellular compartment by delivery as either an oral or topically based formulation, offering both convenience and lower costs. Aim of this review was to compare and contrast the distinct pharmacological properties and clinical applications of SMDs- and antibody-based treatment strategies, their limitations and challenges, in order to highlight how they should be integrated for their optimal utilization and to fill the critical gaps in current treatment for these chronic inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine; The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
| | - Ian M. Adcock
- Molecular Cell Biology Group; National Heart & Lung Institute; Imperial College London; London UK
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Rodolfo Bianchini
- Comparative Medicine; The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy Research; Allergy, Asthma and COPD Competence center; Lund University; Lund Sweden
| | - Gaetano Caramori
- Pulmonary Unit; Department of Biomedical Sciences; Dentistry, Morphological and Functional Imaging (BIOMORF); University of Messina; Messina Italy
| | - Luigi Cari
- Department of Medicine; Section of Pharmacology; University of Perugia; Perugia Italy
| | - Kian Fan Chung
- Experimental Studies Medicine at National Heart & Lung Institute; Imperial College London; Royal Brompton & Harefield NHS Trust; London UK
| | - Zuzana Diamant
- Department of Clinical Pharmacy and Pharmacology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
- Department of Respiratory Medicine and Allergology; Institute for Clinical Science; Skane University Hospital; Lund Sweden
| | - Ibon Eguiluz-Gracia
- Allergy Unit and Research Laboratory; Regional University Hospital of Málaga and Biomedical Research Institute of Malaga (IBIMA); Málaga Spain
| | - Edward F. Knol
- Departments of Immunology and Dermatology/Allergology; University Medical Center Utrecht; Utrecht The Netherlands
| | | | - Francesca Levi-Schaffer
- Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Giuseppe Nocentini
- Department of Medicine; Section of Pharmacology; University of Perugia; Perugia Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Pier Giorgio Puzzovio
- Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Frank A. Redegeld
- Faculty of Science; Division of Pharmacology; Department of Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Betty C. A. M. van Esch
- Faculty of Science; Division of Pharmacology; Department of Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”; University of Salerno; Salerno Italy
| |
Collapse
|
13
|
Ti H, Zhou Y, Liang X, Li R, Ding K, Zhao X. Targeted Treatments for Chronic Obstructive Pulmonary Disease (COPD) Using Low-Molecular-Weight Drugs (LMWDs). J Med Chem 2019; 62:5944-5978. [PMID: 30682248 DOI: 10.1021/acs.jmedchem.8b01520] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a very common and frequently fatal airway disease. Current therapies for COPD depend mainly on long-acting bronchodilators, which cannot target the pathogenic mechanisms of chronic inflammation in COPD. New pharmaceutical therapies for the inflammatory processes of COPD are urgently needed. Several anti-inflammatory targets have been identified based on increased understanding of the pathogenesis of COPD, which raises new hopes for targeted treatment of this fatal respiratory disease. In this review, we discuss the recent advances in bioactive low-molecular-weight drugs (LMWDs) for the treatment of COPD and, in addition to the first-line drug bronchodilators, focus particularly on low-molecular-weight anti-inflammatory agents, including modulators of inflammatory mediators, inflammasome inhibitors, protease inhibitors, antioxidants, PDE4 inhibitors, kinase inhibitors, and other agents. We also provide new insights into targeted COPD treatments using LMWDs, particularly small-molecule agents.
Collapse
Affiliation(s)
- Huihui Ti
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Yang Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH) , AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Xue Liang
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy , Jinan University , Guangzhou 510632 , P. R. China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Xin Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,School of Life Sciences , The Chinese University of Hong Kong , Shatin, N.T. , Hong Kong SAR 999077 , P. R. China
| |
Collapse
|
14
|
Huang C, Zhong Q, Tang L, Wang H, Xu J, Zhou Z. Discovery of 2‐(3,4‐dialkoxyphenyl)‐2‐(substituted pyridazin‐3‐yl)acetonitriles as phosphodiesterase 4 inhibitors with anti‐neuroinflammation potential based on three‐dimensional quantitative structure–activity relationship study. Chem Biol Drug Des 2018; 93:484-502. [DOI: 10.1111/cbdd.13438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/10/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Chang Huang
- Department of Neuropharmacology and Novel Drug DiscoverySchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Qiu‐Ping Zhong
- Department of Neuropharmacology and Novel Drug DiscoverySchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Lv Tang
- Department of Neuropharmacology and Novel Drug DiscoverySchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Hai‐Tao Wang
- Department of Neuropharmacology and Novel Drug DiscoverySchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Jiang‐Ping Xu
- Department of Neuropharmacology and Novel Drug DiscoverySchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Zhong‐Zhen Zhou
- Department of Neuropharmacology and Novel Drug DiscoverySchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| |
Collapse
|
15
|
Anti-inflammatory effects of the phosphodiesterase type 4 inhibitor CHF6001 on bronchoalveolar lavage lymphocytes from asthma patients. Cytokine 2018; 113:68-73. [PMID: 29934047 DOI: 10.1016/j.cyto.2018.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/09/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lymphocytes play a key role in asthma pathophysiology, secreting various cytokines involved in chronic inflammation. CHF6001 is a highly potent and selective phosphodiesterase type 4 (PDE4) inhibitor designed for inhaled administration and has been shown to reduce the late asthmatic response. However, the effect of PDE4 inhibition on the different cytokines produced by lung lymphocytes from asthma patients has not been examined. METHODS This study investigated the anti-inflammatory effects of CHF6001 and the corticosteroid, 17-BMP, on T-cell receptor (TCR) stimulated Th1, Th2 and Th17 cytokine release from bronchoalveolar lavage (BAL) cells from mild (n = 12) and moderate asthma (n = 12) patients. RESULTS CHF6001 inhibited IFNγ, IL-2 and IL-17, but not IL-13, secretion from both mild and moderate asthma patient BAL cells; there was a greater effect on IFNγ and IL-2 than IL-17. The corticosteroid inhibited all four cytokines from both patient groups, but was less effective in cells from more severe patients. CHF6001 had a greater inhibitory effect on IFNγ and IL-2 than 17-BMP. CONCLUSION The PDE4 inhibitor CHF6001 had a greater effect on Th1 cytokines from TCR-stimulated BAL cells than corticosteroid. This pharmacological effect suggests the therapeutic potential for PDE4 inhibitors to be used in the subset of more severe asthma patients with increased airway levels of IFNγ.
Collapse
|
16
|
Roberts RS, Sevilla S, Ferrer M, Taltavull J, Hernández B, Segarra V, Gràcia J, Lehner MD, Gavaldà A, Andrés M, Cabedo J, Vilella D, Eichhorn P, Calama E, Carcasona C, Miralpeix M. 4-Amino-7,8-dihydro-1,6-naphthyridin-5(6 H)-ones as Inhaled Phosphodiesterase Type 4 (PDE4) Inhibitors: Structural Biology and Structure-Activity Relationships. J Med Chem 2018; 61:2472-2489. [PMID: 29502405 DOI: 10.1021/acs.jmedchem.7b01751] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rational design of a novel template of naphthyridinones rapidly led to PDE4 inhibitors with subnanomolar enzymatic potencies. X-ray crystallography confirmed the binding mode of this novel template. We achieved compounds with double-digit picomolar enzymatic potencies through further structure-based design by targeting both the PDE4 enzyme metal-binding pocket and occupying the solvent-filled pocket. A strategy for lung retention and long duration of action based on low aqueous solubility was followed. In vivo efficacies were measured in a rat lung neutrophilia model by suspension microspray and dry powder administration. Suspension microspray of potent compounds showed in vivo efficacy with a clear dose-response. Despite sustained lung levels, dry powder administration performed much less well and without proper dose-response, highlighting clear differences between the two formulations. This indicates a deficiency in the low aqueous solubility strategy for long duration lung efficacy.
Collapse
Affiliation(s)
- Richard S Roberts
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Sara Sevilla
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Manel Ferrer
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Joan Taltavull
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Begoña Hernández
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Victor Segarra
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Jordi Gràcia
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Martin D Lehner
- Bionorica SE , Kerschensteinerstraße 11-15 , 92318 Neumarkt , Germany
| | | | - Miriam Andrés
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Judit Cabedo
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Dolors Vilella
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | | | | | | | - Montserrat Miralpeix
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| |
Collapse
|
17
|
Barberot C, Moniot A, Allart-Simon I, Malleret L, Yegorova T, Laronze-Cochard M, Bentaher A, Médebielle M, Bouillon JP, Hénon E, Sapi J, Velard F, Gérard S. Synthesis and biological evaluation of pyridazinone derivatives as potential anti-inflammatory agents. Eur J Med Chem 2018; 146:139-146. [PMID: 29407945 DOI: 10.1016/j.ejmech.2018.01.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/28/2022]
Abstract
Cyclic nucleotide phosphodiesterase type 4 (PDE4), that controls intracellular level of cyclic nucleotide cAMP, has aroused scientific attention as a suitable target for anti-inflammatory therapy in respiratory diseases. Here we describe the development of two families of pyridazinone derivatives as potential PDE4 inhibitors and their evaluation as anti-inflammatory agents. Among these derivatives, 4,5-dihydropyridazinone representatives possess promising activity, selectivity towards PDE4 isoenzymes and are able to reduce IL-8 production by human primary polymorphonuclear cells.
Collapse
Affiliation(s)
- Chantal Barberot
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Aurélie Moniot
- Université de Reims-Champagne-Ardenne, EA 4691 Biomatériaux & Inflammation en Site OSseux (BIOS), SFR CAP-Santé (FED 4231), UFR Pharmacie and UFR Odontologie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Ingrid Allart-Simon
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Laurette Malleret
- Centre International de Recherche en Infectiologie (CIRI), EA7426, Faculté de Médecine Lyon-Sud, 165 Chemin Du Grand Revoyet, 69921 Oullins, France
| | - Tatiana Yegorova
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Marie Laronze-Cochard
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Abderrazzaq Bentaher
- Centre International de Recherche en Infectiologie (CIRI), EA7426, Faculté de Médecine Lyon-Sud, 165 Chemin Du Grand Revoyet, 69921 Oullins, France
| | - Maurice Médebielle
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43 Bd Du 11 Novembre 1918, 69622 Villeurbanne, France
| | | | - Eric Hénon
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Janos Sapi
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Frédéric Velard
- Université de Reims-Champagne-Ardenne, EA 4691 Biomatériaux & Inflammation en Site OSseux (BIOS), SFR CAP-Santé (FED 4231), UFR Pharmacie and UFR Odontologie, 51 Rue Cognacq-Jay, 51096 Reims, France
| | - Stéphane Gérard
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de La Housse and UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims, France.
| |
Collapse
|
18
|
Dorokhov VS, Golovanov IS, Tartakovsky VA, Sukhorukov AY, Ioffe SL. Diastereoselective synthesis and profiling of bicyclic imidazolidinone derivatives bearing a difluoromethylated catechol unit as potent phosphodiesterase 4 inhibitors. Org Biomol Chem 2018; 16:6900-6908. [DOI: 10.1039/c8ob01039k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-mediated C–H functionalization of cyclic N-oxides was exploited to access new highly potent analogs of the phosphodiesterase 4 inhibitor Ro-20-1724.
Collapse
Affiliation(s)
- Valentin S. Dorokhov
- N. D. Zelinsky Institute of Organic Chemistry
- Moscow
- Russian Federation
- Higher Chemical College of the Russian Academy of Sciences
- D. Mendeleev University of Chemical Technology of Russia
| | - Ivan S. Golovanov
- N. D. Zelinsky Institute of Organic Chemistry
- Moscow
- Russian Federation
| | | | | | - Sema L. Ioffe
- N. D. Zelinsky Institute of Organic Chemistry
- Moscow
- Russian Federation
| |
Collapse
|
19
|
Sala V, Margaria JP, Murabito A, Morello F, Ghigo A, Hirsch E. Therapeutic Targeting of PDEs and PI3K in Heart Failure with Preserved Ejection Fraction (HFpEF). Curr Heart Fail Rep 2017; 14:187-196. [PMID: 28451983 DOI: 10.1007/s11897-017-0331-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Heart Failure with preserved Ejection Fraction (HFpEF) is a prevalent disease with considerable individual and societal burden. HFpEF patients often suffer from multiple pathological conditions thatcomplicate management and adversely affect outcome, including pulmonary hypertension and chronic obstructive pulmonary disease (COPD). To date, no treatment proved to be fully effective in reducing morbidity and mortality in HFpEF, possibly due to an incomplete understanding of the underlying molecular mechanisms. RECENT FINDINGS The emerging view proposes chronic systemic inflammation, leading to endothelial dysfunction and interstitial fibrosis, as a prominent cause of HFpEF, rather than a mere co-existent disease. In the last decade, efforts from pharmaceutical companies attempted to target pharmacologically enzymes which play key roles in systemic and lung inflammation, such as the cyclic nucleotide-degrading enzymes phosphodiesterases (PDEs) and phosphoinositide-3 phosphate kinases (PI3Ks), especially to limit COPD. In this review, we will summarize major successes and drawbacks of hitting these enzymes to tackle inflammation in HFpEF-associated co-morbidities, with a major focus on the results of completed and ongoing clinical trials. Finally, we will discuss the potential of repurposing and/or developing new PDE and PI3K inhibitors for HFpEF therapy.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- S.C. Medicina d'Urgenza, A.O.U. Città della Salute e della Scienza, Molinette Hospital, Torino, Italy
| | - Jean Piero Margaria
- Department of Molecular Biotechnology, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Alessandra Murabito
- Department of Molecular Biotechnology, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fulvio Morello
- S.C. Medicina d'Urgenza, A.O.U. Città della Salute e della Scienza, Molinette Hospital, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| |
Collapse
|
20
|
Gross NJ, Barnes PJ. New Therapies for Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017; 195:159-166. [PMID: 27922751 DOI: 10.1164/rccm.201610-2074pp] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Nicholas J Gross
- 1 University Medical Research LLC, St. Francis Hospital, Hartford, Connecticut; and
| | - Peter J Barnes
- 2 Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Rational design of conformationally constrained oxazolidinone-fused 1,2,3,4-tetrahydroisoquinoline derivatives as potential PDE4 inhibitors. Bioorg Med Chem 2017; 25:5709-5717. [PMID: 28888661 DOI: 10.1016/j.bmc.2017.08.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 12/24/2022]
Abstract
Improvement of subtype selectivity of an inhibitor's binding activity using the conformational restriction approach has become an effective strategy in drug discovery. In this study, we applied this approach to PDE4 inhibitors and designed a series of novel oxazolidinone-fused 1,2,3,4-tetrahydroisoquinoline derivatives as conformationally restricted analogues of rolipram. The bioassay results demonstrated the oxazolidinone-fused tetrahydroisoquinoline derivatives exhibited moderate to good inhibitory activity against PDE4B and high selectivity for PDE4B/PDE4D. Among these derivatives, compound 12 showed both the strongest inhibition activity (IC50=0.60μM) as well as good selectivity against PDE4B and good in vivo activity in animal models of asthma/COPD and sepsis induced by LPS. The primary SAR study showed that restricting the conformation of the catechol moiety in rolipram with the scaffold of oxazolidinone-fused tetrahydroisoquinoline could lead to an increase in selectivity for PDE4B over PDE4D, which was consistent with the observed docking simulation.
Collapse
|
22
|
Lakshmi SP, Reddy AT, Reddy RC. Emerging pharmaceutical therapies for COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:2141-2156. [PMID: 28790817 PMCID: PMC5531723 DOI: 10.2147/copd.s121416] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
COPD, for which cigarette smoking is the major risk factor, remains a worldwide burden. Current therapies provide only limited short-term benefit and fail to halt progression. A variety of potential therapeutic targets are currently being investigated, including COPD-related proinflammatory mediators and signaling pathways. Other investigational compounds target specific aspects or complications of COPD such as mucus hypersecretion and pulmonary hypertension. Although many candidate therapies have shown no significant effects, other emerging therapies have improved lung function, pulmonary hypertension, glucocorticoid sensitivity, and/or the frequency of exacerbations. Among these are compounds that inhibit the CXCR2 receptor, mitogen-activated protein kinase/Src kinase, myristoylated alanine-rich C kinase substrate, selectins, and the endothelin receptor. Activation of certain transcription factors may also be relevant, as a large retrospective cohort study of COPD patients with diabetes found that the peroxisome proliferator-activated receptor γ (PPARγ) agonists rosiglitazone and pioglitazone were associated with reduced COPD exacerbation rate. Notably, several therapies have shown efficacy only in identifiable subgroups of COPD patients, suggesting that subgroup identification may become more important in future treatment strategies. This review summarizes the status of emerging therapeutic pharmaceuticals for COPD and highlights those that appear most promising.
Collapse
Affiliation(s)
- Sowmya P Lakshmi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Aravind T Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Raju C Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine.,Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Gross N. The COPD Pipeline XXXV. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2017; 4:247-251. [PMID: 28848935 DOI: 10.15326/jcopdf.4.3.2017.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Nicholas Gross
- University Medical Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut
| |
Collapse
|
24
|
Möllmann J, Kahles F, Lebherz C, Kappel B, Baeck C, Tacke F, Werner C, Federici M, Marx N, Lehrke M. The PDE4 inhibitor roflumilast reduces weight gain by increasing energy expenditure and leads to improved glucose metabolism. Diabetes Obes Metab 2017; 19:496-508. [PMID: 27917591 DOI: 10.1111/dom.12839] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the metabolic effects of the phosphodiesterase-4 (PDE4) inhibitor roflumilast, a clinically approved anti-inflammatory drug used for the treatment of chronic obstructive pulmonary disease. MATERIALS AND METHODS The metabolic effects of roflumilast were investigated in C57BL/6J mice, fed a high-fat Western-type diet and treated with or without roflumilast for a period of 12 weeks. RESULTS Roflumilast led to a marked reduction in body weight gain, which became apparent in the second week after treatment initiation and was attributable to a pronounced increase in energy expenditure. Furthermore, roflumilast improved glucose tolerance, reduced insulin resistance and diminished steatohepatitis in mice. Mechanistically, this was associated with hepatic protein kinase A (PKA) and cAMP response element binding protein (CREB) activation, leading to peroxisome proliferator-activated receptor gamma coactivator-1α (PCG-1α)-dependent induction of mitochondrial biogenesis. Consistently, roflumilast increased the cellular respiratory capacity of hepatocytes in a PKA-dependent manner. CONCLUSION Roflumilast-dependent PDE4 inhibition is a new target for weight loss strategies, especially in conditions of associated comorbidities such as insulin resistance and non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Julia Möllmann
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Florian Kahles
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Corinna Lebherz
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Ben Kappel
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Christer Baeck
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Christian Werner
- Department of Internal Medicine III, Saarland University Medical Centre, Homburg, Germany
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
25
|
Gràcia J, Buil MA, Castro J, Eichhorn P, Ferrer M, Gavaldà A, Hernández B, Segarra V, Lehner MD, Moreno I, Pagès L, Roberts RS, Serrat J, Sevilla S, Taltavull J, Andrés M, Cabedo J, Vilella D, Calama E, Carcasona C, Miralpeix M. Biphenyl Pyridazinone Derivatives as Inhaled PDE4 Inhibitors: Structural Biology and Structure-Activity Relationships. J Med Chem 2016; 59:10479-10497. [PMID: 27933955 DOI: 10.1021/acs.jmedchem.6b00829] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cyclic nucleotide cAMP is a ubiquitous secondary messenger involved in a plethora of cellular responses to biological agents involving activation of adenylyl cyclase. Its intracellular levels are tightly controlled by a family of cyclic nucleotide degrading enzymes, the PDEs. In recent years, cyclic nucleotide phosphodiesterase type 4 (PDE4) has aroused scientific attention as a suitable target for anti-inflammatory therapy in respiratory diseases, particularly in the management of asthma and COPD. Here we describe our efforts to discover novel, highly potent inhaled inhibitors of PDE4. Through structure based design, with the inclusion of a variety of functional groups and physicochemical profiles in order to occupy the solvent-filled pocket of the PDE4 enzyme, we modified the structure of our oral PDE4 inhibitors to reach compounds down to picomolar enzymatic potencies while at the same time tackling successfully an uncovered selectivity issue with the adenosine receptors. In vitro potencies were demonstrated in a rat lung neutrophilia model by administration of a suspension with a Penn-Century MicroSprayer Aerosolizer.
Collapse
Affiliation(s)
- Jordi Gràcia
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Maria Antonia Buil
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Jordi Castro
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Peter Eichhorn
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Manel Ferrer
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Amadeu Gavaldà
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Begoña Hernández
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Victor Segarra
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Martin D Lehner
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Imma Moreno
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Lluís Pagès
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Richard S Roberts
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Jordi Serrat
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Sara Sevilla
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Joan Taltavull
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Miriam Andrés
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Judit Cabedo
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Dolors Vilella
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Elena Calama
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Carla Carcasona
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | - Montserrat Miralpeix
- Medicinal Chemistry and Screening, ‡Pharmacokinetics and Metabolism, §Experimental Dermatology, and ∥Licensing and Corporate Development, Centro de Investigación y Desarrollo, Almirall S.A. , Crta. Laureà Miró 408-410, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| |
Collapse
|
26
|
Olsen CM, Liu QS. Phosphodiesterase 4 inhibitors and drugs of abuse: current knowledge and therapeutic opportunities. FRONTIERS IN BIOLOGY 2016; 11:376-386. [PMID: 28974957 PMCID: PMC5617368 DOI: 10.1007/s11515-016-1424-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Long-term exposure to drugs of abuse causes an up-regulation of the cAMP-signaling pathway in the nucleus accumbens and other forebrain regions, this common neuroadaptation is thought to underlie aspects of drug tolerance and dependence. Phosphodiesterase 4 (PDE4) is an enzyme that the selective hydrolyzes intracellular cAMP. It is expressed in several brain regions that regulate the reinforcing effects of drugs of abuse. OBJECTIVE Here, we review the current knowledge about central nervous system (CNS) distribution of PDE4 isoforms and the effects of systemic and brain-region specific inhibition of PDE4 on behavioral models of drug addiction. METHODS A systematic literature search was performed using the Pubmed. RESULTS Using behavioral sensitization, conditioned place preference and drug self-administration as behavioral models, a large number of studies have shown that local or systemic administration of PDE4 inhibitors reduce drug intake and/or drug seeking for psychostimulants, alcohol, and opioids in rats or mice. CONCLUSIONS Preclinical studies suggest that PDE4 could be a therapeutic target for several classes of substance use disorder. We conclude by identifying opportunities for the development of subtype-selective PDE4 inhibitors that may reduce addiction liability and minimize the side effects that limit the clinical potential of non-selective PDE4 inhibitors. Several PDE4 inhibitors have been clinically approved for other diseases. There is a promising possibility to repurpose these PDE4 inhibitors for the treatment of drug addiction as they are safe and well-tolerated in patients.
Collapse
Affiliation(s)
- Christopher M. Olsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Qing-song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
27
|
Hernández-Flórez D, Valor L. Selective Phosphodiesterase Inhibitors: A New Therapeutic Option in Inflammation and Autoimmunity. ACTA ACUST UNITED AC 2016; 12:303-306. [PMID: 27567299 DOI: 10.1016/j.reuma.2016.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Diana Hernández-Flórez
- Servicio de Reumatología, Hospital General Universitario Gregorio Marañón, Madrid, España; Instituto de Investigación Biomédica, Hospital Gregorio Marañón, Madrid, España
| | - Lara Valor
- Servicio de Reumatología, Hospital General Universitario Gregorio Marañón, Madrid, España; Instituto de Investigación Biomédica, Hospital Gregorio Marañón, Madrid, España.
| |
Collapse
|
28
|
Liu X, Fang Q, Kim H. Preclinical Studies of Mesenchymal Stem Cell (MSC) Administration in Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0157099. [PMID: 27280283 PMCID: PMC4900582 DOI: 10.1371/journal.pone.0157099] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In the last two decades, mesenchymal stem cells (MSCs) have been pre-clinically utilized in the treatment of a variety of kinds of diseases including chronic obstructive pulmonary disease (COPD). The aim of the current study was to systematically review and conduct a meta-analysis on the published pre-clinical studies of MSC administration in the treatment of COPD in animal models. METHODS AND RESULTS A systematic search of electronic databases was performed. Statistical analysis was performed using the Comprehensive Meta-Analysis software (Version 3). The pooled Hedges's g with 95% confidence intervals (95% CIs) was adopted to assess the effect size. Random effect model was used due to the heterogeneity between the studies. A total of 20 eligible studies were included in the current systematic review. The overall meta-analysis showed that MSC administration was significantly in favor of attenuating acute lung injury (Hedges's g = -2.325 ± 0.145 with 95% CI: -2.609 ~ -2.040, P < 0.001 for mean linear intercept, MLI; Hedges's g = -3.488 ± 0.504 with 95% CI: -4.476 ~ -2.501, P < 0.001 for TUNEL staining), stimulating lung tissue repair (Hedges's g = 3.249 ± 0.586 with 95% CI: 2.103~ 4.394, P < 0.001) and improving lung function (Hedges's g = 2.053 ± 0.408 with 95% CI: 1.253 ~ 2.854, P< 0.001). The mechanism of MSC therapy in COPD is through ameliorating airway inflammation (Hedges's g = -2.956 ± 0.371 with 95% CI: -3.683 ~ -2.229, P< 0.001) and stimulating cytokine synthesis that involves lung tissue repair (Hedges's g = 3.103 ± 0.734 with 95% CI: 1.664 ~ 4.541, P< 0.001). CONCLUSION This systematic review and meta-analysis suggest a promising role for MSCs in COPD treatment. Although the COPD models may not truly mimic COPD patients, these pre-clinical studies demonstrate that MSC hold promise in the treatment of chronic lung diseases including COPD. The mechanisms of MSCs role in preclinical COPD treatment may be associated with attenuating airway inflammation as well as stimulating lung tissue repair.
Collapse
Affiliation(s)
- Xiangde Liu
- Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Qiuhong Fang
- Department of Pulmonary and Critical Care, Beijing Chaoyang Hospital, The Capital Medical University, Beijing, China
| | - Huijung Kim
- Pulmonary and Critical Care Division, WonKwang University, Sanbon Medical Center, Seoul, Korea
- * E-mail:
| |
Collapse
|
29
|
Raker VK, Becker C, Steinbrink K. The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases. Front Immunol 2016; 7:123. [PMID: 27065076 PMCID: PMC4814577 DOI: 10.3389/fimmu.2016.00123] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/18/2016] [Indexed: 12/26/2022] Open
Abstract
Nucleotide signaling molecules contribute to the regulation of cellular pathways. In the immune system, cyclic adenosine monophosphate (cAMP) is well established as a potent regulator of innate and adaptive immune cell functions. Therapeutic strategies to interrupt or enhance cAMP generation or effects have immunoregulatory potential in autoimmune and inflammatory disorders. Here, we provide an overview of the cyclic AMP axis and its role as a regulator of immune functions and discuss the clinical and translational relevance of interventions with these processes.
Collapse
Affiliation(s)
- Verena Katharina Raker
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Christian Becker
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University Mainz , Mainz , Germany
| |
Collapse
|