1
|
Itani S, Hamie M, El Jammal R, Abdine W, Doumit M, Charafeddine A, El-Sabban M, Patinote C, Masquefa C, Bonnet PA, Obeid M, El Hajj H. Imiquimod Reverses Chronic Toxoplasmosis-Associated Behavioral and Neurocognitive Anomalies in a Rat Model. Biomedicines 2024; 12:1295. [PMID: 38927503 PMCID: PMC11202296 DOI: 10.3390/biomedicines12061295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Toxoplasma gondii is the etiologic agent of toxoplasmosis, a highly prevalent parasitosis. Toxoplasma gondii (T. gondii) transits in the brain from acute (AT) to chronic toxoplasmosis (CT), under host immune control. In immunocompromised patients, reactivation of CT is potentially life-threatening. Behavioral and neurological complications have been associated with CT. Furthermore, an effective treatment targeting CT is still lacking. We previously reported the efficacy of imiquimod against CT. Here, we demonstrate the molecular effects of imiquimod or imiquimod followed by the clinically used combination of sulfadiazine and pyrimethamine (SDZ + PYR) on CT-associated behavior in a rat model. Imiquimod decreased the number of cysts in the brains of chronically infected rats due to an induced reactivation of bradyzoites into tachyzoites. Importantly, this decrease was more pronounced in rats treated with imiquimod followed by SDZ + PYR. Rats chronically infected with T. gondii exhibited an anxiety-like behavior. Notably, treatment with imiquimod reversed this behavior aberrancy, with even a more pronounced effect with imiquimod followed by SDZ/PYR. Similarly, rats chronically infected with T. gondii exhibited learning deficits, and imiquimod alone or followed by SDZ/PYR reversed this behavior. Our results enhance our knowledge of the implications of CT on behavioral aberrancies and highlight the potency of imiquimod followed by SDZ + PYR on these CT-associated complications.
Collapse
Affiliation(s)
- Shaymaa Itani
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (S.I.); (M.H.); (W.A.)
| | - Maguy Hamie
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (S.I.); (M.H.); (W.A.)
| | - Reem El Jammal
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.E.J.); (M.D.); (M.E.-S.); (M.O.)
| | - Wassim Abdine
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (S.I.); (M.H.); (W.A.)
| | - Mark Doumit
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.E.J.); (M.D.); (M.E.-S.); (M.O.)
| | - Adib Charafeddine
- College of Pharmacy, American University of Iraq-Baghdad, Baghdad 10071, Iraq;
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.E.J.); (M.D.); (M.E.-S.); (M.O.)
| | - Cindy Patinote
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (C.P.); (C.M.); (P.-A.B.)
| | - Carine Masquefa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (C.P.); (C.M.); (P.-A.B.)
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (C.P.); (C.M.); (P.-A.B.)
| | - Makram Obeid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.E.J.); (M.D.); (M.E.-S.); (M.O.)
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (S.I.); (M.H.); (W.A.)
| |
Collapse
|
2
|
Fan J, Jin S, Gilmartin L, Toth I, Hussein WM, Stephenson RJ. Advances in Infectious Disease Vaccine Adjuvants. Vaccines (Basel) 2022; 10:1120. [PMID: 35891284 PMCID: PMC9316175 DOI: 10.3390/vaccines10071120] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vaccines are one of the most significant medical interventions in the fight against infectious diseases. Since their discovery by Edward Jenner in 1796, vaccines have reduced the worldwide transmission to eradication levels of infectious diseases, including smallpox, diphtheria, hepatitis, malaria, and influenza. However, the complexity of developing safe and effective vaccines remains a barrier for combating many more infectious diseases. Immune stimulants (or adjuvants) are an indispensable factor in vaccine development, especially for inactivated and subunit-based vaccines due to their decreased immunogenicity compared to whole pathogen vaccines. Adjuvants are widely diverse in structure; however, their overall function in vaccine constructs is the same: to enhance and/or prolong an immunological response. The potential for adverse effects as a result of adjuvant use, though, must be acknowledged and carefully managed. Understanding the specific mechanisms of adjuvant efficacy and safety is a key prerequisite for adjuvant use in vaccination. Therefore, rigorous pre-clinical and clinical research into adjuvant development is essential. Overall, the incorporation of adjuvants allows for greater opportunities in advancing vaccine development and the importance of immune stimulants drives the emergence of novel and more effective adjuvants. This article highlights recent advances in vaccine adjuvant development and provides detailed data from pre-clinical and clinical studies specific to infectious diseases. Future perspectives into vaccine adjuvant development are also highlighted.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Shengbin Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Lachlan Gilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| |
Collapse
|
3
|
Hamie M, Najm R, Deleuze-Masquefa C, Bonnet PA, Dubremetz JF, El Sabban M, El Hajj H. Imiquimod Targets Toxoplasmosis Through Modulating Host Toll-Like Receptor-MyD88 Signaling. Front Immunol 2021; 12:629917. [PMID: 33767699 PMCID: PMC7986122 DOI: 10.3389/fimmu.2021.629917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Toxoplasma gondii is a prevalent parasite of medical and veterinary importance. Tachyzoïtes and bradyzoïtes are responsible for acute and chronic toxoplasmosis (AT and CT), respectively. In immunocompetent hosts, AT evolves into a persistent CT, which can reactivate in immunocompromised patients with dire consequences. Imiquimod is an efficient immunomodulatory drug against certain viral and parasitic infections. In vivo, treatment with Imiquimod, throughout AT, reduces the number of brain cysts while rendering the remaining cysts un-infectious. Post-establishment of CT, Imiquimod significantly reduces the number of brain cysts, leading to a delay or abortion of reactivation. At the molecular level, Imiquimod upregulates the expression of Toll-like receptors 7, 11, and 12, following interconversion from bradyzoïtes to tachyzoïtes. Consequently, MyD88 pathway is activated, resulting in the induction of the immune response to control reactivated Toxoplasma foci. This study positions Imiquimod as a potent drug against toxoplasmosis and elucidates its mechanism of action particularly against chronic toxoplasmosis, which is the most prevalent form of the disease.
Collapse
Affiliation(s)
- Maguy Hamie
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rania Najm
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | | | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
4
|
Abstract
Developing new vaccines against emerging pathogens or pathogens where variability of antigenic sites presents a challenge, the inclusion of stimulators of the innate immune system is critical to mature the immune response in a way that allows high avidity recognition while preserving the ability to react to drifted serovars. The innate immune system is an ancient mechanism for recognition of nonself and the first line of defense against pathogen insult. By triggering innate receptors, adjuvants can boost responses to vaccines and enhance the quality and magnitude of the resulting immune response. This chapter: (1) describes the innate immune system, (2) provides examples of how adjuvants are formulated to optimize their effectiveness, and (3) presents examples of how adjuvants can improve outcomes of immunization.
Collapse
Affiliation(s)
- Darrick Carter
- PAI Life Sciences Inc., 1616 Eastlake Ave E, Suite 550, Seattle, WA, 98102, USA.
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA.
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA.
| | - Malcolm S Duthie
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| | - Steven G Reed
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| |
Collapse
|
5
|
Patel VM, Schwartz RA, Lambert WC. Topical antiviral and antifungal medications in pregnancy: a review of safety profiles. J Eur Acad Dermatol Venereol 2017; 31:1440-1446. [PMID: 28449377 DOI: 10.1111/jdv.14297] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
Abstract
Medications should be employed with caution in women of childbearing age who are pregnant or considering pregnancy. Compared to oral or parenteral agents, topical medications have limited systemic absorption and are deemed safer. However, their safety profile must be assessed cautiously due to the limited available data. In this article, we aggregate human and animal studies to provide recommendations on utilizing topical antiviral and antifungal medications in pregnancy. For antiviral medications, acyclovir and trichloroacetic acid are safe to use in pregnancy. Docosanol, imiquimod and penciclovir are likely safe, but should be utilized as second-line agents. Podofilox and podophyllin resin should be avoided. For antifungal medications, clotrimazole, miconazole and nystatin are considered first-line agents. Butenafine, ciclopirox, naftifine, oxiconazole and terbinafine may be utilized after the above agents. Econazole should be avoided during the first trimester and used sparingly during 2nd and 3rd trimester. Ketoconazole and selenium sulphide are likely safe, but should be employed in limited areas for brief periods.
Collapse
Affiliation(s)
- V M Patel
- Dermatology and Pathology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - R A Schwartz
- Dermatology and Pathology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - W C Lambert
- Dermatology and Pathology, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
6
|
Thigulla Y, Akula M, Trivedi P, Ghosh B, Jha M, Bhattacharya A. Synthesis and anti-cancer activity of 1,4-disubstituted imidazo[4,5-c]quinolines. Org Biomol Chem 2016; 14:876-83. [DOI: 10.1039/c5ob01650a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Synthesis of 4-substituted imidazo[4,5-c]quinolines using a Yb(OTf)3 catalyzed modified Pictet–Spengler reaction as the key final step.
Collapse
Affiliation(s)
- Yadagiri Thigulla
- Department of Chemistry
- Birla Institute of Technology and Science-Pilani (Hyderabad Campus)
- Hyderabad-500078
- India
| | - Mahesh Akula
- Department of Chemistry
- Birla Institute of Technology and Science-Pilani (Hyderabad Campus)
- Hyderabad-500078
- India
| | - Prakruti Trivedi
- Department of Pharmacy
- Birla Institute of Technology and Science-Pilani (Hyderabad Campus)
- Hyderabad-500078
- India
| | - Balaram Ghosh
- Department of Pharmacy
- Birla Institute of Technology and Science-Pilani (Hyderabad Campus)
- Hyderabad-500078
- India
| | - Mukund Jha
- Department of Biology and Chemistry
- Nipissing University
- North Bay
- Canada
| | - Anupam Bhattacharya
- Department of Chemistry
- Birla Institute of Technology and Science-Pilani (Hyderabad Campus)
- Hyderabad-500078
- India
| |
Collapse
|
7
|
Matin N, Tabatabaie O, Mohammadinejad P, Rezaei N. Therapeutic targeting of Toll-like receptors in cutaneous disorders. Expert Opin Ther Targets 2015; 19:1651-63. [DOI: 10.1517/14728222.2015.1069275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Regional immune response to immunization with Escherichia coli O157:H7-derived intimin in cattle. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:562-71. [PMID: 23408521 DOI: 10.1128/cvi.00743-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli O157:H7 is an enteric pathogen of animals and humans that can result in deadly sequelae. Cattle are asymptomatic carriers and shedders of the bacteria and serve as an important reservoir of human infection. E. coli O157:H7 colonizes the gastrointestinal tract, most frequently at the rectoanal junction mucosa in cattle. Vaccination is a potentially highly effective means of decreasing cattle colonization and shedding and thereby decreasing human infections. Currently available vaccines are administered subcutaneously or intramuscularly, and immune responses have been evaluated solely by systemic immunoglobulin responses. This study evaluated local and systemic lymphoproliferative responses in addition to immunoglobulin responses following subcutaneous or mucosal (rectal) immunization with E. coli O157:H7 outer membrane protein intimin over three trials. In all three trials, significant local and systemic lymphoproliferative responses (P < 0.05) occurred following immunization in the majority of animals, as well as significant immunoglobulin responses (P < 0.001) in all animals. Surprisingly, local responses in the mesorectal lymph nodes were very similar between the subcutaneous and mucosal immunization groups. Moreover, the responses in mesorectal lymph nodes appeared targeted rather than generalized, as minimal or no significant responses were observed in the associated prescapular lymph nodes of subcutaneously immunized animals. The results indicate that both subcutaneous and mucosal immunizations are effective methods of inducing immune responses against E. coli O157:H7 in cattle.
Collapse
|
9
|
Leibovici J, Itzhaki O, Huszar M, Sinai J. Targeting the tumor microenvironment by immunotherapy: part 2. Immunotherapy 2011; 3:1385-408. [DOI: 10.2217/imt.11.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer therapy was traditionally centered on the neoplastic cells. This included mainly surgery, radiation, and chemotherapy, in some cases hormone therapy and to a lesser extent immunotherapy – all traditionally targeted to the highly proliferating mutated tumor cells. In view of our present understanding of the powerfull influence of the tumor microenvironment (TME) on cancer behavior and response – and lack of response – to treatment, this previously ignored constituent of cancer now has to be considered as an important, even indispensable target for therapy. The TME may be targeted both to its immune and to its nonimmune components. The various immune evasion elements of the TME should be targeted as well.
Collapse
Affiliation(s)
| | - Orit Itzhaki
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Monica Huszar
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Judith Sinai
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
10
|
Jezierska A, Kolosova IA, Verin AD. Toll Like Receptors Signaling Pathways as a Target for Therapeutic Interventions. ACTA ACUST UNITED AC 2011; 6:428-440. [PMID: 28373830 DOI: 10.2174/157436211797483930] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review summarizes the key role of Toll-Like Receptor (TLRs) molecules for igniting the immune system. Activated by a broad spectrum of pathogens, cytokines or other specific molecules, TLRs trigger innate immune responses. Published data demonstrate that the targeting and suppression of TLRs and TLR-related proteins with particular inhibitors may provide pivotal treatments for patients with cancer, asthma, sepsis, Crohn's disease and thrombosis. Many drugs that target cytokines act in the late phases of the activated pathways, after the final peptides, proteins or glycoproteins are formed in the cell environment. TLR activity occurs in the early activation of cellular pathways; consequently inhibiting them might be most beneficial in the treatment of human diseases.
Collapse
Affiliation(s)
| | - Irina A Kolosova
- Johns Hopkins University, Blumberg School of Public Health, Baltimore, Maryland, USA
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, and Medical College of Georgia, USA
| |
Collapse
|
11
|
Duthie MS, Windish HP, Fox CB, Reed SG. Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 2011; 239:178-96. [PMID: 21198672 DOI: 10.1111/j.1600-065x.2010.00978.x] [Citation(s) in RCA: 326] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our improved understanding of how innate immune responses can be initiated and how they can shape adaptive B- and T-cell responses is having a significant impact on vaccine development by directing the development of defined adjuvants. Experience with first generation vaccines, as well as rapid advances in developing defined vaccines containing Toll-like receptor ligands (TLRLs), indicate that an expanded number of safe and effective vaccines containing such molecules will be available in the future. In this review, we outline current knowledge regarding TLRs, detailing the different cell types that express TLRs, the various signaling pathways TLRs utilize, and the currently known TLRLs. We then discuss the current status of TLRLs within vaccine development programs, including the importance of appropriate formulation, and how recent developments can be used to better define the mechanisms of action of vaccines. Finally, we introduce the possibility of using TLRLs, either in combination or with non-TLRLs, to synergistically potentiate vaccine-induced responses to provide not only prophylactic, but therapeutic protection against infectious diseases and cancer.
Collapse
|
12
|
El kihel A, El ouar M, Ahbala M, Mouzdahir A, Harjane T, Knouzi N. Condensation of 5-aminobenzimidazoles with β-ketoester. ARAB J CHEM 2010. [DOI: 10.1016/j.arabjc.2009.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
13
|
Diluvio L, Campione E, Jasmine Paternò E, Orlandi A, Terrinoni A, Chimenti S. Peculiar clinical and dermoscopic remission pattern following imiquimod therapy of basal cell carcinoma in seborrhoeic areas of the face. J DERMATOL TREAT 2009; 20:124-9. [DOI: 10.1080/09546630802441226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Powell A, Robson A, Russell-Jones R, Barlow R. Imiquimod and lentigo maligna: a search for prognostic features in a clinicopathological study with long-term follow-up. Br J Dermatol 2009; 160:994-8. [DOI: 10.1111/j.1365-2133.2009.09032.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
SMITH KATHLEEN, HAMZA SATE, GERMAIN MARGUERITE, SKELTON HENRY. Does Imiquimod Histologically Rejuvenate Ultraviolet Radiation–Damaged Skin? Dermatol Surg 2007. [DOI: 10.1097/00042728-200712000-00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Thotathil Z, Jameson MB. Early experience with novel immunomodulators for cancer treatment. Expert Opin Investig Drugs 2007; 16:1391-403. [PMID: 17714025 DOI: 10.1517/13543784.16.9.1391] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Immunotherapy involves the treatment of cancer by modification of the host-tumour relationship. It is now known that this relationship is quite complex and only some of the interactions have been elucidated. Early attempts at immunotherapy, such as Coley's toxins, were undertaken without an understanding of the processes mediating the effects. With a better understanding of the immunology of this anticancer response, recent trials have focussed on certain aspects of the process to stimulate an antitumour response. In this review, the authors discuss a number of novel biological response modifiers that work as general stimulants of the immune system, through varied mechanisms including induction of stimulatory cytokines (such as IFN-alpha, TNF-alpha and IL-12) and activation of T cells and the antigen-presenting dendritic cells. These compounds include Toll-like receptor agonists, several of which are in clinical trials at present. In addition to immunomodulatory activity, some compounds such as 5,6-dimethylxanthenone-4-acetic acid (DMXAA) and thalidomide and its analogues also target existing or developing tumour vasculature. Some of these compounds have single-agent activity in clinical trials, while others such as DMXAA have shown promise in combination with chemotherapy without increasing toxicity. Lactoferrin is another compound that has shown clinical activity with low toxicity. At present, accepted indications for immunotherapy are limited to a few cancers such as renal cell carcinoma and melanoma. This paper looks at some of the reasons for the limited impact of immunotherapy so far and suggest possible avenues for further research with a greater likelihood of success.
Collapse
Affiliation(s)
- Ziad Thotathil
- Waikato Hospital, Department of Oncology, Hamilton, New Zealand
| | | |
Collapse
|
17
|
Gorden KKB, Qiu X, Battiste JJL, Wightman PPD, Vasilakos JP, Alkan SS. Oligodeoxynucleotides differentially modulate activation of TLR7 and TLR8 by imidazoquinolines. THE JOURNAL OF IMMUNOLOGY 2007; 177:8164-70. [PMID: 17114492 DOI: 10.4049/jimmunol.177.11.8164] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Among the 11 human TLRs, a subfamily TLR7, TLR8, and TLR9 display similarities in structure and endosomal localization. Natural agonists consisting of nucleic acids, such as ssRNA or DNA with CpG motifs, activate the innate immune cells through these TLRs. Immune response modifiers (IRMs) of imidazoquinoline class compounds 3M-001, 3M-002, and 3M-003 have been shown to activate the innate immune system via TLR7, TLR8, and TLR7/8, respectively. In looking at the effect of the agonists of the TLR7, TLR8, and TLR9 on the activation of NF-kappaB of transfected HEK cells, we discovered that some oligodeoxynucleotides (ODNs) could modulate imidazoquinoline effects in a negative or positive manner. In this study we demonstrate that poly(T) ODNs can inhibit TLR7 and enhance TLR8 signaling events involving NF-kappaB activation in HEK cells and cytokine production (IFN-alpha, TNF, and IL-12) by human primary PBMC. In contrast, TLR3 agonist poly(I:C) does not affect imidazoquinoline-induced responses. The modulation of TLR7 and TLR8 responses is independent of CpG motifs or the nature of the ODN backbone structure. Furthermore, we show that to be an effective modulator, the ODNs need to be in the cell at the same time with either of the TLR7 or TLR8 agonist. We have also demonstrated that there is a physical interaction between IRMs and ODNs. The cross-talk between ODNs, IRMs, and TLR7 and TLR8 uncovered by this study may have practical implications in the field of microbial infections, vaccination, and tumor therapy.
Collapse
Affiliation(s)
- Keith K B Gorden
- Department of Pharmacology, 3M Pharmaceuticals, St. Paul, MN 55144, USA
| | | | | | | | | | | |
Collapse
|
18
|
Sfondrini L, Rossini A, Besusso D, Merlo A, Tagliabue E, Mènard S, Balsari A. Antitumor Activity of the TLR-5 Ligand Flagellin in Mouse Models of Cancer. THE JOURNAL OF IMMUNOLOGY 2006; 176:6624-30. [PMID: 16709820 DOI: 10.4049/jimmunol.176.11.6624] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Flagellin, the structural protein subunit of the bacterial flagellum, is specifically recognized by TLR-5 and has potent immunomodulatory effects. The antitumor effects of purified Salmonella typhimurium flagellin were evaluated in mice transplanted s.c. with a weakly immunogenic murine tumor or with its variant stably transfected to express the highly antigenic human HER-2 oncoprotein. Peritumoral administration of flagellin 8-10 days after tumor implantation did not affect the growth rate of the weakly immunogenic tumor but significantly inhibited growth of the antigenic variant tumor. In contrast, flagellin administered at the time of implantation of the antigenic tumor led to accelerated tumor growth. These contrasting effects of flagellin on tumor growth correlated with the type of immune response induced; i.e., late flagellin administration was associated with an increased IFN-gamma:IL-4 ratio and the decreased frequency of CD4+CD25+ T regulatory cells, whereas flagellin treatment at the time of tumor implantation decreased the IFN-gamma:IL-4 ratio and increased CD4+CD25+ T cell frequency. When the early flagellin treatment was combined with administration of CpG-containing oligodeoxynucleotides, tumor growth was completely suppressed, indicating synergy between flagellin and CpG-containing oligodeoxynucleotides. Together, these data provide evidence that flagellin can have contrasting effects on tumor growth.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/therapeutic use
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Flagellin/administration & dosage
- Flagellin/metabolism
- Flagellin/therapeutic use
- Growth Inhibitors/administration & dosage
- Growth Inhibitors/metabolism
- Growth Inhibitors/therapeutic use
- Humans
- Ligands
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Transplantation
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th2 Cells/drug effects
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Toll-Like Receptor 5/metabolism
- Transfection
Collapse
|
19
|
Tötemeyer S, Kaiser P, Maskell DJ, Bryant CE. Sublethal infection of C57BL/6 mice with Salmonella enterica Serovar Typhimurium leads to an increase in levels of Toll-like receptor 1 (TLR1), TLR2, and TLR9 mRNA as well as a decrease in levels of TLR6 mRNA in infected organs. Infect Immun 2005; 73:1873-8. [PMID: 15731092 PMCID: PMC1064909 DOI: 10.1128/iai.73.3.1873-1878.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sublethal infection of C57BL/6 mice with Salmonella enterica serovar Typhimurium M525P initiates a strong inflammatory response. We measured organ expression of mRNA for Toll-like receptors and their associated signaling molecules during S. enterica serovar Typhimurium infection. During infection, the Toll-lie receptor 1 (TLR1), TLR2, and TLR9 mRNA levels increased, while TLR6 mRNA expression decreased.
Collapse
Affiliation(s)
- Sabine Tötemeyer
- Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | | | | | | |
Collapse
|