1
|
Lucari B, Tallis E, Sutton VR, Porea T. Dual enzyme therapy improves adherence to chemotherapy in a patient with gaucher disease and Ewing sarcoma. Pediatr Hematol Oncol 2022; 40:422-428. [PMID: 36125320 DOI: 10.1080/08880018.2022.2124006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This case reports concomitant use of enzyme and substrate reduction therapy to improve chemotherapy adherence in a pediatric patient diagnosed with Ewing sarcoma (ES) and type 1 Gaucher disease (GD). The 17-year-old female presented with 5 months of right knee pain with associated mass on exam. She was diagnosed with ES with pulmonary metastasis. The patient was treated with 17 alternating cycles of vincristine-doxorubicin-cyclophosphamide and ifosfamide and etoposide chemotherapy followed by tumor resection and radiation per standard protocol. As part of her staging work-up, bone marrow biopsy was performed, significant for Gaucher cells. After the second cycle of chemotherapy the patient began to experience severe delays averaging 30 days between cycles compared to 17.29 days observed in Children's Oncology Group data. Given her bone marrow biopsy findings and chemotherapy delays GD screening was obtained and the patient was diagnosed with GD following genetic confirmation. Due to delays in chemotherapy decreasing chance of remission, the patient was referred to Genetics for aggressive management with imiglucerase and eliglustat. After initiation of therapy the period between chemotherapy cycles decreased to 23 days on average, with a 21% increase in platelet count during therapy. The patient was able to complete ES therapy achieving remission. GD is associated with an increased risk of malignancy, as seen in our patient with ES. GD patients experience prolonged hematologic cytopenia during cancer treatment. Combining Enzyme and Substrate Reduction Therapies should be investigated as an option to improve chemotherapy adherence in GD patients.
Collapse
Affiliation(s)
- Brandon Lucari
- Department of Pediatrics at Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Eran Tallis
- Department of Molecular and Human Genetics at Baylor College of Medicine, Houston, Texas, USA
| | - Vernon Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Timothy Porea
- Department of Pediatrics Division of Hematology Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
2
|
Wang JZ, Shimadate Y, Kise M, Kato A, Jia YM, Li YX, Fleet G, Yu CY. Trans, trans-2-C-aryl-3,4-dihydroxypyrrolidines as potent and selective β-glucosidase inhibitors: Pharmacological chaperones for gaucher disease. Eur J Med Chem 2022; 238:114499. [DOI: 10.1016/j.ejmech.2022.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
|
3
|
Recapture Lysosomal Enzyme Deficiency via Targeted Gene Disruption in the Human Near-Haploid Cell Line HAP1. Genes (Basel) 2021; 12:genes12071076. [PMID: 34356092 PMCID: PMC8308024 DOI: 10.3390/genes12071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Advancement in genome engineering enables rapid and targeted disruption of any coding sequences to study gene functions or establish human disease models. We explored whether this approach can be used to study Gaucher disease, one of the most common types of lysosomal storage diseases (LSDs) in a near-haploid human cell line (HAP1). RESULTS CRISPR-Cas9 targeting to coding sequences of β-glucocerebrosidase (GBA), the causative gene of Gaucher disease, resulted in an insertional mutation and premature termination of GBA. We confirmed the GBA knockout at both the gene and enzyme levels by genotyping and GBA enzymatic assay. Characterization of the knockout line showed no significant changes in cell morphology and growth. Lysosomal staining revealed more granular lysosomes in the cytosol of the GBA-knockout line compared to its parental control. Flow cytometry analysis further confirmed that more lysosomes accumulated in the cytosol of the knockout line, recapturing the disease phenotype. Finally, we showed that this knockout cell line could be used to evaluate a replacement therapy by recombinant human GBA. CONCLUSIONS Targeted gene disruption in human HAP1 cells enables rapid establishment of the Gaucher model to capture the key pathology and to test replacement therapy. We expect that this streamlined method can be used to generate human disease models of other LSDs, most of which are still lacking both appropriate human disease models and specific treatments to date.
Collapse
|
4
|
Kaltashov IA, Bobst CE, Pawlowski J, Wang G. Mass spectrometry-based methods in characterization of the higher order structure of protein therapeutics. J Pharm Biomed Anal 2020; 184:113169. [PMID: 32092629 DOI: 10.1016/j.jpba.2020.113169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Higher order structure of protein therapeutics is an important quality attribute, which dictates both potency and safety. While modern experimental biophysics offers an impressive arsenal of state-of-the-art tools that can be used for the characterization of higher order structure, many of them are poorly suited for the characterization of biopharmaceutical products. As a result, these analyses were traditionally carried out using classical techniques that provide relatively low information content. Over the past decade, mass spectrometry made a dramatic debut in this field, enabling the characterization of higher order structure of biopharmaceuticals as complex as monoclonal antibodies at a level of detail that was previously unattainable. At present, mass spectrometry is an integral part of the analytical toolbox across the industry, which is critical not only for quality control efforts, but also for discovery and development.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA.
| | - Cedric E Bobst
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Jake Pawlowski
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Guanbo Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
5
|
Yang R, Wu M, Lin S, Nargund RP, Li X, Kelly T, Yan L, Dai G, Qian Y, Dallas-Yang Q, Fischer PA, Cui Y, Shen X, Huo P, Feng DD, Erion MD, Kelley DE, Mu J. A glucose-responsive insulin therapy protects animals against hypoglycemia. JCI Insight 2018; 3:97476. [PMID: 29321379 DOI: 10.1172/jci.insight.97476] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/05/2017] [Indexed: 01/24/2023] Open
Abstract
Hypoglycemia is commonly associated with insulin therapy, limiting both its safety and efficacy. The concept of modifying insulin to render its glucose-responsive release from an injection depot (of an insulin complexed exogenously with a recombinant lectin) was proposed approximately 4 decades ago but has been challenging to achieve. Data presented here demonstrate that mannosylated insulin analogs can undergo an additional route of clearance as result of their interaction with endogenous mannose receptor (MR), and this can occur in a glucose-dependent fashion, with increased binding to MR at low glucose. Yet, these analogs retain capacity for binding to the insulin receptor (IR). When the blood glucose level is elevated, as in individuals with diabetes mellitus, MR binding diminishes due to glucose competition, leading to reduced MR-mediated clearance and increased partitioning for IR binding and consequent glucose lowering. These studies demonstrate that a glucose-dependent locus of insulin clearance and, hence, insulin action can be achieved by targeting MR and IR concurrently.
Collapse
|
6
|
Lee BH, Abdalla AF, Choi JH, Beshlawy AE, Kim GH, Heo SH, Megahed AMH, Elsayed MAL, Barakat TESM, Eid KMAEA, El-Tagui MH, Mahmoud MMH, Fateen E, Park JY, Yoo HW. A multicenter, open-label, phase III study of Abcertin in Gaucher disease. Medicine (Baltimore) 2017; 96:e8492. [PMID: 29137040 PMCID: PMC5690733 DOI: 10.1097/md.0000000000008492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Gaucher disease (GD) is caused by a deficiency in the lysosomal enzyme glucocerebrosidase. Enzyme replacement therapy (ERT) is recommended for clinical improvement. METHODS The efficacy and safety of a new imiglucerase, Abcertin, were assessed in 7 Egyptian patients with treatment-naïve type 1 GD. Each patient was administered a biweekly 60 U/kg dose of Abcertin for 6 months. The primary endpoint was the change in hemoglobin concentration. The secondary endpoints were changes from baseline in platelet counts, spleen and liver volumes, biomarker levels, skeletal parameters, and bone mineral density. RESULTS The hemoglobin concentration increased by a mean of 1.96 ± 0.91 g/dL (range 1.11-2.80 g/dL) or 20.6% (P = .001). Statistically significant increases in the platelet count and decreases in the spleen volume and biomarker levels were also observed. There were no severe drug-related adverse events. One patient developed anti-imiglucerase antibodies without neutralizing activity. CONCLUSION Our study results demonstrate the efficacy and safety of Abcertin in patients with type 1 GD. This suggests that Abcertin can be an alternative ERT option for type 1 GD.
Collapse
Affiliation(s)
- Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center
| | - Sun Hee Heo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | - Ekram Fateen
- Biochemical Genetics Department, National Research Centre, Cairo, Egypt
| | | | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Kim YM, Shin DH, Park SB, Cheon CK, Yoo HW. Case report of unexpected gastrointestinal involvement in type 1 Gaucher disease: comparison of eliglustat tartrate treatment and enzyme replacement therapy. BMC MEDICAL GENETICS 2017; 18:55. [PMID: 28506293 PMCID: PMC5433137 DOI: 10.1186/s12881-017-0403-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/07/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Gastrointestinal involvement in Gaucher disease is very rare, and appears to be unresponsive to enzyme replacement therapy (ERT). CASE PRESENTATION Here, we describe identical twin, splenectomized, non-neuronopathic Gaucher patients on long-term ERT for 9 years, who complained of epigastric discomfort due to Gaucher cell infiltration of the gastroduodenal mucosa. Rare compound heterozygous mutations (p.Arg48Trp and p.Arg257Gln) of the GBA gene were found in both. Improvement in the gastroduodenal infiltration and reduced chitotriosidase levels were observed in one who switched to eliglustat tartrate for 1 year, whereas the other one who maintained ERT showed no improvement of chitotriosidase level and persistent duodenal lesions. CONCLUSION This shows that eliglustat might be an effective treatment for Gaucher disease patients having lesions resistant to ERT.
Collapse
Affiliation(s)
- Yoo-Mi Kim
- Department of Pediatrics, College of Medicine, Pusan National University Children's Hospital, Yangsan, Korea
| | - Dong Hoon Shin
- Department of Pathology, College of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Su Bum Park
- Department of Internal Medicine, College of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Chong Kun Cheon
- Department of Pediatrics, College of Medicine, Pusan National University Children's Hospital, Yangsan, Korea. .,Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Geumo-ro, Yangsan-si, Gyeongnam, 602-739, Korea.
| | - Han-Wook Yoo
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea. .,Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea.
| |
Collapse
|
8
|
Abstract
Gaucher disease is a progressive lysosomal storage disorder caused by a deficiency in the activity of β-glucocerebrosidase and is characterized by the accumulation of the glycosphingolipid glucosylceramide in the lysosomes of macrophages that leads to dysfunction in multiple organ system. An emerging strategy for the treatment of Gaucher disease is pharmacological chaperone therapy, based on the use of β-glucocerebrosidase inhibitors that are capable of enhancing residual hydrolytic activity at subinhibitory concentrations. In this article, the most common lysosomal storage disorder, Gaucher disease, is introduced and the current therapeutic strategies based on the use of enzyme inhibitors to ameliorate this disease are discussed, with a focus on the efforts being made toward finding and optimizing novel molecules as pharmacological chaperones for Gaucher disease that offer the promise to remedy this malady.
Collapse
|
9
|
Platt FM, Boland B, van der Spoel AC. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. ACTA ACUST UNITED AC 2013. [PMID: 23185029 PMCID: PMC3514785 DOI: 10.1083/jcb.201208152] [Citation(s) in RCA: 514] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lysosomal storage diseases (LSDs) are a family of disorders that result from inherited gene mutations that perturb lysosomal homeostasis. LSDs mainly stem from deficiencies in lysosomal enzymes, but also in some non-enzymatic lysosomal proteins, which lead to abnormal storage of macromolecular substrates. Valuable insights into lysosome functions have emerged from research into these diseases. In addition to primary lysosomal dysfunction, cellular pathways associated with other membrane-bound organelles are perturbed in these disorders. Through selective examples, we illustrate why the term “cellular storage disorders” may be a more appropriate description of these diseases and discuss therapies that can alleviate storage and restore normal cellular function.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, England, UK.
| | | | | |
Collapse
|
10
|
Trapero A, Egido-Gabás M, Llebaria A. Adamantane substituted aminocyclitols as pharmacological chaperones for Gaucher disease. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00217a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Abstract
Adherents to the Jewish faith have resided in numerous geographic locations over the course of three millennia. Progressively more detailed population genetic analysis carried out independently by multiple research groups over the past two decades has revealed a pattern for the population genetic architecture of contemporary Jews descendant from globally dispersed Diaspora communities. This pattern is consistent with a major, but variable component of shared Near East ancestry, together with variable degrees of admixture and introgression from the corresponding host Diaspora populations. By combining analysis of monoallelic markers with recent genome-wide variation analysis of simple tandem repeats, copy number variations, and single-nucleotide polymorphisms at high density, it has been possible to determine the relative contribution of sex-specific migration and introgression to map founder events and to suggest demographic histories corresponding to western and eastern Diaspora migrations, as well as subsequent microevolutionary events. These patterns have been congruous with the inferences of many, but not of all historians using more traditional tools such as archeology, archival records, linguistics, comparative analysis of religious narrative, liturgy and practices. Importantly, the population genetic architecture of Jews helps to explain the observed patterns of health and disease-relevant mutations and phenotypes which continue to be carefully studied and catalogued, and represent an important resource for human medical genetics research. The current review attempts to provide a succinct update of the more recent developments in a historical and human health context.
Collapse
|
12
|
Miranda CO, Brites P, Mendes Sousa M, Teixeira CA. Advances and pitfalls of cell therapy in metabolic leukodystrophies. Cell Transplant 2012; 22:189-204. [PMID: 23006656 DOI: 10.3727/096368912x656117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Leukodystrophies are a group of disorders characterized by myelin dysfunction, either at the level of myelin formation or maintenance, that affect the central nervous system (CNS) and also in some cases, to a lesser extent, the peripheral nervous system (PNS). Although these genetic-based disorders are generally rare, all together they have a significant impact in the society, with an estimated overall incidence of 1 in 7,663 live births. Currently, there is no cure for leukodystrophies, and the development of effective treatments remains challenging. Not only leukodystrophies generally progress very fast, but also most are multifocal needing the simultaneous targeting at multiple sites. Moreover, as the CNS is affected, the blood-brain barrier (BBB) limits the efficacy of treatment. Recently, interest on cell therapy has increased, and the leukodystrophies for which metabolic correction is needed have become first-choice candidates for cell-based clinical trials. In this review, we present and discuss the available cell transplantation therapies in metabolic leukodystrophies including fucosidosis, X-linked adrenoleukodystrophy, metachromatic leukodystrophy, Canavan disease, and Krabbe's disease. We will discuss the latest advances of cell therapy and its pitfalls in this group of disorders, taking into account, among others, the limitations imposed by reduced cell migration in multifocal conditions, the need to achieve corrective enzyme threshold levels, and the growing awareness that not only myelin but also the associated axonopathy needs to be targeted in some leukodystrophies.
Collapse
|
13
|
Katz R, Booth T, Hargunani R, Wylie P, Holloway B. Radiological aspects of Gaucher disease. Skeletal Radiol 2011; 40:1505-13. [PMID: 20658285 DOI: 10.1007/s00256-010-0992-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 05/03/2010] [Accepted: 06/13/2010] [Indexed: 02/02/2023]
Abstract
Advances in imaging and the development of commercially available enzyme therapy have significantly altered the traditional radiology of Gaucher disease. The cost of treatment and need for monitoring response to therapy have magnified the importance of imaging. There are no recent comprehensive reviews of the radiology of this relatively common lysosomal storage disease. This article describes the modern imaging, techniques and radiological manifestations of Gaucher disease.
Collapse
Affiliation(s)
- Robert Katz
- Radiology Department, Royal Free Hospital, London, UK.
| | | | | | | | | |
Collapse
|
14
|
Nimrichter L, Rodrigues ML. Fungal glucosylceramides: from structural components to biologically active targets of new antimicrobials. Front Microbiol 2011; 2:212. [PMID: 22025918 PMCID: PMC3198225 DOI: 10.3389/fmicb.2011.00212] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 09/30/2011] [Indexed: 01/09/2023] Open
Abstract
The first work reporting synthesis of glucosylceramide (cerebrin, GlcCer) by yeasts was published in 1930. During approximately 70 years members of this class of glycosphingolipids (GSL) were considered merely structural components of plasma membrane in fungi. However, in the last decade GlcCer was reported to be involved with fungal growth, differentiation, virulence, immunogenicity, and lipid raft architecture in at least two human pathogens. Fungal GlcCer are structurally distinct from their mammalian counterparts and enriched at the cell wall, which makes this molecule an effective target for antifungal activity of specific ligands (peptides and antibodies to GlcCer). Therefore, GSL are promising targets for new drugs to combat fungal diseases. This review discusses the most recent information on biosynthesis and role of GlcCer in fungal pathogens.
Collapse
Affiliation(s)
- Leonardo Nimrichter
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | |
Collapse
|
15
|
Nietupski JB, Hurlbut GD, Ziegler RJ, Chu Q, Hodges BL, Ashe KM, Bree M, Cheng SH, Gregory RJ, Marshall J, Scheule RK. Systemic administration of AAV8-α-galactosidase A induces humoral tolerance in nonhuman primates despite low hepatic expression. Mol Ther 2011; 19:1999-2011. [PMID: 21712814 DOI: 10.1038/mt.2011.119] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In mice, liver-restricted expression of lysosomal enzymes from adeno-associated viral serotype 8 (AAV8) vectors results in reduced antibodies to the expressed proteins. To ask whether this result might translate to patients, nonhuman primates (NHPs) were injected systemically with AAV8 encoding α-galactosidase A (α-gal). As in mice, sustained expression in monkeys attenuated antibody responses to α-gal. However, this effect was not robust, and sustained α-gal levels were 1-2 logs lower than those achieved in male mice at the same vector dose. Because our mouse studies had shown that antibody levels were directly related to expression levels, several strategies were evaluated to increase expression in monkeys. Unlike mice, expression in monkeys did not respond to androgens. Local delivery to the liver, immune suppression, a self-complementary vector and pharmacologic approaches similarly failed to increase expression. While equivalent vector copies reached mouse and primate liver and there were no apparent differences in vector form, methylation or deamination, transgene expression was limited at the mRNA level in monkeys. These results suggest that compared to mice, transcription from an AAV8 vector in monkeys can be significantly reduced. They also suggest some current limits on achieving clinically useful antibody reduction and therapeutic benefit for lysosomal storage diseases using a systemic AAV8-based approach.
Collapse
|
16
|
Wang G, Abzalimov RR, Kaltashov IA. Direct Monitoring of Heat-Stressed Biopolymers with Temperature-Controlled Electrospray Ionization Mass Spectrometry. Anal Chem 2011; 83:2870-6. [DOI: 10.1021/ac200441a] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Guanbo Wang
- Department of Chemistry, University of Massachusetts−Amherst, Amherst, Massachusetts
| | - Rinat R. Abzalimov
- Department of Chemistry, University of Massachusetts−Amherst, Amherst, Massachusetts
| | - Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts−Amherst, Amherst, Massachusetts
| |
Collapse
|
17
|
Bobst CE, Thomas JJ, Salinas PA, Savickas P, Kaltashov IA. Impact of oxidation on protein therapeutics: conformational dynamics of intact and oxidized acid-β-glucocerebrosidase at near-physiological pH. Protein Sci 2011; 19:2366-78. [PMID: 20945356 DOI: 10.1002/pro.517] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The solution dynamics of an enzyme acid-β-glucocerebrosidase (GCase) probed at a physiologically relevant (lysosomal) pH by hydrogen/deuterium exchange mass spectrometry (HDX-MS) reveals very uneven distribution of backbone amide protection across the polypeptide chain. Highly mobile segments are observed even within the catalytic cavity alongside highly protective segments, highlighting the importance of the balance between conformational stability and flexibility for enzymatic activity. Forced oxidation of GCase that resulted in a 40-60% reduction in in vitro biological activity affects the stability of some key structural elements within the catalytic site. These changes in dynamics occur on a longer time scale that is irrelevant for catalysis, effectively ruling out loss of structure in the catalytic site as a major factor contributing to the reduction of the catalytic activity. Oxidation also leads to noticeable destabilization of conformation in remote protein segments on a much larger scale, which is likely to increase the aggregation propensity of GCase and affect its bioavailability. Therefore, it appears that oxidation exerts its negative impact on the biological activity of GCase indirectly, primarily through accelerated aggregation and impaired trafficking.
Collapse
Affiliation(s)
- Cedric E Bobst
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
18
|
Plakkal N, Soraisham AS, Jirapradittha J, Pinto-Rojas A. Perinatal lethal Gaucher disease. Indian J Pediatr 2011; 78:106-8. [PMID: 20924719 DOI: 10.1007/s12098-010-0247-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 09/16/2010] [Indexed: 11/26/2022]
Abstract
Perinatal Lethal Gaucher Disease (PLGD) is a rare form of Gaucher disease and is often considered a distinct form of type 2 Gaucher disease. The authors report on an infant who presented with progressive hepatosplenomegaly, ichthyosis, generalized skin edema and neonatal encephalopathy and died at 6 h of age. Autopsy revealed massive hepatosplenomegaly, ichthyosis, a diffuse collodion picture and histological evidence of infiltration by Gaucher cells in the liver, spleen, lung, thymus, lymph node and bone marrow. Genetic testing of the parents revealed both to be carriers of Gaucher disease.
Collapse
Affiliation(s)
- Nishad Plakkal
- Department of Pediatrics, Division of Neonatology, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
19
|
Kimball S, Choy F, Zay A, Amato D. Homozygous N396T mutation in Gaucher disease: Portuguese sisters with markedly different phenotypes. Int Med Case Rep J 2011; 4:17-20. [PMID: 23754899 PMCID: PMC3658231 DOI: 10.2147/imcrj.s17144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gaucher disease (GD) is characterized by reduced activity of glucocerebrosidase leading to complications in the reticuloendothelial system. N396T, a rarer mutation of the glucocerebrosidase gene, has been encountered in Portuguese populations and has generally been associated with milder phenotypes. This report presents brief histories of two Portuguese sisters, both with homozygous N396T mutations. These patients are phenotypically very different despite the fact that in both patients residual enzyme activity is very low. The case of patient 1 is complicated by comorbid diabetes mellitus and human immunodeficiency virus (HIV) infection. Enzyme replacement therapy (ERT) improved this patient's clinical picture sufficiently to enable antiretroviral treatment to proceed for the HIV. This report demonstrates the poor correlation of clinical GD with genotype as well as with residual enzyme activity. It further illustrates how treatment of the underlying GD with ERT improved symptoms allowing for antiretroviral therapy thereby improving both the GD and HIV.
Collapse
Affiliation(s)
- Samantha Kimball
- Department of Nutritional Sciences, University of Toronto, Canada ; Department of Laboratory Medicine and Pathology, Division of Hematology, Mt Sinai Hospital, Toronto, Canada
| | | | | | | |
Collapse
|
20
|
Parkinson-Lawrence EJ, Shandala T, Prodoehl M, Plew R, Borlace GN, Brooks DA. Lysosomal storage disease: revealing lysosomal function and physiology. Physiology (Bethesda) 2010; 25:102-15. [PMID: 20430954 DOI: 10.1152/physiol.00041.2009] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The discovery over five decades ago of the lysosome, as a degradative organelle and its dysfunction in lysosomal storage disorder patients, was both insightful and simple in concept. Here, we review some of the history and pathophysiology of lysosomal storage disorders to show how they have impacted on our knowledge of lysosomal biology. Although a significant amount of information has been accrued on the molecular genetics and biochemistry of lysosomal storage disorders, we still do not fully understand the mechanistic link between the storage material and disease pathogenesis. However, the accumulation of undegraded substrate(s) can disrupt other lysosomal degradation processes, vesicular traffic, and lysosomal biogenesis to evoke the diverse pathophysiology that is evident in this complex set of disorders.
Collapse
Affiliation(s)
- Emma J Parkinson-Lawrence
- Cell Biology of Disease Research Group, Sansom Institute for Health Research, Division of Health Science, University of South Australia, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Rajappa M, Goyal A, Kaur J. Inherited metabolic disorders involving the eye: a clinico-biochemical perspective. Eye (Lond) 2010; 24:507-518. [PMID: 19798114 DOI: 10.1038/eye.2009.229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The diagnosis of inborn errors of metabolism is challenging for most physicians. Improvements in medical technology and greater knowledge of the human genome are resulting in significant changes in the diagnosis, classification, and treatment of inherited metabolic disorders (IMDs). Many known inborn errors of metabolism will be recognised earlier or treated differently because of these changes. It is important that physicians recognise the clinical signs of IMDs and know when to propose advanced laboratory testing or referral to a higher centre for better patient management. Ocular manifestations occur in various metabolic disorders. Although there is an extensive understanding of many inborn errors of metabolism at the biochemical, molecular, and metabolic levels, little is known about their pathogenesis. In particular, how systemic metabolic disease contributes to ocular defects remains to be elucidated in IMDs. The occurrence of eye abnormalities could be due to direct toxic mechanisms of abnormal metabolic products or accumulation of normal metabolites by errors of synthetic pathways or by deficient energy metabolism. A detailed ophthalmological assessment is essential. Definitive diagnosis and management of patients with IMDs is ideally carried out by a combination of specialists, including an ophthalmologist, paediatrician, biochemist, and medical geneticist. Recent advances in the diagnosis and treatment of IMDs have substantially improved the prognosis for many of these conditions.
Collapse
Affiliation(s)
- M Rajappa
- Department of Ocular Biochemistry, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
22
|
Kang TS, Stevens RC. Structural aspects of therapeutic enzymes to treat metabolic disorders. Hum Mutat 2010; 30:1591-610. [PMID: 19790257 DOI: 10.1002/humu.21111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein therapeutics represents a niche subset of pharmacological agents that is rapidly gaining importance in medicine. In addition to the exceptional specificity that is characteristic of protein therapeutics, several classes of proteins have also been effectively utilized for treatment of conditions that would otherwise lack effective pharmacotherapeutic options. A particularly striking class of protein therapeutics is exogenous enzymes administered for replacement therapy in patients afflicted with metabolic disorders. To date, at least 11 enzymes have either been approved for use, or are in clinical trials for the treatment of selected inherited metabolic disorders. With the recent advancement in structural biology, a significantly larger amount of structural information for several of these enzymes is now available. This article is an overview of the correlation between structural perturbations of these enzymes with the clinical presentation of the respective metabolic conditions, as well as a discussion of the relevant structural modification strategies engaged in improving these enzymes for replacement therapies.
Collapse
Affiliation(s)
- Tse Siang Kang
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
23
|
|
24
|
Ilan Y. Alpha versus beta: are we on the way to resolve the mystery as to which is the endogenous ligand for natural killer T cells? Clin Exp Immunol 2009; 158:300-7. [PMID: 19793337 DOI: 10.1111/j.1365-2249.2009.04030.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Natural killer T (NKT) lymphocytes are a unique subset of cells that play a role in regulating the immune system. For the past decade, studies have focused upon attempts to define these cells and to determine the ligand(s) that are required for their development and peripheral activation. Many research groups have focused upon determining the mechanisms for activating or inhibiting NKT cells in an attempt to control immune-mediated disorders as well as infectious and malignant conditions by using different ligand structures. Alpha-anomeric glycolipids and phospholipids derived from mammalian, bacterial, protozoan and plant species have been suggested as potential ligands for these lymphocytes. Some of these ligands were structured in forms that can bind to CD1d molecules. The lack of alpha-anomeric glycosphingolipids in mammals and the modest effect of these ligands in human studies, along with recent data from animal models and humans on the NKT-dependent immunomodulatory effect of beta-glycosphingolipids, suggest that the beta-anomeric ligands have the potential to be the endogenous NKT ligand.
Collapse
Affiliation(s)
- Y Ilan
- Department of Medicine, Hebrew University - Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
25
|
Akolkar B, Karp R, Kimmel PL, McKeon C, Rasooly RS. Fostering translation of genetics research: an NIDDK perspective. Per Med 2009; 6:579-588. [PMID: 29783302 DOI: 10.2217/pme.09.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the NIH, supports a large and varied portfolio of genetic research grants and contracts. As a funding agency, the NIDDK aims to support research that can be translated into discoveries that help to reduce the burden of genetic diseases. Except for the major advances in diagnostics for Mendelian diseases and a few disease-specific therapies, there has only been modest clinical benefit from the investment in human genetics research. For genetically complex, multifactorial diseases, including many of the common diseases in the USA, the risk genes are harder to find than for Mendelian diseases, and translation seems even further off. How can NIDDK make its investment in human genetics research pay off? This report describes the challenges in human genetics research and NIDDK's fivefold funding strategy to support science that will eventually lead to meaningful translation.
Collapse
Affiliation(s)
- Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, MD, USA
| | - Robert Karp
- National Institute of Diabetes and Digestive and Kidney Diseases, MD, USA
| | - Paul L Kimmel
- Kidney, Urologic, & Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Boulevard, Bethesda, MD 20817, USA
| | - Catherine McKeon
- National Institute of Diabetes and Digestive and Kidney Diseases, MD, USA
| | | |
Collapse
|
26
|
Glucocerebroside: an evolutionary advantage for patients with Gaucher disease and a new immunomodulatory agent. Immunol Cell Biol 2009; 87:514-24. [PMID: 19529001 DOI: 10.1038/icb.2009.42] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gaucher disease (GD) is caused by the reduced activity of a lysosomal enzyme, glucocerebrosidase, leading to the accumulation of glucocerebroside (GC). The relatively high prevalence of this disease within an ethnic group is believed to reflect a selective advantage. Treatment with enzyme replacement therapy (ERT) is safe and effective in ameliorating the primary symptoms of the disease, yet there have been reports that some patients on ERT have developed type 2 diabetes or metabolic syndrome, malignancies and central nervous system disorders. A series of animal studies suggest that these complications may be related to the reduction of GC levels by the enzyme administered. GC has been shown to have an immunomodulatory effect through the promotion of dendritic cells, natural killer T cells, and regulatory T cells. The break down of GC to ceramide can underline part of these findings. Clinical trials suggested a beneficial effect of GC in type 2 diabetes or nonalcoholic steatohepatitis. This review of the data from animal models and humans proposes that the increased level of GC may provide an evolutionary advantage for patients with GD. Indirectly, these data support treating symptomatic patients with mild/moderate GD with low-dose ERT and re-evaluating the use of ERT in asymptomatic patients.
Collapse
|