1
|
Fang Y, Shen B, Dai Q, Xie Q, Li X, Wu W, Wang M. Composition and diversity analysis of the TCR CDR3 repertoire in patients with idiopathic orbital inflammation using high-throughput sequencing. BMC Ophthalmol 2023; 23:491. [PMID: 38044453 PMCID: PMC10694961 DOI: 10.1186/s12886-023-03248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Idiopathic orbital inflammation (IOI) is a nonspecific orbital inflammatory disease with the third highest prevalence among orbital diseases, and its pathogenesis is associated with T-cell-mediated immune responses. This study aimed to investigate the differences in T-cell receptor (TCR) expression between IOI patients and healthy subjects by high-throughput sequencing and to characterize TCR expression in patients with IOI and with respect to glucocorticoid response. METHODS A total of 19 subjects were enrolled in this study and were divided into the idiopathic orbital inflammation group (IOI group, n = 13) and the healthy control group (HC group, n = 6), and within the IOI group were further divided into the glucocorticoid therapy sensitive group (IOI(EF) group, n = 6) and the glucocorticoid therapy ineffective group (IOI(IN) group, n = 7) based on the degree of effectiveness to glucocorticoid therapy. High-throughput TCR sequencing was performed on peripheral blood mononuclear cells of IOI patients and healthy control individuals using 5' RACE technology combined with Unique Identifier (UID) digital tag correction technology. The TCR CDR3 region diversity, sharing patterns, and differential sequences between the IOI and HC groups, and between the IOI(EF) and IOI(IN) groups were analyzed. RESULTS It was found that the diversity of TCR CDR3 in the IOI group was significantly lower than that in the HC group, and the frequency of V gene use was significantly different between groups. The diversity of TCR CDR3 in patients in the IOI(EF) group was significantly lower than that in patients in the IOI(IN) group, and the frequency of V and J gene use was significantly different between the IOI(EF) group and the IOI(IN) group. Additionally, we found 133 nucleotide sequences shared in all IOI samples and screened two sequences with higher expression from them. CONCLUSIONS Our results suggested that abnormal clonal expansion of specific T-cells exists in IOI patients and that TCR diversity may had an impact on the prognosis of glucocorticoid-treated IOI. This study may contribute to a better understanding of the immune status of IOI and provide new insights for T-cell -associated IOI pathogenesis, diagnosis and treatment prediction.
Collapse
Affiliation(s)
- Yenan Fang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Shanghai, 201102, China
| | - Bingyan Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qin Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiqi Xie
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinyu Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Min Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Assefi M, Lewandrowski KU, Lorio M, Fiorelli RKA, Landgraeber S, Sharafshah A. Network-Based In Silico Analysis of New Combinations of Modern Drug Targets with Methotrexate for Response-Based Treatment of Rheumatoid Arthritis. J Pers Med 2023; 13:1550. [PMID: 38003865 PMCID: PMC10672378 DOI: 10.3390/jpm13111550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Methotrexate (MTX), sulfonamides, hydroxychloroquine, and leflunomide have consistently resulted in remission with relatively mild to moderate adverse effects in patients with rheumatoid arthritis (RA). Modern medications outperform traditional treatments in that they target the pathological processes that underlie the development of RA. METHODS Following PRISMA guidelines, the authors accomplished a systematic review of the clinical efficacy of RA drugs, including the biologics such as Tumor Necrosis Factor-alpha inhibitors (TNF-α i) like Etanercept, Infliximab, Golimumab, and Adalimumab, kinase inhibitors (JAK inhibitors including Baricitinib and Tofacitanib), SyK inhibitors like Fos-tamatinib, MAPK inhibitors such as Talmapimod, T-cell inhibitors (Abatacept), IL6 blockers (Tocilizumab), and B cells depleters (Rituximab). These drugs have been found to increase remission rates when combined with MTX. A bioinformatics-based network was designed applying STRING-MODEL and the DrugBank database for the aforementioned drugs and MTX and, finally, employed for this systematic review. RESULTS Current research demonstrates that non-TNF-α inhibitor biologicals are particularly helpful in treating patients who did not respond well to conventional medications and TNF-α inhibitors. Despite being effective, these innovative drugs have a higher chance of producing hazardous side effects. The in silico investigations suggested an uncovered molecular interaction in combining MTX with other biological drugs. The STRING-MODEL showed that DHFR, TYMS, and ATIC, as the receptors of MTX, interact with each other but are not connected to the major interacted receptors. CONCLUSIONS New game-changing drugs including Mavrilimumab, Iguratimod, Upadacitinib, Fenebrutinib, and nanoparticles may be crucial in controlling symptoms in poorly managed RA patients. Emerging therapeutic targets like Toll-like 4 receptors, NLRP3 inflammasome complexes, and mesenchymal stem cells can further transform RA therapy.
Collapse
Affiliation(s)
- Marjan Assefi
- Marie Curie Science Research Center, Greensboro, NC 27407, USA;
| | - Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona, 4787 E Camp Lowell Drive, Tucson, AZ 85712, USA;
- Department of Orthopaedics, Fundación Universitaria Sanitas, Bogotá 111321, Colombia
- Department of Orthopedics, Hospital Universitário Gaffre e Guinle, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Morgan Lorio
- Advanced Orthopaedics, 499 E. Central Pkwy, Ste. 130, Altamonte Springs, FL 32701, USA;
| | - Rossano Kepler Alvim Fiorelli
- Department of General and Specialized Surgery, Gaffrée e Guinle University Hospital, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, RJ, Brazil;
| | - Stefan Landgraeber
- Klinik für Orthopädie und Orthopädische Chirurgie Gebäude 37, EG, Zimmer 56, 66421 Homburg, Germany;
| | - Alireza Sharafshah
- Marie Curie Science Research Center, Greensboro, NC 27407, USA;
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht P.O. Box 4144654839, Iran
| |
Collapse
|
3
|
Fang Y, Shen B, Dai Q, Xie Q, Wu W, Wang M. Orbital inflammatory pseudotumor: new advances in diagnosis, pathogenesis, and treatment. Eur J Med Res 2023; 28:395. [PMID: 37794419 PMCID: PMC10548690 DOI: 10.1186/s40001-023-01330-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
Orbital inflammatory pseudotumor (OIP) is a benign, non-specific inflammatory disorder that commonly occurs in middle-aged adults and is usually unilateral but can occur bilaterally. Its clinical manifestations have tremendous clinical heterogeneity and vary according to the site of infiltration and the degree of lesions, including orbital pain, swelling, diplopia, proptosis, restricted eye movement, and decreased visual acuity. Clinical features, Image characteristics and pathological examinations often need to be evaluated to confirm the diagnosis. Currently, there is no systematic research on the pathogenesis of OIP, which may be related to immunity or infection. The first-line treatment is glucocorticoids. Radiotherapy, immunosuppressants, and biologics can be considered for treatment-resistant, hormone-dependent, or intolerant patients. In this review, we aim to summarize and focus on new insights into OIP, including new diagnostic criteria, pathogenesis, and discoveries in new drugs and treatment strategies. In particular, we highlight the literature and find that T cell-mediated immune responses are closely related to the pathogenesis of OIP. Further exploration of the mechanism and signaling pathway of T cells in the immune process will help to identify their therapeutic targets and carry out targeted therapy to treat refractory OIP and reduce the side effects of traditional treatments.
Collapse
Affiliation(s)
- Yenan Fang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Bingyan Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qin Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qiqi Xie
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| | - Min Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Clanchy FIL, Huang YS, Ogbechi J, Darlington LG, Williams RO, Stone TW. Induction of IDO1 and Kynurenine by Serine Proteases Subtilisin, Prostate Specific Antigen, CD26 and HtrA: A New Form of Immunosuppression? Front Immunol 2022; 13:832989. [PMID: 35371018 PMCID: PMC8964980 DOI: 10.3389/fimmu.2022.832989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
Several serine proteases have been linked to autoimmune disorders and tumour initiation although the mechanisms are not fully understood. Activation of the kynurenine pathway enzyme indoleamine-2,3-dioxygenase (IDO1) modulates cellular activity in the brain, tolerogenesis in the immune system and is a major checkpoint in cancer development. We now report that IDO1 mRNA and IDO1 protein expression (generating kynurenine) are induced in human monocyte-derived macrophages by several chymotryptic serine proteases with direct links to tumorigenesis, including Prostate Specific Antigen (PSA), CD26 (Dipeptidyl-peptidase-4, CD26/DPP-4), High Temperature Requirement protein-A (HtrA), and the bacterial virulence factor subtilisin. These proteases also induce expression of the pro-inflammatory cytokine genes IL1B and IL6. Other serine proteases tested: bacterial glu-C endopeptidase and mammalian Pro-protein Convertase Subtilase-Kexin-3 (PCSK3, furin), urokinase plasminogen activator (uPA), cathepsin G or neutrophil elastase, did not induce IDO1, indicating that the reported effects are not a general property of all serine proteases. The results represent a novel mechanism of activating immunosuppressive IDO1 and inducing kynurenine generation which, together with the production of inflammatory cytokines, would contribute to tumour initiation and progression, providing a new target for drug development. In addition, the proteasomal S20 serine protease inhibitor carfilzomib, used in the treatment of myeloma, prevented the induction of IDO1 and cytokine gene expression, potentially contributing to its clinical anti-cancer activity.
Collapse
Affiliation(s)
- Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Joy Ogbechi
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Medicine and Rheumatology, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Trevor W. Stone
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
TLR expression profiles are a function of disease status in rheumatoid arthritis and experimental arthritis. J Autoimmun 2021; 118:102597. [PMID: 33493980 DOI: 10.1016/j.jaut.2021.102597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 11/23/2022]
Abstract
The role of the innate immune system has been established in the initiation and perpetuation of inflammatory disease, but less attention has been paid to its role in the resolution of inflammation and return to homeostasis. Toll-like receptor (TLR) expression profiles were analysed in tissues with differing disease status in rheumatoid arthritis (RA), ankylosing spondylitis (AS), and in experimental arthritis. TLR gene expression was measured in whole blood and monocytes, before and after TNF blockade. In RA and osteoarthritis synovia, the expression of TLRs was quantified by standard curve qPCR. In addition, four distinct stages of disease were defined and validated in collagen-induced arthritis (CIA), the gold standard animal model for RA - pre-onset, early disease, late disease and immunised mice that were resistant to the development of disease. TLR expression was measured in spleens, lymph nodes, blood cells, liver and the paws (inflamed and unaffected). In RA whole blood, the expression of TLR1, 4 and 6 was significantly reduced by TNF blockade but the differences in TLR expression profiles between responders and non-responders were less pronounced than the differences between RA and AS patients. In RA non-responders, monocytes had greater TLR2 expression prior to therapy compared to responders. The expression of TLR1, 2, 4 and 8 was higher in RA synovium compared to control OA synovium. Circulating cytokine levels in CIA resistant mice were similar to naïve mice, but anti-collagen antibodies were similar to arthritic mice. Distinct profiles of inflammatory gene expression were mapped in paws and organs with differing disease status. TLR expression in arthritic paws tended to be similar in early and late disease, with TLR1 and 2 moderately higher in late disease. TLR expression in unaffected paws varied according to gene and disease status but was generally lower in resistant paws. Disease status-specific profiles of TLR expression were observed in spleens, lymph nodes, blood cells and the liver. Notably, TLR2 expression rose then fell in the transition from naïve to pre-onset to early arthritis. TLR gene expression profiles are strongly associated with disease status. In particular, increased expression in the blood precedes clinical manifestation.
Collapse
|
6
|
Patra MC, Batool M, Haseeb M, Choi S. A Computational Probe into the Structure and Dynamics of the Full-Length Toll-Like Receptor 3 in a Phospholipid Bilayer. Int J Mol Sci 2020; 21:ijms21082857. [PMID: 32325904 PMCID: PMC7215789 DOI: 10.3390/ijms21082857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptor 3 (TLR3) provides the host with antiviral defense by initiating an immune signaling cascade for the production of type I interferons. The X-ray structures of isolated TLR3 ectodomain (ECD) and transmembrane (TM) domains have been reported; however, the structure of a membrane-solvated, full-length receptor remains elusive. We investigated an all-residue TLR3 model embedded inside a phospholipid bilayer using molecular dynamics simulations. The TLR3-ECD exhibited a ~30°–35° tilt on the membrane due to the electrostatic interaction between the N-terminal subdomain and phospholipid headgroups. Although the movement of dsRNA did not affect the dimer integrity of TLR3, its sugar-phosphate backbone was slightly distorted with the orientation of the ECD. TM helices exhibited a noticeable tilt and curvature but maintained a consistent crossing angle, avoiding the hydrophobic mismatch with the bilayer. Residues from the αD helix and the CD and DE loops of the Toll/interleukin-1 receptor (TIR) domains were partially absorbed into the lower leaflet of the bilayer. We found that the previously unknown TLR3-TIR dimerization interface could be stabilized by the reciprocal contact between αC and αD helices of one subunit and the αC helix and the BB loop of the other. Overall, the present study can be helpful to understand the signaling-competent form of TLR3 in physiological environments.
Collapse
|
7
|
Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. Evaluating the Causal Role of Gut Microbiota in Type 1 Diabetes and Its Possible Pathogenic Mechanisms. Front Endocrinol (Lausanne) 2020; 11:125. [PMID: 32265832 PMCID: PMC7105744 DOI: 10.3389/fendo.2020.00125] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial autoimmune disease mediated by genetic, epigenetic, and environmental factors. In recent years, the emergence of high-throughput sequencing has allowed us to investigate the role of gut microbiota in the development of T1D. Significant changes in the composition of gut microbiome, also termed dysbiosis, have been found in subjects with clinical or preclinical T1D. However, whether the dysbiosis is a cause or an effect of the disease remains unclear. Currently, increasing evidence has supported a causal link between intestine microflora and T1D development. The current review will focus on recent research regarding the associations between intestine microbiome and T1D progression with an intention to evaluate the causality. We will also discuss the possible mechanisms by which imbalanced gut microbiota leads to the development of T1D.
Collapse
|
8
|
Yoon TW, Kim YI, Cho H, Brand DD, Rosloniec EF, Myers LK, Postlethwaite AE, Hasty KA, Stuart JM, Yi AK. Ameliorating effects of Gö6976, a pharmacological agent that inhibits protein kinase D, on collagen-induced arthritis. PLoS One 2019; 14:e0226145. [PMID: 31809526 PMCID: PMC6897462 DOI: 10.1371/journal.pone.0226145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptor (TLR) signaling can contribute to the pathogenesis of arthritis. Disruption of TLR signaling at early stages of arthritis might thereby provide an opportunity to halt the disease progression and ameliorate outcomes. We previously found that Gö6976 inhibits TLR-mediated cytokine production in human and mouse macrophages by inhibiting TLR-dependent activation of protein kinase D1 (PKD1), and that PKD1 is essential for proinflammatory responses mediated by MyD88-dependent TLRs. In this study, we investigated whether PKD1 contributes to TLR-mediated proinflammatory responses in human synovial cells, and whether Gö6976 treatment can suppress the development and progression of type II collagen (CII)-induced arthritis (CIA) in mouse. We found that TLR/IL-1R ligands induced activation of PKD1 in human fibroblast-like synoviocytes (HFLS). TLR/IL-1R-induced expression of cytokines/chemokines was substantially inhibited in Gö6976-treated HFLS and PKD1-knockdown HFLS. In addition, serum levels of anti-CII IgG antibodies, and the incidence and severity of arthritis after CII immunization were significantly reduced in mice treated daily with Gö6976. Synergistic effects of T-cell receptor and TLR, as well as TLR alone, on spleen cell proliferation and cytokine production were significantly inhibited in the presence of Gö6976. Our results suggest a possibility that ameliorating effects of Gö6976 on CIA may be due to its ability to inhibit TLR/IL-1R-activated PKD1, which might play an important role in proinflammatory responses in arthritis, and that PKD1 could be a therapeutic target for inflammatory arthritis.
Collapse
Affiliation(s)
- Tae Won Yoon
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Young-In Kim
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Hongsik Cho
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David D. Brand
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Edward F. Rosloniec
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Linda K. Myers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Arnold E. Postlethwaite
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Karen A. Hasty
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - John M. Stuart
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Ae-Kyung Yi
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
9
|
Haider T, Tiwari R, Vyas SP, Soni V. Molecular determinants as therapeutic targets in cancer chemotherapy: An update. Pharmacol Ther 2019; 200:85-109. [PMID: 31047907 DOI: 10.1016/j.pharmthera.2019.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
It is well known that cancer cells are heterogeneous in nature and very distinct from their normal counterparts. Commonly these cancer cells possess different and complementary metabolic profile, microenvironment and adopting behaviors to generate more ATPs to fulfill the requirement of high energy that is further utilized in the production of proteins and other essentials required for cell survival, growth, and proliferation. These differences create many challenges in cancer treatments. On the contrary, such situations of metabolic differences between cancer and normal cells may be expected a promising strategy for treatment purpose. In this article, we focus on the molecular determinants of oncogene-specific sub-organelles such as potential metabolites of mitochondria (reactive oxygen species, apoptotic proteins, cytochrome c, caspase 9, caspase 3, etc.), endoplasmic reticulum (unfolded protein response, PKR-like ER kinase, C/EBP homologous protein, etc.), nucleus (nucleolar phosphoprotein, nuclear pore complex, nuclear localization signal), lysosome (microenvironment, etc.) and plasma membrane phospholipids, etc. that might be exploited for the targeted delivery of anti-cancer drugs for therapeutic benefits. This review will help to understand the various targets of subcellular organelles at molecular levels. In the future, this molecular level understanding may be combined with the genomic profile of cancer for the development of the molecularly guided or personalized therapeutics for complete eradication of cancer.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Rahul Tiwari
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Suresh Prasad Vyas
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
10
|
Current and Emerging Evidence for Toll-Like Receptor Activation in Sjögren's Syndrome. J Immunol Res 2018; 2018:1246818. [PMID: 30671484 PMCID: PMC6317121 DOI: 10.1155/2018/1246818] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
While the importance of Toll-like receptor (TLR) signaling is well established in many autoimmune diseases, the role of TLR activation in Sjögren's syndrome (SS) is poorly understood. Studies in mice and humans reveal that TLRs are potent mediators of inflammation in SS. TLRs are expressed and functional in salivary tissue, and TLRs in peripheral blood cells of SS patients are also upregulated and hyperresponsive to ligation. In this review, we will detail observations in mouse models regarding the importance of TLR activation in both local and systemic disease. We will then discuss studies in SS patients that provide evidence of the importance of TLR-mediated signaling in disease. While the ligands that activate TLRs in the context of SS are unknown, emerging data suggest that damage-associated molecular patterns (DAMPs) may be significant drivers of the chronic and unremitting inflammation that is characteristic of SS. We will discuss putative DAMPs that may be of clinical significance in disease. Therapies that target TLR signaling cascades will likely reduce both exocrine-specific and systemic manifestations of SS.
Collapse
|
11
|
Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J Autoimmun 2018; 92:12-34. [PMID: 29861127 DOI: 10.1016/j.jaut.2018.05.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in preventing or ameliorating AID. Finally, we suggest that, given consistent observations of microbiota dysbiosis associated with AID and the ability of SCFA and BA to regulate intestinal permeability and inflammation, further mechanistic studies, examining how dietary microbiota modulation can protect against AID, hold considerable potential to tackle increased incidence of AID at the population level.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy; BIOMETRA Department, University of Milan, Italy
| |
Collapse
|
12
|
TLR9 and its signaling pathway in multiple sclerosis. J Neurol Sci 2017; 373:95-99. [DOI: 10.1016/j.jns.2016.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023]
|
13
|
Wang J, Cao H, Wang H, Yin G, Du J, Xia F, Lu J, Xiang M. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice. Toxicol Appl Pharmacol 2015; 285:149-58. [PMID: 25896969 DOI: 10.1016/j.taap.2015.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/19/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022]
Abstract
Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the "hygiene hypothesis", bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hui Cao
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjie Wang
- Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, USA
| | - Guoxiao Yin
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Du
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xia
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingli Lu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Xie H, Sheng L, Zhou H, Yan J. The role of TLR4 in pathophysiology of antiphospholipid syndrome-associated thrombosis and pregnancy morbidity. Br J Haematol 2013; 164:165-76. [PMID: 24180619 DOI: 10.1111/bjh.12587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hongxiang Xie
- Department of Cardiology; Affiliated Hospital of Jiangsu University; Zhenjiang China
- Department of Clinical Laboratory and Haematology; School of Medical Science and Laboratory Medicine of Jiangsu University; Zhenjiang China
| | - Liangju Sheng
- Department of Clinical Laboratory and Haematology; School of Medical Science and Laboratory Medicine of Jiangsu University; Zhenjiang China
| | - Hong Zhou
- Department of Cardiology; Affiliated Hospital of Jiangsu University; Zhenjiang China
- Department of Clinical Laboratory and Haematology; School of Medical Science and Laboratory Medicine of Jiangsu University; Zhenjiang China
| | - Jinchuan Yan
- Department of Cardiology; Affiliated Hospital of Jiangsu University; Zhenjiang China
| |
Collapse
|
15
|
Cha JJ, Hyun YY, Lee MH, Kim JE, Nam DH, Song HK, Kang YS, Lee JE, Kim HW, Han JY, Cha DR. Renal protective effects of toll-like receptor 4 signaling blockade in type 2 diabetic mice. Endocrinology 2013; 154:2144-55. [PMID: 23568555 DOI: 10.1210/en.2012-2080] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic inflammation caused by high glucose and high free fatty acid (FFA) concentrations is a major contributor to the pathogenesis of type 2 diabetes. Recent evidence suggests that activation of Toll-like receptor (TLR) signaling induces peripheral insulin resistance and mediates central insulin and leptin resistance. In this study, we investigated the renal effects of TLR4 signaling blockade in type 2 diabetic mice. Eight-week-old db/db mice were treated for 12 weeks with (S,R)-3-phenyl-4,5-dihydro-5-isoxasole acetic acid (GIT27), which targets macrophages through the inhibition of TLR4- and TLR2/6-mediated signaling pathways. Although GIT27 treatment improved glycemic control and insulin tolerance, which is associated with a lower lipid profile, it did not impact body weight or food consumption. GIT27 treatment also markedly decreased urinary albumin excretion, decreased proinflammatory cytokine synthesis, improved tissue lipid metabolism, induced oxidative stress, and improved glomerulosclerosis compared with the control db/db group. In cultured podocytes and adipocytes, high glucose levels with FFA stimulation increased TLR4 expression and proinflammatory cytokine synthesis, but the effects were abolished by GIT27 treatment. In addition, knockdown of TLR4 expression by stealth small interfering RNA abolished FFA-induced proinflammatory cytokine synthesis in cultured podocytes. In conclusion, our results suggest that GIT27 treatment improves insulin resistance and protects against the renal injury that occurs in type 2 diabetic nephropathy through both metabolic and antiglomerulosclerotic mechanisms. These results suggest that TLR pathway inhibition might play a direct protective role in diabetic kidney disease.
Collapse
Affiliation(s)
- J J Cha
- Department of Internal Medicine, Korea University Ansan-Hospital, 516 Kojan-Dong, Ansan City, Kyungki-Do, 425-020, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Giacomini E, Severa M, Rizzo F, Mechelli R, Annibali V, Ristori G, Riccieri V, Salvetti M, Coccia EM. IFN-β therapy modulates B-cell and monocyte crosstalk via TLR7 in multiple sclerosis patients. Eur J Immunol 2013; 43:1963-72. [DOI: 10.1002/eji.201243212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/19/2013] [Accepted: 04/25/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Elena Giacomini
- Department of Infectious, Parasitic and Immune-mediated Diseases; Istituto Superiore di Sanità; Rome; Italy
| | - Martina Severa
- Department of Infectious, Parasitic and Immune-mediated Diseases; Istituto Superiore di Sanità; Rome; Italy
| | - Fabiana Rizzo
- Department of Infectious, Parasitic and Immune-mediated Diseases; Istituto Superiore di Sanità; Rome; Italy
| | - Rosella Mechelli
- Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital-site; Sapienza University; Rome; Italy
| | - Viviana Annibali
- Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital-site; Sapienza University; Rome; Italy
| | - Giovanni Ristori
- Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital-site; Sapienza University; Rome; Italy
| | - Valeria Riccieri
- Internal Medicine and Medical Specialities Department; Sapienza University; Rome; Italy
| | - Marco Salvetti
- Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital-site; Sapienza University; Rome; Italy
| | - Eliana Marina Coccia
- Department of Infectious, Parasitic and Immune-mediated Diseases; Istituto Superiore di Sanità; Rome; Italy
| |
Collapse
|
17
|
Ramachandran R, Sharma V, Rathi M, Yadav AK, Sharma A, Kohli HS, Sakhuja V, Jha V. Association between -1486 T>C and +1174 G>A single nucleotide polymorphisms in TLR9 gene and severity of lupus nephritis. Indian J Nephrol 2012; 22:125-9. [PMID: 22787315 PMCID: PMC3391810 DOI: 10.4103/0971-4065.97133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Signaling through Toll-like receptor-9 (TLR9), a mediator of innate immune responses, could have a role in the pathogenesis of systemic lupus erythematosus (SLE). Some studies have shown an association between polymorphisms in the TLR9 gene and disease manifestations. We investigated whether two single nucleotide polymorphisms (-1486 T>C and +1174 G>A) in the TLR9 gene are associated with the risk of renal involvement in SLE. DNA samples from 112 SLE patients (62 with lupus nephritis) and 100 healthy controls were obtained. TLR9 polymorphisms (-1486 T>C and +1174 G>A) were analyzed by polymerase chain reaction–restriction fragment length polymorphism. Genotype and allelic frequencies were compared between lupus patients and healthy controls. Clinical and laboratory manifestations and activity scores on renal biopsy of patients with lupus nephritis were compared between various genotypes. There was no difference in the frequency of genotype or allele distribution at either of the two loci between lupus patients and controls and in lupus patients with or without nephritis. Patients with CC/CT genotype at the -1486 position had higher serum creatinine (P = 0.03) and Austin activity scores (P = 0.015). Patients with AA/AG genotype at +1174 position showed higher serum creatinine (P = 0.04), proteinuria (P = 0.011), anti-dsDNA titers (P < 0.001) and Austin activity scores (P = 0.003) than the GG genotype. Variations at the -1486 and +1174 positions of TLR9 gene are not associated with increased risk of SLE or that of kidney involvement in North Indians. CC/CT genotypes at -1486 and AA/AG at +1174 positions are associated with more severe kidney disease at presentation.
Collapse
Affiliation(s)
- R Ramachandran
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Luo J, Obmolova G, Malia TJ, Wu SJ, Duffy KE, Marion JD, Bell JK, Ge P, Zhou ZH, Teplyakov A, Zhao Y, Lamb RJ, Jordan JL, San Mateo LR, Sweet RW, Gilliland GL. Lateral clustering of TLR3:dsRNA signaling units revealed by TLR3ecd:3Fabs quaternary structure. J Mol Biol 2012; 421:112-24. [PMID: 22579623 PMCID: PMC3920545 DOI: 10.1016/j.jmb.2012.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 12/19/2022]
Abstract
Toll-like receptor 3 (TLR3) recognizes dsRNA and initiates an innate immune response through the formation of a signaling unit (SU) composed of one double-stranded RNA (dsRNA) and two TLR3 molecules. We report the crystal structure of human TLR3 ectodomain (TLR3ecd) in a quaternary complex with three neutralizing Fab fragments. Fab15 binds an epitope that overlaps the C-terminal dsRNA binding site and, in biochemical assays, blocks the interaction of TLR3ecd with dsRNA, thus directly antagonizing TLR3 signaling through inhibition of SU formation. In contrast, Fab12 and Fab1068 bind TLR3ecd at sites distinct from the N- and C-terminal regions that interact with dsRNA and do not inhibit minimal SU formation with short dsRNA. Molecular modeling based on the co-structure rationalizes these observations by showing that both Fab12 and Fab1068 prevent lateral clustering of SUs along the length of the dsRNA ligand. This model is further supported by cell-based assay results using dsRNA ligands of lengths that support single and multiple SUs. Thus, their antagonism of TLR3 signaling indicates that lateral clustering of SUs is required for TLR3 signal transduction.
Collapse
Affiliation(s)
- Jinquan Luo
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Galina Obmolova
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Thomas J. Malia
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Sheng-Jiun Wu
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Karen E. Duffy
- Immunology Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - James D. Marion
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jessica K. Bell
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Peng Ge
- Electron Imaging Center for Nanomachines (EICN), UCLA, Los Angeles, CA 90095, USA
| | - Z. Hong Zhou
- Electron Imaging Center for Nanomachines (EICN), UCLA, Los Angeles, CA 90095, USA
| | - Alexey Teplyakov
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Yonghong Zhao
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Roberta J. Lamb
- Immunology Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Jarrat L. Jordan
- Immunology Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Lani R. San Mateo
- Immunology Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Raymond W. Sweet
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Gary L. Gilliland
- Biologics Research, Janssen Research and Development, L.L.C., 145 King of Prussia Road, Radnor, PA 19087, USA
| |
Collapse
|
19
|
Abstract
PURPOSE A prior investigation has demonstrated that innate immune-specific cytokines are enriched in idiopathic orbital inflammation (IOI). To further document the role of innate immunity in IOI, the authors sought to determine whether toll-like receptors (TLRs) are present in biopsy specimens of this disorder. METHODS Immunohistochemical staining for TLR2, TLR3, and TLR4 was performed on biopsy specimens taken from patients with IOI, and the number of TLR-positive cells was counted across five 40× light microscopic fields. These results were compared with an isotype control and with orbital adipose tissue taken from patients without evidence of inflammation. RESULTS All IOI specimens demonstrated positivity for all 3 TLRs, and sections stained for isotype controls did not demonstrate any positivity. Furthermore, orbital adipose tissue did not demonstrate any significant signal. The mean number of positive cells was 24.4 cells/high power field (hpf; standard deviation = 11.6 cells/hpf), 7.23 cells/hpf (standard deviation = 5.59 cells/hpf), and 11.7 cells/hpf for TLR2, TLR3, and TLR4, respectively. CONCLUSIONS This study provides the first documentation of TLRs in orbital disease. Toll-like receptors are present in IOI, and IOI may represent an aberrant innate immune response. Interference with TLRs may represent an additional potential therapeutic mechanism in the management of IOI.
Collapse
|
20
|
Alzabin S, Kong P, Medghalchi M, Palfreeman A, Williams R, Sacre S. Investigation of the role of endosomal Toll-like receptors in murine collagen-induced arthritis reveals a potential role for TLR7 in disease maintenance. Arthritis Res Ther 2012; 14:R142. [PMID: 22691272 PMCID: PMC3446525 DOI: 10.1186/ar3875] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/23/2012] [Accepted: 06/12/2012] [Indexed: 12/20/2022] Open
Abstract
Introduction Endosomal toll-like receptors (TLRs) have recently emerged as potential contributors to the inflammation observed in human and rodent models of rheumatoid arthritis (RA). This study aims to evaluate the role of endosomal TLRs and in particular TLR7 in the murine collagen induced arthritis (CIA) model. Methods CIA was induced by injection of collagen in complete Freund's adjuvant. To investigate the effect of endosomal TLRs in the CIA model, mianserin was administered daily from the day of disease onset. The specific role of TLR7 was examined by inducing CIA in TLR7-deficient mice. Disease progression was assessed by measuring clinical score, paw swelling, serum anti-collagen antibodies histological parameters, cytokine production and the percentage of T regulatory (Treg) cells. Results Therapeutic administration of mianserin to arthritic animals demonstrated a highly protective effect on paw swelling and joint destruction. TLR7-/- mice developed a mild arthritis, where the clinical score and paw swelling were significantly compromised in comparison to the control group. The amelioration of arthritis by mianserin and TLR7 deficiency both corresponded with a reduction in IL-17 responses, histological and clinical scores, and paw swelling. Conclusions These data highlight the potential role for endosomal TLRs in the maintenance of inflammation in RA and support the concept of a role for TLR7 in experimental arthritis models. This study also illustrates the potential benefit that may be afforded by therapeutically inhibiting the endosomal TLRs in RA.
Collapse
Affiliation(s)
- Saba Alzabin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, London, W6 8LH, UK
| | | | | | | | | | | |
Collapse
|
21
|
Chang JH, McCluskey PJ, Wakefield D. Recent advances in Toll-like receptors and anterior uveitis. Clin Exp Ophthalmol 2012; 40:821-8. [PMID: 22429223 DOI: 10.1111/j.1442-9071.2012.02797.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Uveitis involves acute, recurrent or chronic inflammation of the uvea, and occurs when the normal state of ocular immune privilege has broken down. Accumulating evidence implicates the role of microbial triggers in the development of various forms of immune-mediated uveitis in addition to its causative role in infectious uveitis. Toll-like receptors (TLRs) are the most important pattern-recognition receptors of the innate immune system that recognize pathogen-associated molecular patterns of microbes. Activation of TLRs by pathogen-associated molecular patterns leads to the induction of an inflammatory cascade and activation of both innate and adaptive arms of the immune response. TLRs have been implicated in the pathogenesis of various inflammatory diseases, including uveitis. This review provides an update on recent progress in TLR research and uveitis, specifically summarizing new evidence for the role of TLRs in anterior uveitis. There have been important observations from studies involving human ocular tissue, clinical uveitis and from experimental animal models of uveitis, such as endotoxin-induced uveitis. The 'Toll rush' has certainly gained momentum, and future advances in this field have the potential for selectively targeting the TLR pathway and ultimately translating into better therapies for patients with sight-threatening uveitis.
Collapse
Affiliation(s)
- John H Chang
- Inflammatory Eye Diseases Research Unit, School of Medical Sciences, University of NSW, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
22
|
Goh FG, Midwood KS. Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis. Rheumatology (Oxford) 2011; 51:7-23. [PMID: 21984766 DOI: 10.1093/rheumatology/ker257] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RA is a debilitating disorder that manifests as chronic localized synovial and systemic inflammation leading to progressive joint destruction. Recent advances in the molecular basis of RA highlight the role of both the innate and adaptive immune system in disease pathogenesis. Specifically, data obtained from in vivo animal models and ex vivo human tissue explants models has confirmed the central role of Toll-like receptors (TLRs) in RA. TLRs are pattern recognition receptors (PRRs) that constitute one of the primary host defence mechanisms against infectious and non-infectious insult. This receptor family is activated by pathogen-associated molecular patterns (PAMPs) and by damage-associated molecular patterns (DAMPs). DAMPs are host-encoded proteins released during tissue injury and cell death that activate TLRs during sterile inflammation. DAMPs are also proposed to drive aberrant stimulation of TLRs in the RA joint resulting in increased expression of cytokines, chemokines and proteases, perpetuating a vicious inflammatory cycle that constitutes the hallmark chronic inflammation of RA. In this review, we discuss the signalling mechanisms of TLRs, the central function of TLRs in the pathogenesis of RA, the role of endogenous danger signals in driving TLR activation within the context of RA and the current preclinical and clinical strategies available to date in therapeutic targeting of TLRs in RA.
Collapse
Affiliation(s)
- Fui G Goh
- Kennedy Institute of Rheumatology Division, Matrix Biology Department, Faculty of Medicine, Imperial College of Science, Technology and Medicine, 65 Aspenlea Road, Hammersmith, London W6 8LH, UK
| | | |
Collapse
|